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Abstract

We introduce Virtual Integer-Real Arithmetic Substitution (Viras), a quantifier elim-
ination procedure for deciding quantified linear mixed integer-real arithmetic problems.
Viras combines the framework of virtual substitutions with conflict-driven proof search
and linear integer arithmetic reasoning based on Cooper’s method. We demonstrate that
Viras gives an exponential speedup over state-of-the-art methods in quantified arithmetic
reasoning, proving problems that SMT-based techniques fail to solve.

This paper is the extended version of paper “VIRAS: Conflict-Driven Quantifier Elim-
ination for Integer-Real Arithmetic” published at LPAR 2024, written by the same authors.
This version provides proofs and additional examples in order to illustrate various formal
results.

1 Introduction

Automated reasoning is routinely used in applications of mathematical theory formalisation [9],
formal verification [10] and web security [6]. The demand for proving properties with both
quantifiers and theories is increasing in these and similar domains, especially in the context
of arithmetic reasoning. Common approaches addressing this demand implement incomplete
heuristics for quantifier instantiation (QI) [3, 18, 12] or integrate complete quantifier elimination
(QE) [4, 2], adjusted for a particular arithmetic domain. In this paper, we improve the state-of-
the-art in quantifier elimination by introducing a new calculus for mixed integer-real arithmetic,
while aiming at reducing computational cost of QE [20].

QE transforms first-order formulas ∃x.φ or ∀x.φ into an equivalent formula φ′ that does not
contain the variable x. Seminal works solving QE were introduced within Cylindrical Algebraic
Decomposition – CAD [5, 1], lazy model enumaration [17] and virtual substitution [11, 19]
for non-linear real arithmetic and Cooper’s method for linear integer arithmetic [7]. These
techniques have been used and extended with tailored solutions for satisfiability modulo theory
(SMT) solving in non-linear and linear real arithmetic (Nra, Lra) [13, 4] or linear integer
arithmetic (Lia) [14, 2]. Yet, existing solutions [20, 18] fail deciding the mixed theory of linear
integer and real arithmetic (Lira) adequately. The work of [20] requires formula normalizations
that result in an exponential blow-up in the input formula size, whereas [18] is restricted to ∀∃
problems.

This paper describes the Viras method for solving linear integer-real arithmetic formulas
with arbitrary quantifier alternations (Sect. 4), using virtual substitutions to implement quan-
tifier elimination in Lira. Within Viras, we combine real and integer arithmetic via a floor
function b·c for rounding reals to closest integers. Viras uses virtual substitutions to eliminate
quantified variables x by instantiating with so-called virtual terms. We extend the framework
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of virtual substitutions with so-called Z-terms, allowing us to generalize Cooper’s method from
Lia to Lira, and further optimizing it for equality literals (Sect. 5). Viras overcomes the
burden of arithmetic normalisations performed in [20] and avoids an exponential blow-up in
processing Lira formula (Sect. 5). We further extend Viras with conflict-driven proof search
(Sect. 6), by generalizing [15] to handle virtual terms involving infinitesimals ε and ±∞.

Our contributions. In summary, this paper brings the following contributions.

• We present the Viras method implementing a quantifier elimination procedure for linear
mixed integer-real arithmetic, generalizing both Cooper’s method [7] and virtual substi-
tutions [19] by introducing Z-terms (Sect. 4), and prove that Viras is indeed a quantifier
elimination procedure in Theorem 1 1.

• We show Viras is exponentially faster than related techniques [20]. Moreover, Viras can
solve problems that SMT-based solutions fail to solve (Sect. 5).

• We enhance Viras with conflict-driven proof search, by extending the framework intro-
duced in [15] to support ε and ∞-terms (Sect. 6).

2 Motivating Example

We illustrate Lira reasoning and the main steps of Viras using the formula:

∃x.φ = ∃x.(bac+ 1
3 ≤ x︸ ︷︷ ︸

L1

∧x ≤ bac+ 2
3︸ ︷︷ ︸

L2

∧ dxe − x ≥ c︸ ︷︷ ︸
L3

) (1)

where bac denotes the floor of the real number a; that is, the greatest integer such that bac ≤ a.
Eliminating the quantifier ∃x in the Lira formula (1) comes with the challenge or reasoning
floor-expressions within real-integer linear arithmetic.

Note that the literals L1, L2 impose respectively lower and upper bounds on the quantified
variable x. Intuitively, L1, L2 imply that, in order for φ to hold for some x, x must be within
the non-empty interval

[
bac+ 1

3 , bac+ 2
3

]
. Further, literal L3 asserts that x is in a periodically

repeating set of solutions, for the following reason: as dxe − x can be only within [0, 1), the
literal L3 cannot hold if c belongs to the interval [1,∞); if c ∈ [−∞, 1) then L3 holds iff x ∈⋃
z∈Z(z, z+1−c]. As such, the Lira formula (1) holds iff intersection I of the intervals restricting

the values of x, as asserted by L1, L2, L3, is non-empty. Following upon this observation, I is
clearly non-empty when c < 0. On the other hand, if c ∈ [0, 1), then I is non-empty iff
(bac , bac + 1− c]∩

[
bac+ 1

3 , bac+ 2
3

]
is non-empty, which is the case iff bac+ 1

3 ≤ bac+ 1− c
In summary, this means a quantifier-free equivalent formula to the Lira formula (1) is c ≤ 2

3 .
Note that by finding a quantifier-free formula c ≤ 2

3 equivalent to formula (1), we applied QE
to (1) using arithmetic reasoning with floor-expressions. For automating such a QE process, our
Viras method implements the following steps. We transform (1) into an equivalent, quantifier-
free formula by computing a so-called elimination set elim(φ) and by virtually substituting x
with each element of elim(φ), allowing us to replace the existentially quantified formula (1) with
the following finite disjunction:

∃x.φ ⇐⇒ φJx � bac+ 1
3K ∨ φJx �−∞K ∨ φJx � ZK ∨ φJx � Z + εK (2)

1Proofs are given in the appendix.
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where φJx � tK denotes the formula obtained from φ by virtually substituting x with t. Note
that the elements of elim(φ) used for substituting x are not just regular terms, but so-called
virtual terms that include additional symbols: ε for infinitesimal quantities, ∞ for infinity and
Z for periodically repeating solutions. While ε and ∞ are also used [16], the periodic solutions
Z-terms are both unique and crucial for Viras. We immediately eliminate the symbols ε,∞,Z
in virtual substitutions, so that result of φJx � tK is a formula using the original signature
of φ. Concretely, t + ε is eliminated by replacing φJx � t + εK by its limit value limx→t+ φ;
∞ is eliminated via substituting with a constant greater than any other term, and t + pZ is
eliminated by choosing a sufficient subset finφt+pZ of {t + pz | z ∈ Z} for substituting. In the

case of this example a sufficient subset finφZ of Z is {bac + 1}, the integer closest to the lower
bound L1 = bac+ 1

3 ≤ x. As such, we apply virtual substitution:

φJx � bac+ 1
3
K = bac+ 1

3
≤ bac+ 1

3︸ ︷︷ ︸
>

∧bac+ 1
3
≤ bac+ 2

3︸ ︷︷ ︸
>

∧
⌈
bac+ 1

3

⌉
− bac − 1

3
≥ c︸ ︷︷ ︸

2
3
≥c

φJx �−∞K = ⊥ ∧ (L2 ∧ L3)Jx �−∞K

φJx � ZK =
∨

t∈fin
φ
Z
φJx � tK = φJx � bac+ 1K = bac+ 1 ≤ bac+ 2

3︸ ︷︷ ︸
⊥

∧(L1 ∧ L3)Jx � bac+ 1K

φJx � Z + εK =
∨

t∈fin
φ
Z+ε

φJx � tK = φJx � bac+ 1 + εK

= bac+ 1 + ε ≤ bac+ 2
3
∧ (L1 ∧ L3)Jx � bac+ 1 + εK

= bac+ 1 < bac+ 2
3︸ ︷︷ ︸

⊥

∧(L1 ∧ L3)Jx � bac+ 1 + εK

allowing us to reduce (2) to c ≤ 2
3 as the quantifier-free equivalent of the Lira formula (1).

3 Preliminaries

We assume familiarity with multi-sorted first-order logic and respectively denote rationals,
integers and reals by Q,Z and R. We consider the mixed first-order theory of linear integer and
real arithmetic (Lira), corresponding to first-order logic with predicate symbols <,≤,≥, >,≈;
function symbols +, q· for q ∈ Q and b·c; and a constant symbol 1, interpreted over R. The
function symbols q· are called numerals. A term q · (t) is interpreted as the term t multiplied
by q. For simplicity, we omit parenthesis and · whenever it is clear from context; for example,
write 3t for 3 · (t). We write k for k · (1), +t for 1t and −t for −1t. By ≈ we denote the
equality predicate. We write l 6≈ r for ¬(l ≈ r). The floor function b·c applied to a term t
returns the greatest integer less than or equal to t; hence, btc ≤ t. The ceiling function can
be defined as dxe = −b−xc. While Lira theory does not contain a dedicated sort of integers,
it handles integer properties via the b·c function. Linear real arithmetic (Lra) is an instance
of Lira, without the floor function b·c, interpreted over the reals R. Linear integer arithmetic
(Lia), also known as Presburger arithmetic, restricts Lra to the integer numerals of Z and is
interpreted over Z instead of R.

Let V and T denote respectively the set of Lira variables and terms. We write a, b, c, x, y, z
for variables; s, t, u for terms; j, k, q, p for numerals; L for literals; φ, ψ for formulas, all possibly
with indices. We denote by ± a symbol in {+,−} and write ∓ for the respective other symbol;
� for a predicate in {≈, 6≈, >,≥}; and & for a predicate in {>,≥}. Note that all variables that
are not explicitly quantified are considered parameters (i.e., implicitly universally quantified).
We write s E t for s being a subterm of t and s / t for s being a strict subterm of t. An
expression E is a term, literal or formula. We write E[x/t] for the result of substituting x

3
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by t in E; whenever it is clear from context, we write E[t] for E[x/t]. For a formula φ we
write ∀φ and ∃φ for the universal and existential closure of φ. For a set E, we write

∧
E for∧

e∈E e; similarly for
∨
,
⋂
,
⋃

and Σ. For a formula φ and a first-order interpretation I, the

set solSetφx,I = {x ∈ R | I |= φ[x]} is the solution set of φ with respect to I and x. If φ is a
conjunction of literals we write L ∈ φ to denote that L is a literal of φ.

We consider rational numbers j
k ∈ Q to be normalized such that the greatest common

divisor of j, k satisfies gcd(j, k) = 1. Let den( jk ) = k denote the denominator and num( jk ) = j

the numerator of j
k . By sgn(q) we denote the sign of the number q with sgn(q) ∈ {0,−,+}. We

respectively introduce a generalized quotient function and remainder function as quotp(t) = b tpc
and remp(t) = t − p · quotp(t), both defined over R. Divisibility constraints are expressed in
Lira as q | t⇐⇒ remq(t) ≈ 0, whereas congruence classes are defined as s ≡q t⇐⇒ remq(s) ≈
remq(t). We generalize least common multipliers lcm to be used with arbitrary finite sets of

rationals Q ⊂ Q with 0 6∈ Q, as follows: lcmQ(Q) = lcm{num(q)|q∈Q}
gcd{den(q)|q∈Q} . Clearly, for all q ∈ Q, we

have lcmQ(Q)
q ∈ Z. We use L and M as variables for interval bounds: L is either [ or ( ; and M is ]

or ) . For example the interval Ll, r] could either be (l, r] or [l, r], depending on L.

4 VIRAS: Virtual Integer Real Arithmetic Substitution

We now introduce the Viras method that performs quantifier elimination (QE) on Lira for-
mulas, by implementing virtual substitutions over integer-real arithmetic. Given a quantified
formula ∃x.φ, Viras translates ∃x.φ into an equivalent quantifier-free formula φ′, which in
the case of a formula where all variables in φ are bound means φ′ is ground and thus can be
simply be evaluated (and solved). As we can perform quantifier elimination recursively, univer-
sal quantifiers can be expressed in terms of existential ones, and existential quantifiers can be
distributed over disjunctions, in the sequel we consider arbitrarily fixed ∃x.φ formula, where φ
is a conjunction of literals, that may contain free variables that are considered parameters (i.e.,
implicitly universally quantified).

Following the setting of virtual substitutions [11, 19], Viras computes a finite but sufficient
number of witnesses for ∃x and turns the quantified formula ∃x.φ into an equaivalent finite
disjunction ∨

t∈elimx(φ)

φJx � tK,

where φJx � tK is obtained from φ by virtually substituting x with the virtual term t that does
not contain x, and elimx(φ) is the elimination set of φ.

The core idea for finiding finite sets of witnesses elimx(φ) is that every Lira-literal L ∈ φ
defines a set of solution intervals. Thus if L holds for some x, then x must be contained in some
solution interval S of L, thus L must also hold for the lower bound of S. As φ is a conjunction
of such literals ∃x.φ[x] holds iff φ holds for any of the lower bounds of its literals. Thus we can
choose the set of all lower bounds of all solution intervals as elimination set elimx(φ).

For finding the lower bounds of these solution intervals we introduce key properties of Lira
terms and literals in Sect. 4.1. As seen in our motivating example in Sect. 2 solution intervals
are not only left-closed (e.g., [l, r]) but may also be left-open (e.g., (l, r], (−∞, r]), and may
be periodically repeating (e.g., ∪z∈Z[l + 2z, r + 2z]). Thus we do not only substitute with
regular but with virtual terms, to include lower bounds like l+ ε, −∞ and l+ 2Z. We formally
define virtual terms and virtual substitutions in Sect. 4.2. Finally in Sect. 4.3 we combine the

4
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Figure 1: Lira terms interpreted as functions in x, with dotst(x) = bx+ tc + b−x− tc. The
function graph is drawn thick and in blue, the function’s linear bounds are given by the cyan
dashed line, the core interval (Def. 7) is visualized in orange and marked with deltaX.

results about Lira-terms and literals with the virtual substitution operation, allowing us to
constructively define elimx(φ) and prove that Viras is a QE procedure for Lira in Theorem 1.

4.1 LIRA Properties

Let us recall our motivating example from Sect. 2. We argued that the literal L3 = bxc−x ≥ c
of formula (1) has a periodic solution set of solutions

⋃
z∈Z(z, z + 1 − c]. The main idea of

building our elimination sets is to cover all lower bounds of the intervals the solution set is
composed of (i.e., z+ε for every z ∈ Z in our example). Any Lira-literal can be normalized to
the form t � 0 (� ∈ {>,≥,≈, 6≈}), thus we can characterize the lower bounds of solution sets by
finding the zero crossings of Lira-terms t. For finiding these we introduce relevant properties
of Lira terms and literals.

5
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LIRA Terms. We first illustrate few Lira terms in Fig. 1, where terms are interpreted as
functions in x. Note that each function in Fig. 1 is non-linear and not continuous. Nevertheless,
the Lira terms of Fig. 1 have a linear upper and lower bound with the same slope (Lem. 2),
which we call the outer slope oslp of terms (Def. 1). The lower and the upper bound distances
from the origin are distY− and distY+, and their difference is deltaY ∈ Q≥0 (Def. 2). Even
though there is an infinite number of discontinuities in Fig. 1, the function graphs witness
periodic repetition, parallely shifted along upper and lower bounds (Lem. 1). The period per of
a Lira term refers to the size of the repeating interval of its respective function graph. Fig. 1
also shows that, between each two discontinuities, the function is composed of linear segments
(Lem. 4) with the same slope; we refer to these as segment slopes sslp (Def. 1). The line segment
above any x-value can be described as a linear function (visualized via the thin gray dashed
lines in Fig. 1.b) passing through each segment that starts at the term’s limit limx

t (Def. 3) and
is shifted by the distance dseg(x) (Def. 4) from the origin; thus, the line describing the segment
above some value x0 is given by sslp · x + dseg(x0). It is easy to see that the truth value of a
literal t�0 can only change at a discontinuity b or at the zero of some segment zerot(b) (Def. 4).
Therefore, only these values can be lower bounds of solution intervals of Lira-literals, defining
thus our elimination set (Fig. 2).

From Fig. 1 we can easily see that in the cases with oslp 6= 0 (subfigures (a), (b), (d)),
inequalities t�0 will always be constant true or false for x values outside of the linear bounding
functions, while the area inside the bounding function contains a finite number of line segments,
thus a finite number of intervals where t � 0 could be true, thus a finite number of points we
need to add to our elimination set. Further from Fig. 1.b we can see that if oslp = 0, the truth
value of inequalities t � 0 will repeat at a period per. Within one period again there is only a
finite number of line segments, hence a finite number of points for our elimination sets. Due to
the periodic repeating nature of these solutions we will be able to define all of them in a finite
set Z-terms (Def. 8). Both of these insights will later be formalized in Lem. 6, and Lem. 5,
which are necessary for defining virtual substitution and obtaining our main result Theorem 1.
In order to do this we formally define all these notions below.

Most of the following definitions formalizing these observations will use term and variable
subscripts, or superscripts (e.g., perxt ). We will omit these for the term symbol t and the variable
symbol x.

Definition 1 (Slope and Period). Let t be a Lira term. By recursion on t, we define the
period perxt , outer slope oslpxt , and segment slope sslpxt of t as:

oslpxy =

{
1 if x = y

0 otherwise

oslpx1 = 0

oslpxkt = k · oslpxt

oslpxs+t = oslpxs + oslpxt

oslpxbtc = oslpxt

sslpxy =

{
1 if x = y

0 otherwise

sslpx1 = 0

sslpxkt = k · sslpxt

sslpxs+t = sslpxs + sslpxt

sslpxbtc = 0

perxy = perx1 = 0

perxs+t =


perxs if perxt = 0

perxt if perxs = 0

lcmQ{perxs , perxt } otherwise

perxkt = perxt

perxbtc =


0 if perxt = 0 = oslpxt

1
|oslpxt |

if perxt = 0 6= oslpxt

num(perxt ) · den(oslpxt ) otherwise

Lemma 1 (Periodic Shift). If pert 6= 0 then R |= ∀x, y.
(
t[x+ per byc ] ≈ t[x] + oslp · per byc

)
Proof. See Appendix D.

6
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Example 1. Consider the term t = −b−3x+ zc − x of Fig. 1.b. We have oslp = 2, sslp = −1
and per = 1

3 . By increasing the value of x by per byc, the value of t[x] increases by oslp ·per byc,
that is:

t[x+ per︸︷︷︸
1
3

] byc ≈ −
⌊
−3(x+ 1

3 byc) + z
⌋
−x− 1

3 byc

≈ −b−3x+ zc+ byc −x− 1
3 byc ≈ t[x] + per · oslp︸ ︷︷ ︸

2
3

byc

Definition 2 (Bound Distance). Let t be a Lira-term. We define distY±x,t ∈ T and deltaYx,t ∈
Q by recursion on t:

deltaYx,y = 0

deltaYx,1 = 0

deltaYx,kt = |k|deltaYx,t

deltaYx,s+t = deltaYx,s + deltaYx,t

deltaYx,btc = deltaYx,t + 1

distY+
x,t = distY−x,t + deltaYx,t

distY−x,y =

{
0 if x = y

y otherwise

distY−x,1 = 1

distY−x,kt =

{
k · distY−x,t if k ≥ 0

k · distY+
x,t if k < 0

distY−x,s+t = distY−x,s + distY−x,t

distY−x,btc = distY−x,t − 1

While the bounds distY± are over-approximations of actual bounds2, they yield linear bounds
with same outer slopes. These bounds are being used to define the core interval (Def. 7), the
interval in which a literal’s truth value is not trivially true or false (Lem. 6). Overapproximating
this interval thus only results in unnecessary instantiations of the formula φ which slows down
proof search but does not affect soundness.

Lemma 2 (Linear Bounds). R |= ∀x.
(

oslp · x+ distY− ≤ t ≤ oslp · x+ distY+
)

.

Proof. See Appendix D.

Example 2. Recall term t = −b−3x+ zc−x from Ex. 1, with oslp = 2. We have distY− = −z
and deltaY = 1, which implies that 2x− z ≤ −b−3x+ zc − x ≤ 2x− z + 1.

We next express that a function defined by a Lira term is composed from the linear segments
between two discontinuities. Therefore, we compute the upper limit limx

t of a Lira term t
(Def. 3) and derive each segment’s distance to origin (Def. 4).

Definition 3 (Limit). The limit term limx
t of a Lira-term t wrt x is defined by recursion on

t, as:

limx
y = y

limx
1 = 1

limx
kt = k · limx

t

limx
s+t = limx

s + limx
t

limx
btc =

{
blimx

t c if sslpxt ≥ 0

dlimx
t e − 1 if sslpxt < 0

We write limt for limx
t if x is clear in the context.

Example 3. The term t = −b−3x+ zc − x of Fig. 1.b has limt = b3x− zc+ 1− x.

2Ex. 14 in Appendix A.1 shows that finding tight(er) bounds is very expensive

7
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Definition 4 (Segment Line). The segment distance dsegt(x0) of a Lira-term t at x0 is:

dsegxt (x0) = −sslpxt · x0 + limx
t [x0] zeroxt (x0) = x0 − limxt [x0]

sslpt
The segment line of t at x0 is sslpt · x + dsegt(x0), whereas zerot(x0) is the zero of the
segment of t at x0.

Example 4. In t from Fig. 1.b, we have dseg(b) = b3b− zc + 1. Hence, dseg(−1/3) = b−zc,
dseg(−1) = b−zc − 2, and zero(b) = dseg(b). The dotted lines of Fig. 1).b show sslp · x +
dseg(−1/3) and sslp ·x+dseg(−1), with the corresponding zeros zero(−1/3) and zero(−1). The
lines’ distances to the origin are dseg(−1/3) and dseg(−1).

We next introduce the set breaks∞ of discontinuities, which is infinite but periodically re-
peating. We therefore specify finite sets breaks of terms with a formal parameter Z, capturing
that if t+ pZ ∈ breaks then {t+ pz | z ∈ Z} ⊆ breaks∞.

Example 5. For −b−3x+ zc − x in Fig. 1.b, we have breaks∞ = { z3 + i
3 | i ∈ Z} and

breakst = { z3 + 1
3Z}.

To define breaks∞, we compute the intersection of infinite sets defined by t + pZ with
constant-sized intervals Ll, l + q M (l, t ∈ T, q, p ∈ Q≥0), using grid instersections.

Definition 5 (Grid Intersection). For s, t ∈ T and p, k ∈ Q>0, the grid intersection is

(s+ pZ) u Lt, t+ kM = {startL + np | n ∈ N, nplM k}

where

dtes+pZ = t+ remp(s− t)
btcs+pZ = t− remp(t− s)

dt+ εes+pZ = bt+ pcs+pZ

bt− εcs+pZ = dt− pes+pZ
start[ = dtes+pZ

start( = dt+ εes+pZ
l] =≤
l) =<

Intuitively, a term t + pZ is a grid that starts at value t and repeats with period p. The
operation u intersects this grid with an interval, whereas the operations bsct+pZ and dset+pZ
are rounding the grid value next to s. We thus have the following result.

Lemma 3 (Grid Intersection). (s+ pZ) u Lt, t+ kM ⊇ ({s+ pz | z ∈ Z} ∩ Lt, t+ kM)

Proof. See Appendix D.

Example 6. Consider the interval [a, a+ 4) and the grid 1 + 2Z. As

I = (1 + 2Z) u [a, a+ 4) = {dae1+2Z
+ i | i ∈ {0, 2}} = {a+ rem2(1− a) + i | i ∈ {0, 2}},

we obtain I = {1− 2
⌊
1−a
2

⌋
, 3− 2

⌊
1−a
2

⌋
}. Hence, the values in I are in G = {1 + 2z | z ∈ Z}.

Further, since rem2(1 − a) ∈ [0, 2) yields that dae1+2Z
= a + rem2(1 − a) is the smallest value

in G ∩ [a, a+ 4), which means I ⊆ G ∩ [a, a+ 4).

We have now all ingredients to define the set breaks of discontinuities, using over-
approximation as for linear bounds (Lem. 2).

Definition 6. The set of discontinuities breaksxt of a Lira-term t wrt variable x is defined
by recursion on t, as:

breaksxy = breaksx1 = ∅
breaksxkt = breaksxt

breaksxs+t = breaksxs ∪ breaksxt

breaksxbtc =


breaksxt if sslpt = 0

{zerot(0) + perbtcZ} if breaksxt = ∅ & sslpt 6= 0

breaksxt ∪ breaksInSegxt if breaksxt 6= ∅ & sslpt 6= 0

8
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breaksInSegxt =


b+ perbtcZ b ∈ (zero(b0) + 1

sslpt
Z) u [b0, b0 + pmin

t ) where

b0 ∈ (b′0 + pZ) u [b′0, b
′
0 + perbtc) where

b′0 + pZ ∈ breakst


pmin
t = min{p | b+ pZ ∈ breaksxt }

breaksx,∞t = {t+ pz | z ∈ Z, t+ pZ ∈ breaksxt }

The piecewise linearity of functions defined by Lira terms is then expressed as: between any
two neighbouring breaks b+ and b−, the term t is described by a linear function sslp·x+dseg(b−).

Lemma 4 (Piecewise Linearity). Let I be an R-interpretation, x ∈ V and t a Lira-term
such that breaks 6= ∅ and b− ∈ breaks∞. Let b+ = min{b | b ∈ breaks∞, I |= b > b−}, and
± ∈ {+,−}. Then

I |= ∀x ∈ (b−, b+), y ∈ [b−, b+). (t[x] ≈ limt[x] ≈ sslp · x+ dseg(y)) .

Proof. See Appendix D.

LIRA Literals. Let us now introduce some key properties of Lira literals that will allow
us to specify finite elimination sets. We assume Lira literals to be normalized to t � 0, and
distinguish two kinds of Lira-literals: A Lira literal is called periodic if oslpt = 0 and aperiodic
otherwise. Periodic literals’ solution sets repeat periodically, which allows us to finitely specify
the lower bounds of their solution sets using Z-terms (formally defined in Sect. 4.2), while
aperiodic literals only have a finite number of solution intervals that can be found using the
bounds of their so-called core interval (Def. 7).

Fig. 1.b shows that the solutions of periodic literals repeat in a periodic manner:

Lemma 5 (Periodic Literals). If L = t � 0 is a periodic Lira-literal (oslpt = 0), then
R |= ∀y.

(
L[x]↔ L[x+ pert byc ]

)
Proof. See Appendix D.

Example 7. Consider the literal L3 = t ≥ 0, with t = dxe−x−c, oslpt = 0 and pert = 1 from the
motivating example of Sect. 2. We have t[x+bsc ] ≈ t[x] for any s. Hence, L3[x+bsc ]↔ L3[x].

The truth values of aperiodic literals do not repeat. Instead they have a constant limit value
lim±∞ and a so-called core interval.

Definition 7 (Core Interval). Let t be a Lira-term with oslpt 6= 0. The core interval of t is
[distX−t , distX+

t ], where

distX−t = −distY
sgn(oslpt)
t

oslpt
deltaXt =

deltaYt
|oslpt|

distX+
t = distX−t + deltaXt

Bounds of the core intervals are given by the zeros of the linear bounds from Lem. 2. Within
a core interval, a Lira literal may be evaluated to both true and false, while outside of the
interval the literal’s value is equal to the constant value lim±∞L ∈ {>,⊥}, as next given.

9
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Lemma 6 (Limit Value). If L = t � 0 is an aperiodic Lira-literal (oslpt 6= 0), then the values
outside of the core interval of t satisfy the following:

R |= ∀x < distX−t .(L[x]↔ lim−∞L ) R |= ∀x > distX+
t .(L[x]↔ lim+∞

L )

where
lim±∞t≈0 = ⊥ lim±∞t 6≈0 = > lim±∞t&0 = ±oslp > 0

Proof. See Appendix D.

Example 8. Consider again our term t = −d−3x+ ze−x and the literal L = t > 0. We have
distX− = z−1

2 , deltaX = 1
2 , lim+∞

L = > and lim−∞L = ⊥. Therefore, L is ⊥ for all values less
than z−1

2 and > for all values greater than z
2 .

4.2 Virtual Substitutions in VIRAS

Recall that virtual substitutions do not replace variables by regular terms, but by virtual terms
from an extended language. Formally, we have the following.

Definition 8 (Virtual Term). A virtual term v is a sum t + eε + zZ + i∞ with t ∈ T, e ∈
{0, 1}, z ∈ Q≥0, i ∈ {0,+,−}, where z = 0 or i = 0. We may omit summands with zero
coefficients. We write Z(v) = z, ε(v) = e and∞(v) = i. A virtual term is plain if e = z = i = 0
and proper otherwise.

The new symbols ε, Z,∞ do not occur in the result of applying virtual substitution. Instead,
the virtual substitution function (Def. 9) eliminates these auxiliary symbols, as follows. As ε
represents an infinitesimal quantity, we compute LJx�s+εK by replacing it by limx→s+ L (cases
4–5 of Def. 9). The summand∞ represents an infinitely large constant that is divisible by every
rational number. Thus we compute φJx � t ±∞K by replacing all aperiodic literals A ∈ φ by
lim±∞A and replacing periodic literals P ∈ φ by P Jx � tK (case 3 of Def. 9).

Virtual terms t + pZ represent infinite sets of substitutions: φJx � t + pZK is true iff ∃z ∈
Z.φJx � t + pzK; hence, we compute a finite subset finφt+pZ ⊂ {t + pz | z ∈ Z} such that
∃z ∈ Z.φJx � t+ pzK↔

∨
t′∈finφt+pZ

φJx � t′K (case 1 of Def. 9). Such a finite subset was given in

Sect. 2, where finφZ = {bac+ 1}, the smallest integer satisfying the lower bound bac+ 1
3 .

Definition 9 (Virtual Substitution). A virtual substitution function ◦J◦ � ◦K maps a
conjunction of Lira-literals, a variable, and a virtual term to a formula. We write φJtK for
φJx � tK. Let φ be a conjunction of Lira-literals, t a term, v a virtual term with Z(v) = 0,
P = {L ∈ φ | L is periodic }, and A = {L ∈ φ | L is aperiodic }. Then,

1. φJx � t+ eε+ pZK =
∨

t′∈finφt+pZ

φJx � t′ + eεK where

V1. if

A

L ∈ A.lim±∞L = >: finφt+pZ = {s±∞ | s ∈
(
t+ pZ u [t, t+ λ)

)
}

V2. if

E

L ∈ A.L = u ≈ 0: finφt+pZ =
(
t+ pZ u [distX−u≈0, distX+

u≈0]
)

V3. otherwise: finφt+pZ =
⋃

L∈A,lim−∞L =⊥

(
t+ pZ u [distX−L , distX+

L + λ]
)

λ = lcmQ({p} ∪ {perL | L ∈ P})

2. (
∧
L∈φ

L)Jx � vK =
∧
L∈φ

(LJx � vK)

10
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3. (s � 0)Jx � v ±∞K =

{
lim±∞s�0 if s � 0 is aperiodic (oslps = 0)

(s � 0)Jx � vK if s � 0 is periodic (oslps 6= 0)

4. ((¬)s ≈ 0)Jx � t+ εK =

{
(¬)⊥ if sslps 6= 0

(¬)lims[t] ≈ 0 if sslps = 0

5. (s & 0)Jx � t+ εK =


lims[t] ≥ 0 if sslps > 0

lims[t] & 0 if sslps = 0

lims[t] > 0 if sslps < 0

6. (s � 0)Jx � tK = s[x/t] � 0

Note that for finding finφt+pZ in general (case 1 of Def. 9), we use periodic literals (Lem. 5)

and core intervals (Lem. 6), as follows. Literals L with lim+∞
L = > and lim−∞L = ⊥ can only be

true from the beginning of the core interval [distX−L ,∞), thus we only need to instantiate with
values in this interval for every such literal. Further in the interval (distX+,∞) the literal L will
always be lim+∞

L = >, while the truth value of periodic literals will repeat with a period of λ.
Thus if there is a solution in (distX+,∞), then there must be one in (distX+, distX+ + λ]. This

means it is sufficient for finφt+pZ to contain all values in [distX−L , distX+
L + λ] ∩ {t + pz | z ∈ Z}

for such L. This reasoning correponds to case (V3) of Def. 9 and illustrated in Ex. 15 in
Appendix A.1. The cases (V1), (V2) of Def. 9 handle formulas where there is no such literal L.
The cases (V1), (V3) of Def. 9 generalize Cooper’s method for Lia [7], as discussed in Sect. 5.

4.3 Quantifier Elimination via Elimination Sets

To find sufficient finite elimination sets, we proceed as follows. If there is some x such that a
formula φ is true, then x is an element of some solution interval I of φ. Therefore, φ is true
for the lower bound of I. Hence, if we take all terms that might be lower bounds of a solution
interval of any literal of φ, we obtain an elimination set for φ. It is easy to see that ∃x.φ holds
if there is a t such that φJtK holds; thus we may compute an over-approximation of the exact
set of lower bounds.

Example 9. In Sect. 2, the solution set of L3 is
⋃
z∈Z(z, z + 1− c]. Hence, we may derive an

elimination set as {z + ε | z ∈ Z}, which is finitely represented as {Z + ε}.

Definition 10 (Elimination Set). The elimination set elimx(φ) of a conjunction of literals
φ with respect to the variable x is defined in Fig. 2.

Let us make the following remarks upon Def. 10. If breaks = ∅, we have a simple linear
function; in this case, the lower bounds of the solution intervals can be computed as in Lra.
For literals t � 0 where breakst 6= ∅, firstly notice that every discontinuity b of t can be the lower
bound of a solution interval [b, b]. Therefore, we add ebreak to the elimination set. For periodic
literals, ebreak is breakst a finite representation of the full infinite set of discontinuities, while for
aperiodic literals we only add discontinuities within the core interval (distX−, distX+). Between
any two discontinuities, t can be described as segment of a linear function (Lem. 4). Therefore,
we find the lower bounds eseg of the solution intervals of these segments using the zeros of the
segments zero(b), as well as the discontinuities b bounding the segments. For periodic literals,
we only consider all periodically repeating values; whereas for aperiodic literals consider those

11



VIRAS: Conflict-Driven Quantifier Elimination for Integer-Real Arithmetic Schoisswohl, Korovin and Kovács

for conjunctions of literals φ and ψ: elimx(φ ∧ ψ) = elimx(φ) ∪ elimx(ψ)
if breaks = ∅

elim(t � 0) = {−∞} if sslp = 0

elim(t 6≈ 0) = {−∞, zerot(0) + ε}
elim(t ≈ 0) = {zerot(0)}

elim(t & 0) =


{zerot(0)} if sslp > 0 & & = ≥
{zerot(0) + ε} if sslp > 0 & & = >

{−∞} if sslp < 0

if breaks 6= ∅

elim(t � 0) =

{
ebreak ∪ eseg if t � 0 is periodic

ebreak ∪ eseg ∪ ebound+ ∪ ebound− if t � 0 is aperiodic

ebound+ =

{
{distX+, distX+ + ε} if lim+∞ = >
{distX+} if lim+∞ = ⊥

ebound− =

{
{distX−,−∞} if lim−∞ = >
{distX−} if lim−∞ = ⊥

ebreak =

{
{ b+ pZ | b+ pZ ∈ breaks} if t � 0 is periodic⋃
{(b+ pZ) u (distX−, distX+)| b+ pZ ∈ breaks} if t � 0 is aperiodic

eseg =



{t+ ε | t ∈ ebreak} if sslp = 0 or sslp < 0 & � ∈ {>,≥}
{t+ ε | t ∈ ebreak} ∪ {t | t ∈ ezero} if sslp > 0 & � ∈ {≥}
{t+ ε | t ∈ ebreak} ∪ {t+ ε | t ∈ ezero} if sslp > 0 & � ∈ {>}
{t+ ε | t ∈ ebreak ∪ ezero} if sslp 6= 0 & � ∈ {6≈}
ezero if sslp 6= 0 & � ∈ {≈}

ezero =


{zero(b) + pZ | b+ pZ ∈ breaks} if t � 0 is periodic
{zero(b) | b+ pZ ∈ breaks} if t � 0 is aperiodic & oslp = sslp⋃{ (zero(b) + (1− oslp

sslp )pZ
u(distX−, distX+)

)∣∣∣∣b+ pZ ∈ breaks
}

if t � 0 is aperiodic & oslp 6= sslp

Figure 2: Definition of the elimination set elimx computed by Viras.

in the core interval. Both eseg and ebreak are limited to the core interval (distX−, distX+) for
aperiodic literals, thus we also need to cover the lower bounds ebound± of solution sets outside
of the core interval.

Based on our definition of elimination sets and virtual substitution, we obtain the following
result, asserting that elimx can be used to eliminate existential quantifiers.

12
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Theorem 1 (Quantifier Elimination). Let φ be a non-empty conjunction of Lira-literals.

R |= ∃x.φ↔
∨

t∈elim(φ)

φJtK

Proof. See Appendix D.

Example 10. Consider formula φ from Sect. 2, with

elimx(φ) = elimx(bac+ 1
3 ≤ x) ∧ elimx(x ≤ bac+ 2

3 ) ∧ elimx(bxc − x ≥ c)
= elimx(x− bac − 1

3︸ ︷︷ ︸
t1

≥ 0) ∧ elimx(bac+ 2
3 − x︸ ︷︷ ︸

t2

≥ 0) ∧ elimx(bxc − x− c︸ ︷︷ ︸
t3

≥ 0)

As breakst1 = breakst2 = ∅, we compute the elimination sets elimx(t1 ≥ 0) and elimx(t2 ≥ 0),
resulting in elimx(t1 ≥ 0) = {− bac − 1

3} and elimx(t2 ≥ 0) = {−∞}.
For elimx(t3 ≥ 0), we have breaksxt3 = {Z}. As t3 ≥ 0 is periodic (oslpt3 = 0), the elimination

set elimx(t3 ≥ 0) consists of all discontinuities ebreak = breaks = {Z} and eseg. The intuition
of eseg is the least value t within two breaks t ∈ (b−, b+) for which t3 ≥ 0 can hold. As the slope
of the segment is negative sslpt3 = −1, this value must be b−+ ε. Therefore, eseg = {b+ ε | b ∈
breaks} = {Z + ε}. Thus, we derive elimx(φ) = {− bac − 1

3 ,−∞,Z,Z + ε}.

5 VIRAS and Related Methods

We discuss and highlight the main differences of Viras compared to the state-of-the-art algo-
rithms in solving quantified linear arithmetic problems. In a nutshell, we generalize Cooper’s
method [7] for Lia to be used with Lira while allowing for additional optimization for equality
literals. Further, virtual substitutions in Viras yield an exponential speed-up compared to the
method for solving Lira described by [20]. As a result and thanks to its Lira reasoning, Viras
solves problems that state-of-the-art SMT techniques [8, 3] fail to solve.

VIRAS Generalizations upon Cooper’s Method. While Cooper’s method [7] imple-
ments a QE procedure only for Lia, our Viras calculus solves full Lira formulas3. Similarly
to Viras splitting literals into periodic P and aperiodic literal A (Def. 9.1), Cooper’s method
splits a formula φ = L∧U∧D into literals capturing lower bounds L, upper bounds U and divis-
ibility constraints D. The solution to D are found by (i) computing λ, the lcm of all divisibility
constraints, and (ii) instantiating D with one number for every congruence class modulo λ. For
also solving L ∧ U , the formula φ is instantiated with {l, . . . , l + λ − 1} for every lower bound
x ≥ l ∈ L. Generalizing Cooper’s method to Lira is however not straightforward, as bounds
and equivalence classes over R differ from the ones over Z. While Cooper’s method requires
that a solution to D is one of the congruence classes {0 . . . λ−1}, as proper real numbers (R\Z)
cannot be captured by these equivalence classes. In Viras, we therefore compute equivalence
classes of solutions using elim over Z-terms (e.g. using 1

2 + 2Z). We compute values of these

equivalence classes to be the closest values the lower bound literals L (L ∈ A, lim−∞L = ⊥ in
item (V3) of case 1 of Def. 9), using core intervals of these L and λ. Cooper’s method contains
an optimization for formulas where L or U is empty, we implement this optimization in (V1).
An additional optimization offered by Viras that is not present in Cooper’s method is (V2).

3Note that Lia (aka. Presubrger Arithmetic) is sometimes defined with an auxiliary divisibility predicate
q | t (read “q divides t). This predicate can be expressed in Lira as ∃x.q bxc ≈ t.
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Exponential Speed-Up of VIRAS. The work of [20] provides a quantifier elimination
procedure for Lira based on the following idea. A variable x is split into its integer bxc and
fractional x− bxc parts, allowing for the separate uses of external QE procedures for Lia and
Lra, respectively. Doing so, formula preprocessing comes with a heavy normalization burden:
formulas are normalized such that their literals are of the form jx+ k bxc+ t � 0, where x 5 t.
With such normalizations, Ex. 11 shows an exponential blow-up in the formula size. Unlike this,
Viras does not use external QE procedures but operates directly on Lira terms, implementing
virtual substitutions.

Example 11. We illustrate the Viras benefits in avoiding the expensive normalizations of [20].
Let n ∈ N>0 and ti ∈ T such that x 5 ti. Consider the formula φ =

∑n
i=1 b2x+ tic ≈ 0.

The work of [20] normalizes φ to φ′ =
∨2
j1=0 . . .

∨2
jn=0

∑n
i=1(2 bxc + ji + btic) ≈ 0 and

eliminates quantifiers of φ′. Note that the size of φ′ is O(3n) in the size of φ.
In contrast, Viras computes the elimination set of φ as elim(φ) = (ebreak)∪eseg∪ebound+∪

ebound− where |ebound+ ∪ ebound−| is O(1) and |(ebreak)| is O(|breaks|2deltaX) in the size of
φ. As breaks = {− ti2 + Z | i ∈ {1 . . . n}} and deltaX = 2n, we derive |(ebreak)| being O(n2) in
the size of φ. Further, the size of eseg is O([ebreak)) = O(n2). Using Theorem 1, Viras thus
solves φ exponentially faster compared to [20].

Solving Quantified SMT Problems in LIRA. Thanks to its sound and complete Lira
reasoning, Viras solves Lira problems that existing SMT techniques fail to solve, like the
example below.

Example 12. Consider the formula:

∀x, z.
(
dx+ ze > bx+ zc︸ ︷︷ ︸

L1

∧ dze ≈ bzc︸ ︷︷ ︸
L2

→ bxc 6≈ x︸ ︷︷ ︸
L3

)
(3)

Literal L1 is true iff x+ z is not an integer, L2 is true iff z is an integer and L3 is true iff
x is not an integer. Formula (3) thus captures that, if the sum x+ z is not an integer and z is
an integer, then x cannot be an integer, which is clearly valid. Existing SMT techniques [8, 3]
fail to solve (3), whereas Viras can easily prove4 (3).

Conflict-Driven Reasoning. A complementary approach to Viras comes with conflict-
driven proof search for arithmetic reasoning [15]. Within [15], validity of ∃x1 . . . xn.φ is
(dis)proved, where φ is a conjunction of literals. Therefore the algorithm attempts at building
a satisfying assignment x1 ← t1 . . . xn ← tn using terms from the elimination set for ti. If the
assignment makes φ true, ∃φ must be valid. Whenever some partial assignment makes φ false,
we speak of a conflict. Then a lemma is learned to block the generation of such a conflicting
assignment, and proof search backtracks. When no more backtracking is possible, φ is unsat-
isfiable. While learning lemmas is central in [15], the approach is limited to elimination sets
with plain virtual terms, that is to virtual terms not containing ε or ±∞, which is essential for
Viras. In Sect. 6 we generalize lemma learning from [15], allowing us to handle proper virtual
terms and improve Viras with conflict-driven proof search.

4see Appendix A.2
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6 Conflict-Driven VIRAS

For extending Viras with conflict-driven lemma learning during proof search as introduced
in [15], we need to resolve the following limitation. In case [15] identifies an assigment x← t as
a conflict, the approach will introduce a lemma x 6≈ t 5 to exclude this assignment. Simply using
this approach in Viras is not sufficient since [15] can not handle the assigments of x← t+ ε,
as x 6≈ t + ε is not a formula in our Lira signature. To address this limitation, we introduce
a function lemmaφ (Def. 12) to generate lemmas that exclude assignments for arbitrary virtual
terms t from Def. 8; in particular, we generate ε-lemmas and ∞-lemmas. In order for the
calculus using the lemma function lemmaφ to be sound, we impose that, if ¬φJx � tK and φ[x],
then lemmaφ(x 6≈ t) (Lem. 7.1). Further, to ensure completeness of lemmaφ, we exclude the
current assignment ¬lemmaφ(x 6≈ t)Jx�tK (Lem. 7.2). In what follows, we formalize this setting,
allowing us to integrate Viras with conflict-driven proof, resulting in our improved CD-Viras
calculus for QE over Lira formulas ∃x.φ.

ε-Lemmas We first focus on finding a lemma that is false when we virtually substitute x
by t + ε; we denote such lemmas as ε-lemmas. For these lemmas, we can use any formula
x ≤ t∨u < x for any u > t. To find such a u reason as follows. If φ does not hold at some point
t+ε, there must be some non-empty interval (t, u) where φ does not hold. φ can only change its
truth value at a value v when one of its literals s � 0 changes its truth value at v. For deriving
an ε-lemma, we use Fig. 3 to compute nxt>s�0(t + ε) as an overapproximation of the set of all
such v. In particular, if breakss = ∅, the truth value of s � 0 can only change from false to true
if the linear function defined by t[x] intersects with zero. Note that literals −x > 0 can only
change their truth values from true to false, but not from false to true; hence nxt>−x>0(t) = ∅.
If breakss 6= ∅, then s � 0 can only change its truth value if either the line segment of s at
point t + ε intersects with zero (curZero(s + ε) in Fig. 3) or at the next discontinuity b where
that segment ends (nextBreak(s+ ε) in Fig. 3). Based on this reasoning, we introduce formula

inFalseIntervalφt+ε(x) to define an interval I with lower bound t + ε, that includes only values
for which φ is false (given φJt+ εK is false).

Definition 11 (False Interval). Let φ be a conjunction of literals. The false interval of φ at

t+ ε is denoted as inFalseIntervalφt+ε(x) and defined in Fig. 3.

Example 13. Consider the formula φ = L1 ∧ L2, where L1 = dxe − bxc − 1
2 ≥ 0 and

L2 = x−
⌊
x− 1

2

⌋
+ 1 > 0, and we want to find a lemma to exclude an assignment 〈〉 | x ← ε.

In this case we have nxt>L1
(ε) = nextBreak = {1}, and nxt>L2

(ε) = nextBreak(ε) ∪ curZero(ε) =

{ 12 + ε} ∪ {0}. This means that

inFalseIntervalφε (x) =0 < x ∧
∧

e∈nxt>L1
(ε)

(εl e→ xl e) ∧
∧

e∈nxt>L2
(ε)

(εl e→ xl e)

=0 < x ∧ (εl 1→ xl 1) ∧
(
(εl

1

2
+ ε→ xl

1

2
+ ε) ∧ (εl 0→ xl 0)

)
=0 < x ∧ (0 < 1→ x < 1) ∧

(
(0 <

1

2
→ x ≤ 1

2
) ∧ (0 < 0→ x < 0)

)
⇐⇒0 < x ∧ x < 1 ∧ x ≤ 1

2
⇐⇒ 0 < x ∧ x ≤ 1

2

So we derive the lemma x ≤ 0 ∨ 1
2 < x.

5To see how derivations and lemma derival works in detail see Ex. 16 and 17 in Appendix B.2
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inFalseIntervalφt+ε(x) = (t < x ∧
∧
L∈φ

∧
e∈nxt>L (t+ε)(t+ εl e→ xl e))

s+ εl t = s < t

s+ εl t+ ε = s < t

s lt = s < t

s lt+ ε = s ≤ t

if breaks = ∅
nxt>t�0(s+ ε) = ∅ if sslp = 0

nxt>t≈0(s+ ε) = {zerot(0)}
nxt>t 6≈0(s+ ε) = ∅

nxt>t&0(s+ ε) =


{zerot(0)} if sslp > 0 & & = ≥
{zerot(0) + ε} if sslp > 0 & & = >

∅ if sslp < 0

if breaks 6= ∅
nxt>t�0(s+ ε) = nextBreak(s) if sslp = 0

nxt>t�0(s+ ε) = nextBreak(s) ∪ curZero(s+ ε) if sslp 6= 0

nextBreak(s) = {ds+ εeb+pZ | b+ pZ ∈ breaks}

curZero(s) =


{zerot(s) + ε} if � = > & sslp > 0

{zerot(s)} if � = ≥ & sslp > 0 or � = ≈
∅ if � ∈ {>,≥} & sslp < 0 or � = 6≈

Figure 3: Definition of inFalseIntervalφt+ε(x).

∞-Lemmas We next derive lemmas to exclude assignments using virtual terms containing
±∞; we refer to these lemmas as∞-lemmas. For φJx�t+∞K to be false, there are two options:
(i) either one of its aperiodic literals L has a limit lim±∞L = ⊥, or (ii) one of its periodic literal
L is false at t. For (i), we simply derive the ∞-lemma of x ≤ distX+

L or distX−L ≤ x. For (ii),
our ∞-lemma has to exclude the solution t. A näıve approach would derive the ∞-lemma of
x 6≈ t; this lemma however not suffice as lim±∞x 6≈t = >, hence (x 6≈ t)Jt ±∞K = >. Therefore,
we need to find some periodic literal that excludes the solution t. As L is periodic, we have
LJtK ↔ LJt + λ bzcK, thus we obtain the ∞-lemma remλ(x) ≈ remλ(t), which is equaivalent to
x ≈ t + λ(quotλ(x) − quotλ(t)); this ∞-lemma is to be used for any t that does not contain
ε. With a similar reasoning for t + ε +∞ and by using ε-lemmas, we derive the ∞-lemma
¬inFalseIntervalφt+λ(quotλ(x)−quotλ(t))

(x).

Z-flattening Lemmas for virtual terms t+pZ could be computed similarly to∞ lemmas using
remp(t) 6≈ remp(x). Nevertheless, virtual substitutions with Z-terms pose another challenge:
as [15] transforms literals into disjunctions, the assumption of φ being a conjunction of literals
required by the conflict-driven framework is violated. We resolve this difficulty by transforming
the elimination set elimx into the flattened version elimx

flat(φ) = {t | t + 0Z ∈ elimx(φ)} ∪⋃
{finφt+pZ | t + pZ ∈ elimx(φ), p 6≈ 0}. It is easy to see that

∨
t∈elimxflat(φ)

φJtK =
∨
t∈elimx(φ) φJtK,

hence elimx
flat(φ) fulfils Theorem 1 as well, but does not contain any Z terms. Therefore we

use elimx
flat instead of elimx, allowing us to only deal with conjuctions of literals and replacing

the need to generate lemmas for Z-terms.
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Leaf Conflict

(F, S, L) ` (F, S, L ∪ {
∨k
i=1 lemmaF (xi 6≈ ti)})

whereS = 〈x1 ← t1, . . . , xk ← tk〉
if F � S is trivally inconsistent and L � S is not trivially inconsistent

Inner Conflict

(F, S | xk ← ⊥, L) ` (F, S | xk ← ⊥, L ∪ {
∨k−1
i=1 lemmaF (xi 6≈ ti)})

whereS = 〈x1 ← t1, . . . , xk−1 ← tk−1〉
if L � S is not trivially inconsistent

Figure 4: Rules of the CD-Viras calculus, that differ from those of CDVS.

CD-VIRAS By using ε-lemmas, ∞-lemmas and Z-flattening, we combine Viras with
conflict-driven proof search, resulting in our CD-Viras calculus. Doing so, we ajdust only
two rules from [15], namely Inner Conflict and Leaf Conflict as named in [15]. Instead
of lemmas

∨
i∈I xi 6≈ ti introduced by these rules in [15], in CD-Viras we use the lemmas∨

i∈I lemmaφ(xi 6≈ ti) using the lemma function lemmaφ defined below. The modified rules are
given in Fig. 4.

Definition 12 (CD-Viras Lemmas). Let φ be a conjunction of literals, t a term, and A =
{L | L ∈ φ, oslpL 6= 0}. The lemma function of CD-Viras is defined as: conflicts are:

lemmaφ (x 6≈ t) = x 6≈ t
lemmaφ (x 6≈ t+ ε) = ¬inFalseIntervalφt+ε(x)
lemmaφ (x 6≈ t+ eε+∞) = x ≤ distX+

L if lim+∞
L = ⊥ for some L ∈ A

lemmaφ (x 6≈ t+ eε−∞) = distX−L ≤ x if lim−∞L = ⊥ for some L ∈ A
lemmaφ (x 6≈ t±∞) = remλ(x) 6≈ remλ(t)

lemmaφ (x 6≈ t+ ε±∞) = ¬inFalseIntervalφt+λ(quotλ(x)−quotλ(t))+ε
(x)

Soundness and completeness of the lemma function is established next, yielding that the calculus
CD-Viras itself is sound and complete.

Lemma 7. Let φ be a conjunction of literals and v be a virtual term with Z(v) = 0. Our
function lemmaφ satisfies the following properties:

1. ¬φJx � vK→ ∀x(φ→ lemmaφ(x 6≈ v)). (soundness)

2. ¬lemmaφJx � vK. (completeness)

Proof. See Appendix D.

Using Lem. 7 soundness and completeness of the calculus CD-Viras can be proven in the
same way as in [15]. Lem. 7.1 is needed for soundness, while Lem. 7.2 is needed for completeness.
6

6For a detailed explanation of the proof we refer to Appendix B.3.
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7 Conclusion

We introduce the Viras calculus as a new quantifier elimination procedure for solving quantifier
formulas with mixed linear integer-real arithmetic. Viras uses virtual substitutions and can
be integrated with conflict-driven proof search. Computing more accurate bounds distY±, as
well as more accurate discontinuity sets breaks, is an interesting line for future research, with
the purpose of more efficient proof search. Implementing Viras is another challenge for further
work. We pointed out that our method gives an exponential speed-up over [20] for some classes
of formulas. Nevertheless finding actual complexity bounds for our method remains for future
research.
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A Additional examples

A.1 Virtual Integer Real Arithmetic Substitution

We give addition examples for Sect. 4.

LIRA-Terms

Example 14. Let inZ(x) = 1 − dxe + bxc. This function is 1 for x ∈ Z and 0 otherwise.
Consider s = inZ(x + t) − inZ(x + u). There are two cases: Either t − btc ≈ u − buc, which
means that s = 0 for all x, or s can take each of the values in {0, 1,−1} depending on x. This
means depending on t and u the tightest deltaY can be either 0 or 2. Thus finding the tightest
value for deltaY requires checking validity for of formula t− btc ≈ u− buc.

Further this example demonstrates that finding the exact set of discontinuities is hard.
Depending on whether t−btc ≈ u−buc, the discontinuities of s could be {−t+Z, u+Z} or ∅.

Virtual Substitution We give the following example case (V3) in Def. 9.

Example 15. Consider φ = t > 0 ∧ x < 0 ∧ rem3(x) ≈ rem3(c) ∧ rem2(x) 6≈ 1 with t =
−b−3x+ zc − x as in our examples from before. When computing the elimination set we will
get the virtual term c + 3Z. We split the formula into all aperiodic literals t > 0 ∧ x < 0, and
all periodic literals P = rem3(x) ≈ rem3(c)∧ rem2(x) 6≈ 1. If there is some t′ = c+ 3Z such that
φJt′K, then, due to Lem. 6 t′ has to be either in the core interval [ z−12 , z2 ] of t > 0, or it has to

be greater than distY+
t = z

2 to make t > 0 true.

Due to Lem. 5 we know that the truth value of all literals in P will repeat if we add or
subtract λ = lcmQ{perL | L ∈ P} = 6 to t′. Therefore if there is some t′ ∈ (distX+

t ,∞), where
φ holds, then there must also be such a t′′ ∈ (distX+

t , λ].

Combining this we know that it is sufficient to substitute φ with {c+3z | z ∈ Z}∩ [ z−12 , z2 +6]
which – as we know by Lem. 3 – can be over-approximated using (c + 3Z) u [ z−12 , z2 + 6] =
{c−

⌊
c
3 −

z
6 + 1

6

⌋
, c−

⌊
c
3 −

z
6 + 1

6

⌋
+ 3, c−

⌊
c
3 −

z
6 + 1

6

⌋
+ 6}.

A.2 Solving Quantified SMT Problems

We demonstrate how Viras proofs validity of the formula φ from Sect. 5. Let us now see
how Viras solves this problem. In a first step we normalize the problem to be able to apply
quantifier elimination:

φ = ∀x, z.
(
dx+ ze > bx+ zc ∧ dze ≈ bzc → bxc 6≈ x

)
⇐⇒ ¬∃x, z.¬

(
dx+ ze > bx+ zc ∧ dze ≈ bzc → bxc 6≈ x

)
⇐⇒ ¬∃x, z.

(
dx+ ze > bx+ zc ∧ dze ≈ bzc ∧ bxc ≈ x

)
⇐⇒ ¬∃x.∃z.

(
dx+ ze − bx+ zc︸ ︷︷ ︸

t1

> 0 ∧ dze − bzc︸ ︷︷ ︸
t2

≈ 0 ∧ bxc − x︸ ︷︷ ︸
t3

≈ 0
)

Then it will compute the elimination set for z to eliminate the first quantifier ∃z. elimz(φ) =
elimz(t1 > 0) ∪ elimz(t2 ≈ 0) ∪ elimz(t3 ≈ 0). We have oslpz(t1) = oslpz(t2) = oslpz(t3) = 0 and
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sslpz(t1) = sslpz(t2) = sslpz(t3) = 0, thus

elimz(t1 > 0) = (ebreak) ∪ eseg = breakszt1 ∪ {b+ ε | b ∈ breakszt1} = {−x+ Z} ∪ {−x+ ε+ Z}
elimz(t2 ≈ 0) = (ebreak) ∪ eseg = breakszt2 ∪ {b+ ε | b ∈ breakszt2} = {Z} ∪ {ε+ Z}
elimz(t3 ≈ 0) = {−∞}

. We transform the quantifier into a disjunction and simplify:

¬∃x, z.
( φ′︷ ︸︸ ︷
dx+ ze − bx+ zc︸ ︷︷ ︸

t1

> 0 ∧ dze − bzc︸ ︷︷ ︸
t2

≈ 0 ∧ bxc − x︸ ︷︷ ︸
t3

≈ 0
)

⇐⇒ ¬∃x.



(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz �−∞K

∨
(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � ZK

∨
(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � Z + εK

∨
(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz �−x+ ZK

∨
(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz �−x+ Z + εK



⇐⇒ ¬∃x.



(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � 0K

∨
∨
t∈finφ

′
Z

(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � tK

∨
∨
t∈finφ

′
−x+Z

(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � tK

∨
∨
t∈finφ

′
Z

(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � t+ εK

∨
∨
t∈finφ

′
−x+Z

(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � t+ εK


finφ

′

Z = {0}
finφ

′

−x+Z = {−x}

⇐⇒ ¬∃x.



(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � 0K

∨
(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � 0K

∨
(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz �−xK

∨
(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz � 0 + εK

∨
(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
Jz �−x+ εK



⇐⇒ ¬∃x.



(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
[z/0]

∨
(
t1 > 0 ∧ t2 ≈ 0 ∧ t3 ≈ 0

)
[z/− x]

∨
(
limz

t1 > 0 ∧ limz
t2 ≈ 0 ∧ limz

t3 ≈ 0
)

[z/0]

∨
(

limz
t1︸︷︷︸

1

> 0 ∧ limz
t2︸︷︷︸

1

≈ 0 ∧ limz
t3︸︷︷︸

bxc−x

≈ 0
)

[z/− x]



⇐⇒ ¬∃x.


dxe − bxc > 0 ∧ 0 ≈ 0 ∧ bxc − x ≈ 0

∨ 1 > 0 ∧ 1 ≈ 0 ∧ bxc − x ≈ 0

∨ 0 > 0 ∧ d−xe − b−xc ≈ 0 ∧ bxc − x ≈ 0

∨ 1 > 0 ∧ 1 ≈ 0 ∧ bxc − x ≈ 0


⇐⇒ ¬∃x.

φ′′︷ ︸︸ ︷
(dxe − bxc︸ ︷︷ ︸

u1

> 0 ∧ bxc − x︸ ︷︷ ︸
u2

≈ 0)
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Next we compute the elimination set elimx(φ′′) = elimx(u1 > 0) ∪ elimx(u2 ≈ 0):

elimx(u1 > 0) = (ebreak) ∪ eseg = breaksxu1
∪ {b+ ε | b ∈ breaksxu1

} = {Z,Z + ε}
elimx(u2 ≈ 0) = (ebreak) ∪ eseg = breaksxu1

∪ ezero = {Z} ∪ {Z}

Therefore we can eliminate the quantifier ∃x and simplify:

¬∃x.φ′′ ⇐⇒¬
(

(u1 > 0 ∧ u2 ≈ 0)Jx � ZK
∨ (u1 > 0 ∧ u2 ≈ 0)Jx � Z + εK

)
⇐⇒¬

( ∨
t∈finφ

′′
Z

(u1 > 0 ∧ u2 ≈ 0)Jx � tK
∨

∨
t∈finφ

′′
Z

(u1 > 0 ∧ u2 ≈ 0)Jx � t+ εK

)
finφ

′′

Z = {0}

⇐⇒¬
(

(u1 > 0 ∧ u2 ≈ 0)Jx � 0K
∨ (u1 > 0 ∧ u2 ≈ 0)Jx � εK

)
⇐⇒¬

(
0 > 0 ∧ b0c − 0 ≈ 0

∨ limx
u1
> 0[x/0] ∧ ⊥

)
⇐⇒¬⊥ ⇐⇒ >

Thus we established that φ is valid.

B Conflict-Driven VIRAS

B.1 CDVS Explanation

CDVS tries to proof or disprove that a conjunction of literals F =
∧
Fi where all variables are

existentially quantified is valid or unsat. Derivations are preformed on states (F, S, L), starting
with (F, 〈〉, ∅). L is a set of lemmas, that is successively grown and S = 〈〉 | x1 ← ν1 | . . . |
xn ← νn is a list, that represents partial assignment for the variables xi, with every νi being of
either a pair 〈ti, Ji〉 of a virtual term ti and a term Ji, ⊥ or ?, where ⊥ or ? can only occur as
the last element νn. An entry in x ← 〈t, J〉 is to be understood as “the variable x is virtually
substituted by t which is a member of the elimination set of the literal J ≥ 0”. We write F/S
for F Jx1 � t1K . . . Jxn � tnK, if ? and ⊥ do not occur in S. An entry x ← ⊥ can be understood
as “no term in elimx(F/S) is consistent with our lemmas L/S” and x ←? can be understood
as “assign some value from the elimination set for x next”. The algorithm then starts to add
x ← 〈t, J〉 for some t ∈ elimx(F ) to S as long as choosing these assignments are consistent
with the lemmas L. If we arrive in a state where F/S is trivially true and does not contain
any variables, we know that F is sat, and the algorithm terminates. This means that for sat
instances CDVS does not have to enumerate all elimination sets, but can terminate early in
some cases. If in some state F/S is trivially false we found a so-called leaf conflict, and if we
arrive at a state where S = S′ | xn ← ⊥, we found a so-called inner conflict. Either of these
conflicts means that the current assignment S is infeasible, which means the algorithm has to
learn a lemma that will prevent it from choosing the same assignment again, then backtracks
and continues proof search. If no backtracking can be performed the algorithm returns unsat
as this means any assignment makes F false.

B.2 Examples

In order to see why extending the lemma learning to proper virtual terms is not straightforward
consider the following example:
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φ& = x & 0 ∧ x & 1 ∧ 7 & x

〈φ≥, 〈〉, ∅〉
` 〈φ≥, 〈〉 | x←?, ∅〉
` 〈φ≥, 〈〉 | x← 0, ∅〉
` 〈φ≥, 〈〉 | x← 0, {x 6≈ 0}〉
` 〈φ≥, 〈〉, {x 6≈ 0}〉
` 〈φ≥, 〈〉 | x←?, {x 6≈ 0}〉
` 〈φ≥, 〈〉 | x← 1, {x 6≈ 0}〉
` >

〈φ>, 〈〉, ∅〉
` 〈φ>, 〈〉 | x←?, ∅〉
` 〈φ>, 〈〉 | x← ε, ∅〉
` 〈φ>, 〈〉 | x← ε, {x ≤ 0 ∨ 1 ≤ x}〉
` 〈φ>, 〈〉, {x ≤ 0 ∨ 1 ≤ x}〉
` 〈φ>, 〈〉 | x←?, {x ≤ 0 ∨ 1 ≤ x}〉
` 〈φ>, 〈〉 | x← 1 + ε, {x ≤ 0 ∨ 1 ≤ x}〉
` >

Figure 5: Formal derivations explained in Ex. 16 and 17

Example 16. Let φ≥ = x ≥ 0∧x ≥ 1∧7 ≥ x. A formal derivation resulting from this formula
is given in Fig. 5. In order to find a value for x the algorithm computes elimx(φ≥) = {0, 1,−∞}
and chooses an arbitrary one of these values, in our case 0. As x ≥ 1Jx � 0K is trivially false,
the algorithm arrives at a leaf conflict, hence it needs to learn a lemma that prevents assigning
x to 0. The straight forward way to do this is adding the lemma x 6≈ 0. The algorithm then
backtracks, continues assigning x to 1 and returns sat.

Example 17. Now condsider what happens if consider φ>, the same problem as in Ex. 16 but
using strict inequalities (see Fig. 5). We get elimx(φ>) = {ε, 1 + ε,−∞} and the algorithm
chooses to assign x to ε, which again runs into a leaf conflict. In this case one cannot simply
learn x 6≈ ε, as this is not a formula in our signature, hence does not have a defined semantics.
Intuitively if we want to make sure that x is not assigned to ε we need to make sure that it is
assigned to either a value that is smaller than ε, or a value that is greater. Therefore we need
to find an upper bound that is greater than ε, but small enough that it does not exclue any other
elements of elimx(φ>). In our example we can choose 1 and learn the lemma x ≤ 0 ∨ 1 ≤ x.

ε-Lemmas

Example 18. Consider the formula φ = L1 ∧ L2, where L1 = dxe − bxc − 1
2 ≥ 0 and

L2 = x−
⌊
x− 1

2

⌋
+ 1 > 0, and we want to find a lemma to exclude an assignment 〈〉 | x ← ε.

In this case we have nxt>L1
(ε) = nextBreak = {1}, and nxt>L2

(ε) = nextBreak(ε) ∪ curZero(ε) =

{ 12 + ε} ∪ {0}. This means that

inFalseIntervalφε (x) =0 < x ∧
∧

e∈nxt>L1
(ε)

(εl e→ xl e) ∧
∧

e∈nxt>L2
(ε)

(εl e→ xl e)

=0 < x ∧ (εl 1→ xl 1) ∧
(
(εl

1

2
+ ε→ xl

1

2
+ ε) ∧ (εl 0→ xl 0)

)
=0 < x ∧ (0 < 1→ x < 1) ∧

(
(0 <

1

2
→ x ≤ 1

2
) ∧ (0 < 0→ x < 0)

)
⇐⇒0 < x ∧ x < 1 ∧ x ≤ 1

2
⇐⇒ 0 < x ∧ x ≤ 1

2

So we derive the lemma x ≤ 0 ∨ 1
2 < x.
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B.3 Soundness and Completeness

To proof soundness of CDVS in [15] Lemma 2 of [15] asserts that for any derivable state (F, S, L),
(F, S | xk+1 ← ⊥, L), (F, S | xk+1 ←?, L), where S = 〈x1 ← 〈t1, J1〉 | . . . | xl ← 〈tl, Jl〉〉 it holds

that R |= ∃(F/S)↔ ∃(F ∧
∧l
i=1 Ji ≈ 0). Lemma 2 of [15] is then used to proof Lemma 3 of [15]

which is in turn needed for soundness of the calculus. Inspecting the proof of Lemma 4 [15] we

can see that only a weaker form of Lemma 2 [15] is needed: ∀¬(F/S)→ ∀(F →
∨l
i=1 Ji 6≈ 0).

In the case of CDVS Ji 6≈ 0, are the lemmas that will be derived for excluding solutions xi 6= ti.
If we replace this by lemmaF (xi 6≈ ti) we get the following alternative invariant.

Lemma 8. For any state (F, S, L), (F, S | xk+1 ← ⊥, L), or (F, S | xk+1 ←?, L), where
S = 〈x1 ← 〈t1, J1〉 | . . . | xk ← 〈tk, Jk〉〉

R |= ∀¬(F/S)→ ∀(F →
k∨
i=1

lemmaF (xi 6≈ ti))

Proof. Apply induction on k, and use Lem. 7.1.

By using Lem. 8 we can proof Lemma 3 from [15], and therefore soundness in the same way
as in [15].

For showing completeness a well-founded ordering on states (F, S, L) is defined in [15], which
is based on a lexicographical ordering with a component n, the number of so-called active nodes
in the search tree. Active nodes are the nodes that are not deactivated L Due to Lem. 7.2 we
know that our modified rules will reduce the number of active nodes as in CDVS, which means
that CD-Viras is complete as well.

C Definitions

Definition 1 (Slope and Period; repeated). Let t be a Lira term. By recursion on t, we define
the period perxt , outer slope oslpxt , and segment slope sslpxt of t as:

oslpxy =

{
1 if x = y

0 otherwise

oslpx1 = 0

oslpxkt = k · oslpxt

oslpxs+t = oslpxs + oslpxt

oslpxbtc = oslpxt

sslpxy =

{
1 if x = y

0 otherwise

sslpx1 = 0

sslpxkt = k · sslpxt

sslpxs+t = sslpxs + sslpxt

sslpxbtc = 0

perxy = perx1 = 0

perxs+t =


perxs if perxt = 0

perxt if perxs = 0

lcmQ{perxs , perxt } otherwise

perxkt = perxt

perxbtc =


0 if perxt = 0 = oslpxt

1
|oslpxt |

if perxt = 0 6= oslpxt

num(perxt ) · den(oslpxt ) otherwise

Definition 13 (Q-lcm). Let Q be a finite subset of Q such that 0 6∈ Q. We define

lcmQ(Q) =
lcm{num(q) | q ∈ Q}
gcd{den(q) | q ∈ Q}

Definition 14 (Quotient Remainder). For any Lira-term t and q ∈ Q we define the gerner-
alized quotient and remainder of t and q:

quotq(t) =
⌊
t
q

⌋
remq(t) = t− q · quotq(t)
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Definition 2 (Bound Distance; repeated). Let t be a Lira-term. We define distY±x,t ∈ T and
deltaYx,t ∈ Q by recursion on t:

deltaYx,y = 0

deltaYx,1 = 0

deltaYx,kt = |k|deltaYx,t

deltaYx,s+t = deltaYx,s + deltaYx,t

deltaYx,btc = deltaYx,t + 1

distY+
x,t = distY−x,t + deltaYx,t

distY−x,y =

{
0 if x = y

y otherwise

distY−x,1 = 1

distY−x,kt =

{
k · distY−x,t if k ≥ 0

k · distY+
x,t if k < 0

distY−x,s+t = distY−x,s + distY−x,t

distY−x,btc = distY−x,t − 1

Definition 3 (Limit; repeated). The limit term limx
t of a Lira-term t wrt x is defined by

recursion on t, as:

limx
y = y

limx
1 = 1

limx
kt = k · limx

t

limx
s+t = limx

s + limx
t

limx
btc =

{
blimx

t c if sslpxt ≥ 0

dlimx
t e − 1 if sslpxt < 0

We write limt for limx
t if x is clear in the context.

Definition 4 (Segment Line; repeated). The segment distance dsegt(x0) of a Lira-term t
at x0 is:

dsegxt (x0) = −sslpxt · x0 + limx
t [x0] zeroxt (x0) = x0 − limxt [x0]

sslpt

The segment line of t at x0 is sslpt · x + dsegt(x0), whereas zerot(x0) is the zero of the
segment of t at x0.
Definition 5 (Grid Intersection; repeated). For s, t ∈ T and p, k ∈ Q>0, the grid intersection
is

(s+ pZ) u Lt, t+ kM = {startL + np | n ∈ N, nplM k}

where

dtes+pZ = t+ remp(s− t)
btcs+pZ = t− remp(t− s)

dt+ εes+pZ = bt+ pcs+pZ

bt− εcs+pZ = dt− pes+pZ
start[ = dtes+pZ

start( = dt+ εes+pZ
l] =≤
l) =<

Definition 6 (repeated). The set of discontinuities breaksxt of a Lira-term t wrt variable x
is defined by recursion on t, as:

breaksxy = breaksx1 = ∅
breaksxkt = breaksxt

breaksxs+t = breaksxs ∪ breaksxt

breaksxbtc =


breaksxt if sslpt = 0

{zerot(0) + perbtcZ} if breaksxt = ∅ & sslpt 6= 0

breaksxt ∪ breaksInSegxt if breaksxt 6= ∅ & sslpt 6= 0

breaksInSegxt =


b+ perbtcZ b ∈ (zero(b0) + 1

sslpt
Z) u [b0, b0 + pmin

t ) where

b0 ∈ (b′0 + pZ) u [b′0, b
′
0 + perbtc) where

b′0 + pZ ∈ breakst


pmin
t = min{p | b+ pZ ∈ breaksxt }

breaksx,∞t = {t+ pz | z ∈ Z, t+ pZ ∈ breaksxt }

25



VIRAS: Conflict-Driven Quantifier Elimination for Integer-Real Arithmetic Schoisswohl, Korovin and Kovács

Definition 15 (Periodic Literal). Let t be a Lira term. We call a Lira-term periodic if
oslpt = 0 and aperiodic otherwise. We extend this definition to Lira-literals t � 0.

Definition 7 (Core Interval; repeated). Let t be a Lira-term with oslpt 6= 0. The core
interval of t is [distX−t , distX+

t ], where

distX−t = −distY
sgn(oslpt)
t

oslpt
deltaXt =

deltaYt
|oslpt|

distX+
t = distX−t + deltaXt

Definition 8 (Virtual Term; repeated). A virtual term v is a sum t + eε + zZ + i∞ with
t ∈ T, e ∈ {0, 1}, z ∈ Q≥0, i ∈ {0,+,−}, where z = 0 or i = 0. We may omit summands
with zero coefficients. We write Z(v) = z, ε(v) = e and ∞(v) = i. A virtual term is plain if
e = z = i = 0 and proper otherwise.
Definition 9 (Virtual Substitution; repeated). A virtual substitution function ◦J◦ � ◦K
maps a conjunction of Lira-literals, a variable, and a virtual term to a formula. We write φJtK
for φJx � tK. Let φ be a conjunction of Lira-literals, t a term, v a virtual term with Z(v) = 0,
P = {L ∈ φ | L is periodic }, and A = {L ∈ φ | L is aperiodic }. Then,

1. φJx � t+ eε+ pZK =
∨

t′∈finφt+pZ

φJx � t′ + eεK where

V1. if

A

L ∈ A.lim±∞L = >: finφt+pZ = {s±∞ | s ∈
(
t+ pZ u [t, t+ λ)

)
}

V2. if
E

L ∈ A.L = u ≈ 0: finφt+pZ =
(
t+ pZ u [distX−u≈0, distX+

u≈0]
)

V3. otherwise: finφt+pZ =
⋃

L∈A,lim−∞L =⊥

(
t+ pZ u [distX−L , distX+

L + λ]
)

λ = lcmQ({p} ∪ {perL | L ∈ P})

2. (
∧
L∈φ

L)Jx � vK =
∧
L∈φ

(LJx � vK)

3. (s � 0)Jx � v ±∞K =

{
lim±∞s�0 if s � 0 is aperiodic (oslps = 0)

(s � 0)Jx � vK if s � 0 is periodic (oslps 6= 0)

4. ((¬)s ≈ 0)Jx � t+ εK =

{
(¬)⊥ if sslps 6= 0

(¬)lims[t] ≈ 0 if sslps = 0

5. (s & 0)Jx � t+ εK =


lims[t] ≥ 0 if sslps > 0

lims[t] & 0 if sslps = 0

lims[t] > 0 if sslps < 0

6. (s � 0)Jx � tK = s[x/t] � 0

Definition 10 (Elimination Set; repeated). The elimination set elimx(φ) of a conjunction
of literals φ with respect to the variable x is defined in Fig. 2.
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Definition 16 (Solution Interval). Let φ be a Lira-formula and t a virtual term. We define the
formula sInter, and say that [t, x] is a solution interval of φ with respect to some R-interpretation
I if I |= sInter(t, x, φ).

sInter(t, x, φ) =

{
t ≤̇ x ∧ ∀x′(t ≤̇ x′ ≤ x→ φ[x′]) if Z(t) = 0

∃z ∈ Z.sInter(t′ + pz) if t = t′ + pZ

where

t ≤̇ x = t ≤ x
t+ ε ≤̇ x = t < x

t−∞ ≤̇ x = >
t+∞ ≤̇ x = ⊥

Definition 11 (False Interval; repeated). Let φ be a conjunction of literals. The false interval

of φ at t+ ε is denoted as inFalseIntervalφt+ε(x) and defined in Fig. 3.
Definition 12 (CD-Viras Lemmas; repeated). Let φ be a conjunction of literals, t a term,
and A = {L | L ∈ φ, oslpL 6= 0}. The lemma function of CD-Viras is defined as: conflicts
are:

lemmaφ (x 6≈ t) = x 6≈ t
lemmaφ (x 6≈ t+ ε) = ¬inFalseIntervalφt+ε(x)
lemmaφ (x 6≈ t+ eε+∞) = x ≤ distX+

L if lim+∞
L = ⊥ for some L ∈ A

lemmaφ (x 6≈ t+ eε−∞) = distX−L ≤ x if lim−∞L = ⊥ for some L ∈ A
lemmaφ (x 6≈ t±∞) = remλ(x) 6≈ remλ(t)

lemmaφ (x 6≈ t+ ε±∞) = ¬inFalseIntervalφt+λ(quotλ(x)−quotλ(t))+ε
(x)

D Proofs

Lemma 9 (Q-lcm). If Q is a finite subset of Q such that 0 6∈ Q, then q ∈ Q =⇒ lcmQ(Q)
q ∈ Z

Proof. Follows straight from the defintion lcmQ(Q) = lcm{num(q)|q∈Q}
gcd{den(q)|q∈Q} .

Lemma 10 (Quotient Remainder). For 0 ∈ Q>0 we have

1. R |= x ≈ p · quotp(x) + remp(x)

2. R |= 0 ≤ remp(x) < p

3. R |= quotp(x) ∈ Z
Proof. 1.

p · quotp(x) + remp(x) = p · quotp(x) + x− p · quotp(x)

≈ x

2.

0 ≤ remp(x) < p

⇐⇒0 ≤ x− p
⌊
x
p

⌋
< p

⇐⇒0 ≤ x
p −

⌊
x
p

⌋
< 1

27



VIRAS: Conflict-Driven Quantifier Elimination for Integer-Real Arithmetic Schoisswohl, Korovin and Kovács

Which obviously holds.

3. By defintion as quotq(x) =
⌊
x
q

⌋
.

Lemma 11 (Linear Term). Let t be Lira-term, with per = 0, or breaks = ∅. Then we say
the term is a linear term. For all linear terms we have per = 0, breaks = ∅, oslp = sslp,
R |= limt ≈ t, R |= t[x] ≈ oslp · x+ t[0], and R |= ∀y.t[x] ≈ oslp · (x− y) + t[y].

Proof. Everything but the last property can be shown straight forward by induction on t. The
last one follows from the other ones:

t[x] ≈t[x] + oslp · y − oslp · y
≈oslp · x+ t[0] + oslp · y − oslp · y
≈oslp · (x− y) + oslp · y + t[0]︸ ︷︷ ︸

t[y]

Lemma 1 (Periodic Shift; repeated). If pert 6= 0 then R |= ∀x, y.
(
t[x+ per byc ] ≈ t[x] + oslp ·

per byc
)

Proof. We apply induction on t.
base case t = v ∈ V ∪ {1}:

Then perv = 0, thus we get
t[x+ perv︸︷︷︸

0

byc ] ≈ t[x] + oslpv · perv︸︷︷︸
0

byc

a
base case t = v ∈ V ∪ {1}.

inductive case t = t0 + t1:

case pert0 = 0:

Then we have pert0+t1 = pert1 .

(t0 + t1)[x+ pert0+t1 byc ]

≈ t0[x+ pert1 byc ] + t1[x+ pert1 byc ]

≈ t0[x+ pert1 byc ] + t1[x] + oslpt1 · pert1 byc by I.H.

≈ t0[x] + oslpt0 · pert1 byc+ t1[x] + oslpt1 · pert1 byc by Linear Term (Lem. 11)

≈ t0[x] + oslpt0 · pert0+t1 byc+ t1[x] + oslpt1 · pert0+t1 byc
≈ (t0 + t1)[x] + (oslpt0 + oslpt1)︸ ︷︷ ︸

oslpt0+t1

·pert0+t1 byc

a
case pert0 = 0.

case pert1 = 0:
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Same as the case before.
a

case pert1 = 0.

case pert0 6= 0 6= pert1 :

In this case we have pert0+t1 ≈ lcmQ{pert0 , pert1}. Notice that by Q-lcm (Lem. 9) we know

that (P1) this means by Q-lcm (Lem. 9) that
pert0+t1

pert0
,

pert0+t1

pert1
∈ Z.

(t0 + t1)[x+ pert0+t1 byc ]

≈ t0[x+ pert0+t1 byc ] + t1[x+ pert0+t1 byc ]

≈ t0[x+ pert0 ·
pert0+t1

pert0
byc ] + t1[x+ pert1 ·

pert0+t1

pert1
byc ]

≈ t0[x+ pert0 ·
⌊

pert0+t1

pert0
byc
⌋

] + t1[x+ pert1 ·
⌊

pert0+t1

pert1
byc
⌋

]

≈ t0[x] + oslpt0pert0 ·
⌊

pert0+t1

pert0
byc
⌋

+ t1[x] + oslpt1pert1 ·
⌊

pert0+t1

pert1
byc
⌋

by I.H.

≈ t0[x] + oslpt0 · pert0+t1 byc+ t1[x] + oslpt1 · pert0+t1 byc
≈ (t0 + t1)[x] + (oslpt0 + oslpt1)︸ ︷︷ ︸

oslpt0+t1

·pert0+t1 byc

a
case pert0 6= 0 6= pert1 .

inductive case t = t0 + t1.

inductive case t = kt0:

(kt0)[x+ perkt0 byc ]

≈ (kt0)[x+ pert0 byc ]

≈ k(t0[x+ pert0 byc ])

≈ k(t0[x] + oslpt0pert0 byc)
≈ kt0[x] + koslpt0︸ ︷︷ ︸

oslpkt0

·pert0 byc

a
inductive case t = kt0.

inductive case t = bt0c:

case pert0 = 0 & oslpt0 = 0:

Then perbt0c = 0 hence the hypothesis is not applicable.
a

case pert0 = 0 & oslpt0 = 0.

case pert0 = 0 & oslp 6= 0:

Then by Linear Term (Lem. 11).
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bt0[x+ 1
|oslpt0 |

byc]c

≈ bt0[x] + oslpt0
1

|oslpt0 |︸ ︷︷ ︸
∈Z

bycc by Linear Term (Lem. 11)

≈ bt0[x]c+ oslpt0︸ ︷︷ ︸
oslpbt0c

1
|oslpt0 |︸ ︷︷ ︸
perbt0c

byc

a
case pert0 = 0 & oslp 6= 0.

case pert0 6= 0:

⌊
t0[x+ perbt0c byc ]

⌋
≈
⌊
t0[x+ num(pert0)den(oslpt0) byc ]

⌋
≈
⌊
t0[x+ den(oslpt0)

num(pert0 )·den(pert0 )

den(pert0 )
byc ]

⌋
≈
⌊
t0[x+ pert0

⌊
den(oslpt0)den(pert0) byc

⌋
]
⌋

≈
⌊
t0[x] + oslpt0pert0

⌊
den(oslpt0)den(pert0)y

⌋⌋
by I.H.

≈ bt0[x] + oslpt0den(oslpt0)︸ ︷︷ ︸
∈Z

pert0den(pert0)︸ ︷︷ ︸
∈Z

bycc

≈ bt0[x]c+ oslpt0den(oslpt0)pert0den(pert0) byc
≈ bt0[x]c+ oslpt0︸ ︷︷ ︸

oslpbt0c

den(oslpt0)num(pert0)︸ ︷︷ ︸
perbt0c

byc

a
case pert0 6= 0.

inductive case t = bt0c.

Lemma 2 (Linear Bounds; repeated). R |= ∀x.
(

oslp · x+ distY− ≤ t ≤ oslp · x+ distY+
)

.

Proof. We apply induction on t.
base case t = 1:

oslp1︸ ︷︷ ︸
0

·x+ distY−1︸ ︷︷ ︸
1

≤ 1 ≤ oslp1︸ ︷︷ ︸
0

·x+ distY−1︸ ︷︷ ︸
1

+ deltaY1︸ ︷︷ ︸
0

a
base case t = 1.

base case t = y ∈ V & x = y:

oslpy︸ ︷︷ ︸
1

·x+ distY−y︸ ︷︷ ︸
0

≤ y︸︷︷︸
x

≤ oslpy︸ ︷︷ ︸
1

·x+ distY−y︸ ︷︷ ︸
0

+ deltaYy︸ ︷︷ ︸
0

a
base case t = y ∈ V & x = y.
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base case t = y ∈ V & x 6= y:

oslpy︸ ︷︷ ︸
0

·x+ distY−y︸ ︷︷ ︸
y

≤ y ≤ oslpy︸ ︷︷ ︸
0

·x+ distY−y︸ ︷︷ ︸
y

+ deltaYy︸ ︷︷ ︸
0

a
base case t = y ∈ V & x 6= y.

inductive case t = t0 + t1:

By I.H. we have

oslpt0 · x+ distY−t0 ≤ t0 ≤ oslpt0 · x+ distY−t0 + deltaYt0
oslpt1 · x+ distY−t1 ≤ t1 ≤ oslpt1 · x+ distY−t1 + deltaYt1

Thus we have

oslpt0x+ distY−t0 + oslpt1x+ distY−t1 ≤ t0 + t1

⇐⇒ (oslpt0 + oslpt1︸ ︷︷ ︸
oslpt0+t1

)x+ distY−t0 + distY−t1︸ ︷︷ ︸
distY−t0+t1

≤ t0 + t1

and

t0 + t1 ≤ oslpt0x+ distY−t0 + deltaYt0 + oslpt1x+ distY−t1 + deltaYt1

⇐⇒ t0 + t1 ≤ (oslpt0 + oslpt1︸ ︷︷ ︸
oslpt0+t1

)x+ distY−t0 + distY−t1︸ ︷︷ ︸
distY−t0+t1

+ deltaYt0 + deltaYt1︸ ︷︷ ︸
deltaYt0+t1

a
inductive case t = t0 + t1.

inductive case t = kt0:

By I.H. we have

oslpt0 · x+ distY−t0 ≤ t0 ≤ oslpt0 · x+ distY−t0 + deltaYt0

case k ≥ 0:

Thus we have k = |k| and can reason as follows:

oslpt0 · x+ distY−t0 ≤ t0 ≤ oslpt0 · x+ distY−t0 + deltaYt0

⇐⇒ koslpt0︸ ︷︷ ︸
oslpkt0

·x+ kdistY−t0︸ ︷︷ ︸
distY−kt0

≤ kt0 ≤ koslpt0︸ ︷︷ ︸
oslpkt0

·x+ kdistY−t0︸ ︷︷ ︸
distY−kt0

+ kdeltaYt0︸ ︷︷ ︸
deltaYkt0

a
case k ≥ 0.

case k < 0:
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We can reason as follows:

oslpt0 · x+ distY−t0 ≤ t0 ≤ oslpt0 · x+ distY−t0 + deltaYt0

⇐⇒ k · oslpt0︸ ︷︷ ︸
oslpkt0

·x+ k · distY−t0 ≥ kt0 ≥ k · oslpt0︸ ︷︷ ︸
oslpkt0

·x+ k · distY−t0 + k · deltaYt0︸ ︷︷ ︸
distY−kt0

Thus from k < 0 we know that k + |k| = 0, which means we can further reason as follows

⇐⇒ oslpkt0 · x+ k · distY−t0 ≥ kt0
⇐⇒ oslpkt0 · x+ k · distY−t0 + k · deltaYt0︸ ︷︷ ︸

distY−kt0

+ |k|deltaYt0︸ ︷︷ ︸
deltaYkt0

≥ kt0

a
case k < 0.

inductive case t = kt0.

inductive case t = bt0c:

By I.H. we have

oslpt0 · x+ distY−t0 ≤ t0 ≤ oslpt0 · x+ distY−t0 + deltaYt0

We can reason as follows

oslpt0 · x+ distY−t0 ≤ t0
=⇒

⌊
oslpt0 · x+ distY−t0

⌋
≤ bt0c

=⇒ oslpt0︸ ︷︷ ︸
oslpbt0c

·x+ distY−t0 − 1︸ ︷︷ ︸
distY−bt0c

< bt0c

and
t0 ≤ oslpt0 · x+ distY−t0 + deltaYt0

=⇒ bt0c ≤ oslpt0 · x+ distY−t0 + deltaYt0
=⇒ bt0c ≤ oslpt0︸ ︷︷ ︸

oslpbt0c

·x+ distY−t0 − 1︸ ︷︷ ︸
distY−bt0c

+ deltaYt0 + 1︸ ︷︷ ︸
deltaYbt0c

a
inductive case t = bt0c.

Lemma 12 (Grid Rounding). Let s, t be Lira-Terms, and p ∈ Q>0 then

dtes+pZ = max{s+ pz | z ∈ Z, s+ pz ≤ t}

btcs+pZ = min{s+ pz | z ∈ Z, t ≤ s+ pz}

dt+ εes+pZ = max{s+ pz | z ∈ Z, s+ pz < t}

bt− εcs+pZ = min{s+ pz | z ∈ Z, t < s+ pz}
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Proof. By Quotient Remainder (Lem. 10) we get

dtes+pZ ≈t+ remp(s− t)︸ ︷︷ ︸
∈[0,p)

≈s+ p · quotp(s− t)︸ ︷︷ ︸
∈Z

btcs+pZ ≈t− remp(t− s)︸ ︷︷ ︸
∈[0,p)

≈s− p · quotp(t− s)︸ ︷︷ ︸
∈Z

As dtes+pZ ∈ [t, t+p) we know that dtes+pZ is the least value in {s+pz | z ∈ Z, t ≤ s+pz}.
As btcs+pZ ∈ (t−p, t] we know that btcs+pZ is the greatest value in {s+pz | z ∈ Z, s+pz ≤ t}.

Further as

dt+ εes+pZ = dt+ pes+pZ bt− εcs+pZ = bt− pcs+pZ

from the results before know that dt+ εes+pZ is the least value in {s+pz | z ∈ Z, t+p ≤ s+pz}
and bt− εcs+pZ is the greatest value in {s + pz | z ∈ Z, s + pz ≤ t + p}. Thus the lemma
holds.

Lemma 3 (Grid Intersection; repeated). (s+pZ)u Lt, t+kM ⊇ ({s+pz | z ∈ Z}∩ Lt, t+kM)

Proof. case L is [:

By Grid Rounding (Lem. 12) we know that dtes+pZ is the least value in {s + pz | z ∈ Z, t ≤
s+ pz}. Therefore the lemma obviously holds.

a
case L is [.

case L is (:

By Grid Rounding (Lem. 12) we know that dt+ εes+pZ is the least value in {s + pz | z ∈
Z, t < s+ pz}. Therefore the lemma obviously holds.

a
case L is (.

Lemma 13 (Limit Period). For any Lira-term t we have perlimt
= pert, sslplimt

= sslpt and
oslplimt

= oslpt.

Proof. We can apply induction on t and just unfold definitions.

Lemma 14 (Breaks Period). For b+ pZ ∈ breakst we have
pert
p ∈ Z.

Proof. We can apply induction on t and just unfold definitions.

Lemma 4 (Piecewise Linearity; repeated). Let I be an R-interpretation, x ∈ V and t a Lira-
term such that breaks 6= ∅ and b− ∈ breaks∞. Let b+ = min{b | b ∈ breaks∞, I |= b > b−}, and
± ∈ {+,−}. Then

I |= ∀x ∈ (b−, b+), y ∈ [b−, b+). (t[x] ≈ limt[x] ≈ sslp · x+ dseg(y)) .
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Proof. Consider the property P1:

∀x ∈ (b−, b+).t[x] ≈ limt[x] ≈ sslpt(x− b−) + limt[b
−] (P1)

If we establish P1, then for any y ∈ (b−, b+) we can reason as follows

t[x] ≈ limt[x] ≈ sslptx− sslptb
− + limt[b

−]

≈ sslptx−sslptb
− + limt[b

−] + sslpty︸ ︷︷ ︸
≈limt[y]by P1

−sslpty

≈ sslptx+ limt[y]− sslpty︸ ︷︷ ︸
dsegt(y)

This means that to proof Piecewise Linearity it is enough to show P1. Thus we proceed by
induction on t. We reason in an arbitrary R-interpretation I. If breaks = ∅ then Piecewise
Linearity trivially holds, hence let us only consider the cases where breaks 6= ∅. Consider any
b− ∈ breaks∞t , b+ = min{b | b ∈ breaks∞t , I |= b > b−}, and any x ∈ (b−, b+). Let us case split
on t.
inductive case t = t0 + t1:

Then breakst0+t1 = breakst0 ∪ breakst1 .
case breakst0 = ∅ & breakst1 6= ∅:

First we observe that by Linear Term (Lem. 11), for any y we get

t0[x] ≈ sslpt0x+ limt0 [0]

≈ sslpt0x+ limt0 [0] + sslpt0y︸ ︷︷ ︸
t0[y]≈limt0 [y]

−sslpt0y

≈ sslpt0x+ limt0 [y]− sslpt0y︸ ︷︷ ︸
dsegt0 (y)

(P2)

As breakst0+t1 ⊇ breakst1 , we can use I.H. to get

t1[x] ≈ limt1 [x] ≈ sslpt1x+ dsegt1(b−) by I.H.

⇐⇒ t0[x] + t1[x] ≈ t0[x] + limt1 [x] ≈ t0[x] + sslpt1x+ dsegt1(b−)

⇐⇒ t0[x] + t1[x] ≈ limt0 [x] + limt1 [x] ≈ t0[x] + sslpt1x+ dsegt1(b−) by Linear Term (Lem. 11)

⇐⇒ t0[x] + t1[x] ≈ limt0 [x] + limt1 [x] ≈ sslpt0x+ dsegt0(b−) + sslpt1x+ dsegt1(b−) by P2

⇐⇒ (t0 + t1)[x] ≈ limt0+t1 [x] ≈ (sslpt0 + sslpt1︸ ︷︷ ︸
sslpt0+t1

) · x+ dsegt0(b−) + dsegt1(b−)︸ ︷︷ ︸
dsegt0+t1

(b−)

a
case breakst0 = ∅ & breakst1 6= ∅.

case breakst1 = ∅ & breakst0 6= ∅:

This case can be shown in the same way as the case before.
a

case breakst1 = ∅ & breakst0 6= ∅.
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case breakst0 6= ∅ & breakst1 6= ∅:

As breakst0+t1 ⊇ breakst0 , breakst1 , we can use I.H. to get

t0[x] ≈ limt0 [x] ≈ sslpt0x+ dsegt0(b−)

& t1[x] ≈ limt1 [x] ≈ sslpt1x+ dsegt1(b−)

=⇒ t0[x] + t1[x] ≈ limt0 [x] + limt1 [x] ≈ sslpt0x+ dsegt0(b−) + sslpt1x+ dsegt1(b−)

=⇒ (t0 + t1)[x] ≈ limt0+t1 [x] ≈ (sslpt0 + sslpt1)︸ ︷︷ ︸
sslpt0+t1

x+ dsegt0(b−) + dsegt1(b−)︸ ︷︷ ︸
dsegt0+t1

(b−)

a
case breakst0 6= ∅ & breakst1 6= ∅.

inductive case t = t0 + t1.

inductive case t = kt0:

As breakst0 = breakskt0 we can use I.H. to we get

t0[x] ≈ limt0 [x] ≈ sslpt0x+ dsegt0(b−) =⇒ kt0[x]︸ ︷︷ ︸
(kt0)[x]

≈ klimt0 [x]︸ ︷︷ ︸
limkt0

[x]

≈ ksslpt0︸ ︷︷ ︸
sslpkt0

x+ kdsegt0(b−)︸ ︷︷ ︸
dsegkt0

(b−)

a
inductive case t = kt0.

inductive case t = bt0c:

As sslpbt0c = 0 we only need to establish bt0[x]c ≈ limbt0c[x] ≈ limbt0c[b
−] in order to show P1

and thereby show Piecewise Linearity.
case sslpt0 = 0:

Then breakst0 = breaksbt0c, thus we can use I.H. to get

t0[x] ≈ limt0 [x] ≈ sslpt0x+ dsegt0(b−)

≈ sslpt0︸ ︷︷ ︸
0

x− sslpt0︸ ︷︷ ︸
0

·b− + limt0 [b−] by Segment Line (Def. 4)

=⇒ bt0[x]c ≈
⌊
limt0 [x]

⌋
≈
⌊
limt0 [b−]

⌋
=⇒ bt0[x]c ≈ limbt0c[x] ≈ limbt0c[b

−] by Limit (Def. 3)

a
case sslpt0 = 0.

case sslpt0 6= 0 & breakst0 = ∅:

We have breaks∞bt0c = {zerot0(0)+perbt0cz | z ∈ Z}, with perbt0c = 1
|oslpt0 |

. Further by Linear

Term (Lem. 11) we know that zerot0(0) ≈ − t0[0]
sslpt0

. Therefore we know that for some z ∈ Z
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we have b− = −t0[0]+z
sslpt0

and b+ = b− + 1
|sslpt0 |

. Thus by Linear Term (Lem. 11) that

t0[x] ≈ sslpt0x+ t0[0]

≈ sslpt0x+ t0[0]− sslpt0b
− + sslpt0 ·

−t0[0]+z
sslpt0︸ ︷︷ ︸
b−

≈ sslpt0 (x− b−)︸ ︷︷ ︸
∈(0, 1

|sslpt0 |
)

+z (P3)

case sslpt0 > 0:

Then we can reason as follows

limbt0c[b
−] ≈

⌊
limt0 [b−]

⌋
by Limit (Def. 3)

≈ bsslpt0
−t0[0]+z

sslpt0︸ ︷︷ ︸
b−

+t0[0]c by Linear Term (Lem. 11)

≈ z

bt0[x]c ≈ bz + sslpt0(x− b−)︸ ︷︷ ︸
∈(0,1)

c by P3

≈ z

limbxc[t0] ≈
⌊
limt0 [x]

⌋
by Limit (Def. 3)

≈ bz + sslpt0(x− b−)︸ ︷︷ ︸
∈(0,1)

c by P3

≈ z

Thus we get limbt0c[b
−] ≈ bt0[x]c ≈ limbxc[t0].

a
case sslpt0 > 0.

case sslpt0 < 0:

Then we can reason as follows

limbt0c[b
−] ≈

⌈
limt0 [b−]

⌉
− 1 by Limit (Def. 3)

≈ dsslpt0
−t0[0]+z

sslpt0︸ ︷︷ ︸
b−

+t0[0]e − 1 by Linear Term (Lem. 11)

≈ z − 1

bt0[x]c ≈ bz + sslpt0(x− b−)︸ ︷︷ ︸
∈(−1,0)

c by P3

≈ z − 1

limbxc[t0] ≈
⌈
limt0 [x]

⌉
− 1 by Limit (Def. 3)

≈ dz + sslpt0(x− b−)︸ ︷︷ ︸
∈(−1,0)

e − 1 by P3

≈ z − 1

Thus we get limbt0c[b
−] ≈ bt0[x]c ≈ limbxc[t0].
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a
case sslpt0 < 0.

case sslpt0 6= 0 & breakst0 = ∅.

case sslpt0 6= 0 & breakst0 6= ∅:

Notice that firstly breaks∞t0 ⊆ breaks∞bt0c. Let us firstly establish the property P4:

lemma P4:


b ∈ breaks∞t0

& c = min{c ∈ breaks∞t0 | b < c}
& z ∈ Z
& zero(b) + 1

sslpt0
z ∈ [b, c)

=⇒ zero(b) + 1
sslpt0

z ∈ breaks∞bt0c

 (P4)

P4 says that for any two adjescent breaks b, c ∈ breakst0 , any value d of the form zero(b)+
1

sslpt0
z with z ∈ Z, d ∈ [b, c) is contained in breaksbt0c. Intuitively the values d are all the

values where the line segment of t0 in the interval [b, c) takes an integer value.

Consider any b ∈ breaks∞t0 , and c = min{c ∈ breaks∞t0 | b < c}. There must be some
t0 + pmin

t0 Z ∈ breakst0 . Thus there is some t0 + pmin
t0 z ∈ breaks∞t0 such that t0 + pmin

t0 z −
b ≤ pmin

t0 which means that c − b ≤ pmin
t0 as c is minimal, which further means that

[b, c) ⊆ [b, b+ pmin
t0 ). We can reason as follows

b ∈ breaks∞t0
=⇒ b ≈ b′0 + pz for some b′0 + pZ ∈ breakst0

⇐⇒ b ≈ b′0
+perbt0c

∈Z︷ ︸︸ ︷
quotperbt0c

(pz)

+ remperbt0c
(pz)︸ ︷︷ ︸

∈[0,perbt0c
)

by Quotient Remainder (Lem. 10)

remperbt0c
(pz) ≈ pz − perbt0cb

pz
perbt0c

c

≈ pz − p perbt0c
p︸ ︷︷ ︸
∈Z

b pz
perbt0c

c by Breaks Period (Lem. 14)

≈ pz − pb perbt0c
p b pz

perbt0c
cc

≈ pbz − b perbt0c
p b pz

perbt0c
ccc

Thus we know that b ≈ b′0 + pzp + perbt0czperbt0c
for some zp, zperbt0c

∈ Z with pzp ∈
[0, perbt0c). We define b0 = b′0 + pzp, and thus know by Grid Intersection (Lem. 3) that

b0 ∈ (b′0 + pZ) u [b′0, b
′
0 + perbt0c).

Now consider any z′ ∈ Z such that zero(b) + z′

sslpt0
∈ [b, c) ⊆ [b, b+ pmin

t0 ). We can reason
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as follows:

zero(

b︷ ︸︸ ︷
b0 + perbt0czperbt0c

) + z′

sslpt0

≈b0 + perbt0czperbt0c
−

limt0 [b0+perbt0c
zperbt0c

]

sslpt0
+ z′

sslpt0

≈b0 + perbt0czperbt0c
−

limt0 [b0]+oslpt0perbt0c
zperbt0c

sslpt0
+ z′

sslpt0
by Limit Period (Lem. 13)

≈b0 + perbt0czperbt0c
− limt0 [b0]

sslpt0
+

z′−oslpt0perbt0c
zperbt0c

sslpt0

≈zero(b0) + perbt0czperbt0c
+

z′−oslpt0perbt0c
zperbt0c

sslpt0
(P5)

We define z′′ = z′ − oslpt0perbt0czperbt0c
. By Slope and Period (Def. 1) we know that

oslpt0perbt0c ∈ Z, thus we know that z′′ ∈ Z. Further as zero(b) + z′

sslpt0
∈ [b, b+ pmin

t0 ) we

can continue reasoning as follows

0 ≤ zero(b) +
z′

sslpt0
−

b︷ ︸︸ ︷
(b0 + perbt0czperbt0c

) < pmin
t0

⇐⇒0 ≤ zero(b0) +
((((

((perbt0czperbt0c
+ z′′

sslpt0
− b0 −(((((

(perbt0czperbt0c
< pmin

t0 by P5

⇐⇒zero(b0) + z′′

sslpt0
∈ [b0, b0 + pmin

t0 )

=⇒zero(b0) + z′′

sslpt0
∈ breaks∞bt0c

=⇒zero(b0) + z′′

sslpt0
+ perbt0c ∈ breaks∞bt0c

=⇒zero(b) + z′

sslpt0
∈ breaks∞bt0c by P5

a

lemma P4.

Then let a− be the greatest value in breaks∞t0 such that a− < b−, and a+ be the least value
in breaks∞t0 such that a− < a+.

We define b = zero(a−) + z
sslpt0

to be the greatest such b such that b ≤ a−.

By P4 we know that either a+ ≤ b+ 1
|sslpt0 |

, or b+ 1
|sslpt0 |

∈ breaks∞bt0c. In either case there

is some b′ ∈ breaks∞bt0c such that 0 < b′ − b ≤ 1
|sslpt0 |

, thus 0 < b+ − b ≤ 1
|sslpt0 |

as b+ is

minimal, which means that x ∈ [b, b+ 1
|sslpt0 |

).
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Further by the minimality of b we know that

b ≤ a− < b+ 1
|sslpt0 |

⇐⇒0 ≤ a− − b < 1
|sslpt0 |

⇐⇒0 ≤ a− − zero(a−)− z
sslpt0

< 1
|sslpt0 |

⇐⇒0 ≤���
�

a− − a− +
limt0a

−

sslpt0
− z

sslpt0
< 1
|sslpt0 |

(P6)

As breaks∞bt0c ⊇ breaks∞t0 we can use I.H.to get

t0[x] ≈sslpt0x+ dsegt0(a−)

≈sslpt0(x− zerot0(a−))

≈sslpt0(x− (b− z

sslpt0
)) by definition of b

≈sslpt0( x− b︸ ︷︷ ︸
∈(0, 1

|sslpt0
| )

) + z (P7)

case sslpt0 > 0:

0 ≤ limt0 [a
−]

sslpt0
− z

sslpt0
< 1
|sslpt0 |

by P6

⇐⇒ 0 ≤ limt0 [a−]− z < 1

=⇒ 0 ≈
⌊
limt0 [a−]− z

⌋
⇐⇒ z ≈

⌊
limt0 [a−]

⌋
≈ limbt0c[a

−] by Limit (Def. 3)

bt0[x]c ≈ bz + sslpt0(x− b)︸ ︷︷ ︸
∈(0,1)

c by P7

≈ z

limbt0c[x] ≈
⌊
limt0 [x]

⌋
by Limit (Def. 3)

≈ bt0[x]c by I.H.

≈ bz + sslpt0(x− b)︸ ︷︷ ︸
∈(0,1)

c by P7

≈ z

Thus we get limbt0c[b
−] ≈ bt0[x]c ≈ limbxc[t0].

a
case sslpt0 > 0.

case sslpt0 < 0:
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0 ≤ limt0 [a
−]

sslpt0
− z

sslpt0
< 1
|sslpt0 |

by P6

⇐⇒ 0 ≥ limt0 [a−]− z > −1

=⇒ 0 ≈
⌈
limt0 [a−]− z

⌉
⇐⇒ z − 1 ≈

⌈
limt0 [a−]

⌉
− 1

≈ limbt0c[a
−] by Limit (Def. 3)

bt0[x]c ≈ bz + sslpt0(x− b)︸ ︷︷ ︸
∈(−1,0)

c by P7

≈ z − 1

limbt0c[x] ≈
⌈
limt0 [x]

⌉
− 1 by Limit (Def. 3)

≈ dt0[x]e − 1 by I.H.

≈ dz + sslpt0(x− b)︸ ︷︷ ︸
∈(−1,0)

e − 1 by P7

≈ z − 1

Thus we get limbt0c[b
−] ≈ bt0[x]c ≈ limbxc[t0].

a
case sslpt0 < 0.

case sslpt0 6= 0 & breakst0 6= ∅.

inductive case t = bt0c.

Lemma 5 (Periodic Literals; repeated). If L = t � 0 is a periodic Lira-literal (oslpt = 0),
then

R |= ∀y.
(
L[x]↔ L[x+ pert byc ]

)
Proof. Follows straight from Periodic Shift (Lem. 1) if breakst 6= ∅ and from Linear Term
(Lem. 11) otherwise.

Lemma 15 (Periodic Literal Induction). If L = t � 0 is a periodic Lira-literal (oslpt = 0),
then

R |= ∃y.
(
∀x ∈ [y, y + pert).L[x]

)
→ ∀x.L[x]

Proof. We reason in some arbitrary R-interpreation I. Assume that ∀x.(y ≤ x < y + pert →
t[x] � 0), and let x be arbitrary. There is some z such that x + pert bzc ∈ [y, y + pert). By
Periodic Literals (Lem. 5) we have L[x+ pert bzc]↔ L[x], thus we know that L[x] holds.

Lemma 6 (Limit Value; repeated). If L = t � 0 is an aperiodic Lira-literal (oslpt 6= 0), then
the values outside of the core interval of t satisfy the following:

R |= ∀x < distX−t .(L[x]↔ lim−∞L ) R |= ∀x > distX+
t .(L[x]↔ lim+∞

L )

where
lim±∞t≈0 = ⊥ lim±∞t 6≈0 = > lim±∞t&0 = ±oslp > 0

Proof. We reason in an arbitrary R-interpretation I.
case sgn(oslp) = +:
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x < − distY+

oslp︸ ︷︷ ︸
distX−

⇐⇒ oslp · x+ distY+ < 0

and

x > − distY+

oslp + deltaY
|oslp|︸ ︷︷ ︸

distX+

⇐⇒ oslp · x+ distY+ − deltaY︸ ︷︷ ︸
distY−

> 0

Thus by Linear Bounds (Lem. 2) we have (P1) x > distX+ =⇒ t > 0, and x < distY− =⇒ t <
0.

case sgn(oslp) = +.

case sgn(oslp) = −:

x < − distY−

oslp︸ ︷︷ ︸
distX−

⇐⇒ oslp · x+ distY− > 0

and

x > − distY−

oslp + deltaY
|oslp|︸ ︷︷ ︸

distX+

⇐⇒ oslp · x+ distY− + deltaY︸ ︷︷ ︸
distY+

< 0

Thus by Linear Bounds (Lem. 2) we have (P2) x > distX+ =⇒ t < 0, and x < distY− =⇒ t >
0.

case sgn(oslp) = −.

We case split on �.
case � is ≈:

Then lim±∞t�0 = ⊥. Thus the lemma follows straight from P1 and P2.

a
case � is ≈.

case � is 6≈:

Then lim±∞t�0 = >. Thus the lemma follows straight from P1 and P2.

a
case � is 6≈.

case � is &∈ {>,≥}:

case oslp > 0:

Then lim+∞ = +oslp > 0 = >, and lim−∞ = −oslp > 0 = ⊥, thus the lemma follows from
P1.

a
case oslp > 0.

case oslp < 0:
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Then lim+∞ = +oslp > 0 = ⊥, and lim−∞ = −oslp > 0 = >, thus the lemma follows from
P2.

a
case oslp < 0.

case � is &∈ {>,≥}.

Lemma 16 (Zeros). Let s, t be Lira-terms, and � ∈ {≈, 6≈,≥, >}, then

1. sslpt > 0 then R |= sslpt · s+ limt[b] & 0⇐⇒ s � zerot(b)

2. sslpt < 0 then R |= sslpt · s+ limt[b] & 0⇐⇒ zerot(b) � s

Proof. In both cases we can expand defintions to get

1. sslpt · s+ limt[b] � 0⇐⇒ s � − limt[b]
sslpt

⇐⇒ s � zerot(b)

2. sslpt · s+ limt[b] � 0⇐⇒ − limt[b]
sslpt

� s⇐⇒ zerot(b) � s

Lemma 17 (Lower Bound Existence). Let L be a Lira-literal, I be some R-interpretation,
such that I |= L[y]. Then there is some v ∈ elimx(L) such that I |= sInter(v, y, L).

Proof. Let L = t�0. We reason in the interpretation I, and case split on L along the definition
of elim.
case breaks = ∅:

Then by Linear Term (Lem. 11), we know that t ≈ sslp · x+ limt[0].
case sslp = 0:

Then by Linear Term (Lem. 11) we know that t[y] � 0 ⇐⇒ t[x′] � 0 for any x′. Thus L
holds for any x′ ∈ (−∞, y] which obviously means that [−∞, y] is a solution interval, and
−∞ ∈ elim(L).

a
case sslp = 0.

case � is ≈:

Then by Zeros (Lem. 16) and Linear Term (Lem. 11), from t[y] ≈ 0, we know that y ≈
zero(0), thus [zero(0), y] is a solution interval, and zero(0) ∈ elim(L).

a
case � is ≈.

case � is &:

As sslp 6= 0, by Zeros (Lem. 16) we know that zero(0) is the only zero of t[x].
case sslp > 0:

This means since t is a linear term (Linear Term (Lem. 11)), and t[y] & 0 by Zeros
(Lem. 16) we know that y & zero(0).
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Let x′ be any value such that zero(0) . x′ ≤ y. For any such value by Zeros (Lem. 16)
we know that t[x′] & 0. Thus if & is > then [zero(0) + ε, y] is a solution interval, and if &
is ≥, then [zero(0), y] is a solution interval, and the respective lower bound is in elim(L).

a
case sslp > 0.

case sslp < 0:

This means since t is a linear term (Linear Term (Lem. 11)), and t[y] & 0 by Zeros
(Lem. 16) that y . zero(0). Let x′ be any value such that x′ ≤ y. By transitivity we ahve
that x′ . zero(0), thus by Zeros (Lem. 16) we hace t[x′] & 0. Thus [−∞, y] is a solution
interval, and −∞ ∈ elim(L).

a
case sslp < 0.

case � is &.

case � is 6≈:

Then we know that t[y] > 0 or t[y] < 0. In both both cases we can reason as in the
inequalitiy cases before to get that either [zero(0) + ε, y] is a solution interval, or [−∞, y] is
a solution interval, with either of the two lower bounds being in elim(L).

a
case � is 6≈.

case breaks = ∅.

case breaks 6= ∅:

case oslp = 0:

We case split on the value y
case

E

b∗ ∈ breaks∞.y ≈ b∗:

Then there is some value b + pZ ∈ breaks such that y ≈ b + pz for some z ∈ Z, thus
[b+ pZ, y] is a solution interval.

a
case

E

b∗ ∈ breaks∞.y ≈ b∗.

case

A

b∗ ∈ breaks∞.y 6≈ b∗:

Let b− ∈ breaks, and y′ = min{y′ | y′ ≈ y + z, b− < y′, z ∈ Z}. By piecewise linearity we
know that there is some b+ such that s is a linear segment in the interval (b−, b+). As
L is periodic by Periodic Literals (Lem. 5) we know that from L[y] it follows that L[y′].
Further again because L is periodic if we show that [p, y′] is a truth interval, we also know
that [p+ pZ, y] is a truth interval.
If sslp 6= 0 the zero of this segment is zero(b−). We case split:
case sslp = 0:

From t[y′]�0, Piecewise Linearity (Lem. 4), we know that t[x′] holds for any x′ ∈ (b−, y′],
thus [b− + ε, y′] is a solution interval, with b− + ε ∈ elim(L).

a
case sslp = 0.

case sslp < 0 & � is &∈ {>,≥}:
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In this case by Piecewise Linearity (Lem. 4), and Zeros (Lem. 16) we have y′ . zero(b−).
Let x′ ∈ (b−, y′], then by transitivity we know that x′ . zero(b−), thus by Piecewise
Linearity (Lem. 4), and Zeros (Lem. 16) we have t[x′] & 0. Therefore we know that
[b− + ε, y′] is a solution interval with b− + ε ∈ elim(L).

a
case sslp < 0 & � is &∈ {>,≥}.

case sslp > 0 & � is &∈ {>,≥} & zero(b−) 6∈ (b−, b+):

By Piecewise Linearity (Lem. 4), and Zeros (Lem. 16) we know that b+ > y′ & zero(b−).
As zero(b−) 6∈ (b−, b+) we know that b+ > y′ > b− ≥ zero(b−). Consider any x′ ∈
(b−, y′]. By Piecewise Linearity (Lem. 4), and Zeros (Lem. 16) we know that t[x′] > 0,
thus [b− + ε, y′] is a solution interval with b− + ε ∈ elim(L).

a
case sslp > 0 & � is &∈ {>,≥} & zero(b−) 6∈ (b−, b+).

case sslp > 0 & � is &∈ {>,≥} & zero(b) ∈ (b−, b+):

Consider some x′ such that zero(b−) . x′ ≤ y′. Then by Piecewise Linearity (Lem. 4),
and Zeros (Lem. 16) we know that t[x′] & 0. Therefore if & is > then [zero(b−)+ε, y′] is
a solution interval, and if & is ≥, then [zero(b−), y′] is a solution interval with zero(b−) ∈
elimb−.

a
case sslp > 0 & � is &∈ {>,≥} & zero(b) ∈ (b−, b+).

case sslp 6= 0 & � is 6≈:

If t[y′] 6≈ 0 there are two cases, either t[y′] > 0 or −t[y′] > 0. In either case we can
reason as in the cases where � is >, to get that either [b− + ε, y′], or [zero(b−) + ε, y′]
is a solution interval with zero(b−) ∈ elim(L).

a
case sslp 6= 0 & � is 6≈.

case sslp 6= 0 & � is ≈:

Then by Zeros (Lem. 16), and Piecewise Linearity (Lem. 4) it must be the case that
y′ = zero(b−), hence [zero(b−), y′] is a solution interval, with zero(b−) ∈ elim(L)

a
case sslp 6= 0 & � is ≈.

case

A

b∗ ∈ breaks∞.y 6≈ b∗.

case oslp = 0.

case oslp 6= 0:

We case split on y.

case y ≈ distX±:

Then distX± ∈ elim(L) and [distX±, y] is a solution interval.

a
case y ≈ distX±.

case y ∈ (−∞, distX−):
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Then as L[y] by Limit Value (Lem. 6) it must be the case that lim−∞L = >, thus −∞ ∈
elim(L), and [−∞, y] is a solution interval.

a
case y ∈ (−∞, distX−).

case y ∈ (distX+,∞):

Then as L[y] by Limit Value (Lem. 6) it must be the case that lim+∞
L = >, thus distX+ +

ε ∈ elim(L), and [distX+ + ε, y] is a solution interval.

a
case y ∈ (distX+,∞).

case y ∈ (distX−, distX+) & y ∈ breaks∞:

Then there is some value b ∈ ebreak, such that y ≈ b, thus [b, y] is a solution interval.

a
case y ∈ (distX−, distX+) & y ∈ breaks∞.

case y ∈ (distX−, distX+) & y 6∈ breaks∞:

Then by Piecewise Linearity (Lem. 4) there y ∈ (b−, b+), such that t is a linear segment
in between these breaks b−, b+.

Notice the following:

{ zero(b) | b ∈ breaks∞ }
= { b− limt[b]

sslp | b ∈ breaks∞ }
= { b+ pz − limt[b+pz]

sslp | b+ pZ ∈ breaks, z ∈ Z }
= { b+ pz − limt[b]+pzoslp

sslp | b+ pZ ∈ breaks, z ∈ Z } by Limit Period (Lem. 13)

and Breaks Period (Lem. 14)

= { b+ pz − limt[b]
sslp −

pzoslp
sslp | b+ pZ ∈ breaks, z ∈ Z }

= { b− limt[b]
sslp + pz(1− oslp

sslp ) | b+ pZ ∈ breaks, z ∈ Z }
= { zero(b) + pz(1− oslp

sslp ) | b+ pZ ∈ breaks, z ∈ Z }

Thus we know that any zero(b) for some break b that is within (distX−, distX+), is in
ezero.

Further we notice that we have that if t ≤ distX− ≤ y, and [t, y], or [t+ ε, y] is a solution
interval, then [distX−, y] is a solution interval for any plain term t.

We case split:

case sslp = 0:

Then Piecewise Linearity (Lem. 4) and t[y]�0, we know that t[x′]�0 for any x′ ∈ (b−, b+),
hence [b− + ε, y′] is a solution interval.

If b− ≤ distX− then b− might not be in the elimination set, but in this case we have
distX− in the elimination set with [distX−, y] being a solution interval too.

a
case sslp = 0.

case sslp < 0 & � ∈ {>,≥}:
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By Piecewise Linearity (Lem. 4), and Zeros (Lem. 16) we know that y . zero(b−). Let
x′ ∈ (b−, y], then again by Piecewise Linearity (Lem. 4), and Zeros (Lem. 16) we know
that t[x′] & 0. Thus [b− + ε, y] is a solution interval.
If zero(b−) ≤ distX− then zero(b−) might not be in the elimination set, but in this case
we have distX− in the elimination set with [distX−, y] being a solution interval too.

a
case sslp < 0 & � ∈ {>,≥}.

case sslp > 0 & � is &∈ {>,≥} & zero(b−) ∈ (b, b+):

Then by Piecewise Linearity (Lem. 4) and Zeros (Lem. 16) we know that y & zero(b−).
Consider any x′ such that zero(b−) . x′ ≤ y. By the same lemmas we know that
t[x′] & 0, thus if & is > then [zero(b−) + ε, y] is a solution interval, and if & is ≤ then
[zero(b−), y] is a solution interval.
If zero(b−) ≤ distX− then zero(b−) might not be in the elimination set, but in this case
we have distX− in the elimination set with [distX−, y] being a solution interval too.

a
case sslp > 0 & � is &∈ {>,≥} & zero(b−) ∈ (b, b+).

case sslp > 0 & � is &∈ {>,≥} & zero(b−) 6∈ (b, b+):

By Piecewise Linearity (Lem. 4), and Zeros (Lem. 16) we know that b+ > y & zero(b−).
As zero(b−) 6∈ (b−, b+) we know that b+ > y > b− ≥ zero(b−). Consider any x′ ∈ (b−, y].
By Piecewise Linearity (Lem. 4), and Zeros (Lem. 16) we know that t[x′] > 0, thus
[b+ ε, y] is a solution interval.
If b− ≤ distX− then b− might not be in the elimination set, but in this case we have
distX− in the elimination set with [distX−, y] being a solution interval too.

a
case sslp > 0 & � is &∈ {>,≥} & zero(b−) 6∈ (b, b+).

case sslp 6= 0 & � is 6≈:

If t[y] 6= 0 we know that either t[y] > 0 or −t[y] > 0, which means that we can reason
as in the cases before to establich that either [zero(b−) + ε, y], [b− + ε, y], or [distX−, y]
will be a solution interval with lower bound in elim(L).

a
case sslp 6= 0 & � is 6≈.

case sslp 6= 0 & � is ≈:

Then by Piecewise Linearity (Lem. 4), and Zeros (Lem. 16), it must be the case that
y = zero(b), thus [zero(b), y′] is a solution interval.

a
case sslp 6= 0 & � is ≈.

case y ∈ (distX−, distX+) & y 6∈ breaks∞.

case oslp 6= 0.

case breaks 6= ∅.

Lemma 18. Let t be a virtual term and φ a conjunction of literals. Then

R |= ∃x.sInter(t, x, φ)→ φJtK
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Proof. Let I be an arbitrary R-interpreation. We reason in I. We case split on t.

base case t = t is a plain virtual term :

Then sInter(t, x, φ) = t ≤ x ∧ ∀x′(t ≤ x′ ≤ x→ φ[x′]). Thus obviously φJtK holds.

a
base case t = t is a plain virtual term .

base case t = t0 + ε where t0 is a plain virtual term:

Then sInter(t0 + ε, x, φ) = t0 < x ∧ ∀x′.(t0 < x′ ≤ x→ φ[x′]). Let L = s � 0 be any literal of
φ.

case breaks ≈ ∅:

By Piecewise Linearity (Lem. 4) we know that there are some b−, b+ such that t0 ∈ (b−, b+),
such that s is a linear segment in (b−, b+). Further this means there is is some u, with
t0 < u < min(b+, x).

case breaks ≈ ∅.

case breaks 6≈ ∅:

In this case we choose u = x, and we know by Lem. 11 that s[x′] ≈ sslps · x′ + dsegs(t0).

case breaks 6≈ ∅.

Thus in either case we know that for any x′ ∈ (t0, u] (P3) s[x′] � 0 holds, and that (P4)
s[x′] ≈ sslps · x′ + dsegs(t0). Further we can see for any such x′ that

s[x′] ≈sslps · x′ + dsegs(t0) by P4

≈sslps · x′ − sslps · t0 + lims[t0]

≈sslps(x
′ − t0) + lims[t0]

and thus we know that x′ − t0 > 0.

We case split on L

case s � 0 & sslps = 0:

Thus LJt0K = lims[t0] � 0. As s[x′] � 0 we know that sslps︸︷︷︸
≈0

(x′− t0) + lims[t0] � 0, which means

that lims[t0] � 0.

a
case s � 0 & sslps = 0.

case s & 0 & sslps > 0:

Thus LJt0K = lims[t0] ≥ 0.

As s[x′] & 0 we know that sslps︸︷︷︸
>0

(x′ − t0)︸ ︷︷ ︸
>0

+lims[t0] & 0, which means that lims[t0] ≥ 0.

a
case s & 0 & sslps > 0.

case s & 0 & sslps < 0:
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Thus LJt0K = lims[t0] > 0. As s[x′] & 0 we know that sslps︸︷︷︸
<0

(x′ − t0)︸ ︷︷ ︸
>0

+lims[t0] & 0, which

means that lims[t0] > 0.
a

case s & 0 & sslps < 0.

case s ≈ 0 & sslps 6= 0:

Thus LJt0K = ⊥. We will show that this branch leads to a contradiction thus, is unreachable:
Consider some x′′ ∈ (t0, x

′).

s[x′] ≈ 0 ≈ s[x′′]
⇐⇒sslps(x

′ − t0) + lims[t0] ≈ sslps(x
′′ − t0) + lims[t0]

⇐⇒x′ ≈ x′′

which contradicts that x′′ < x′.
a

case s ≈ 0 & sslps 6= 0.

case s 6≈ 0 & sslp 6= 0:

Thus LJt0K = >. In this case we need to show that there is always some x such that
[t0 + ε, x] is a solution interval.
We case spit on lims[t0]:
case lims[t0] > 0 & sslps > 0:

Consider any x′ ∈ (t0, u]. We know that x′ − t0 > 0 and sslps > 0, thus we know that
sslps(x

′ − t0) > 0, thus s[x′] ≈ sslps(x
′ − t0) + lims[t0] > 0. This means that [t0 + ε, u] is

a solution interval.
a

case lims[t0] > 0 & sslps > 0.

case lims[t0] > 0 & sslps < 0:

Observe that

lims[t0] > 0⇐⇒ t0 −
lims[t0]

sslps︸ ︷︷ ︸
zeros(t0)

> t0

Let x ∈ (t0,min(u, zeros(t0))). Consider any x′ ∈ (t0, x]. We have

x′ < zeros(t0)

⇐⇒x′ < t0 −
lims[t0]

sslps
⇐⇒sslps(x

′ − t0) + lims[t0] > 0

⇐⇒s[x′] > 0 by Lem. 4

Thus [t0 + ε, x] is a solution interval.
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a
case lims[t0] > 0 & sslps < 0.

case lims[t0] < 0 & sslps < 0:

This can be done analogous to the case where lims > 0 & sslp > 0.
a

case lims[t0] < 0 & sslps < 0.

case lims[t0] < 0 & sslps > 0:

This can be done analogous to the case where lims > 0 & sslp < 0.
a

case lims[t0] < 0 & sslps > 0.

case lims[t0] ≈ 0:

Let x′ ∈ (t0, u]. Then we have sslps(x
′ − t0)︸ ︷︷ ︸
6≈0

+ lims[t0]︸ ︷︷ ︸
≈0

6≈ 0. This means [t0 + ε, u] is a

solution interval.
a

case lims[t0] ≈ 0.

case s 6≈ 0 & sslp 6= 0.

base case t = t0 + ε where t0 is a plain virtual term.

base case t = t0 −∞:

Then sInter(−∞, x, φ) = ∀x′(x′ ≤ x → φ[x′]), which means by Periodic Literal Induction
(Lem. 15) that all periodic liteals of φ must be constant true for any value. Further by
Limit Value (Lem. 6) all aperiodic literals L must have a truth limit lim−∞L = >. Therefore
φJt0 −∞K must hold.

a
base case t = t0 −∞.

base case t = t0 +∞:

Then sInter(−∞, x, φ) = ⊥, thus this can never be the case.
a

base case t = t0 +∞.

case t = t0 + pZ:

Then sInter(t0 + pZ, x, φ) = ∃z ∈ Z.sInter(t0 + pz, φ) We case split along the definition of
virtual substitution Def. 9. Let P and A be the periodic and aperiodic literals of φ as in the
defintion. Let t0 = t′ + eε.
case V 1.∀L ∈ A.lim±∞L = >:

Suppose sInter(t′+eε+pz, x, φ) for some z ∈ Z. Then sInter(t′+eε+pz, x,
∧
P ) holds as well.

Thus there is some z′ ∈ Z such that t′+pz+λz′ ∈ [t′, t′+λ). Further as the truth value of all
peridoic literals repeats Lem. 5 for λ, it must be the case that sInter(t′+eε+pz+λz′, x,

∧
P )

holds. As λ
p ∈ Z, we know that pz + λz′ ≈ pz′′ for some z ∈ Z. Thus as by Lem. 3 all such

values t′ + pz′′ are in finφt′+pZ, we can reason in the base cases before to get that for some

t′′ ∈ finφt′+pZ we have
∧
L∈P LJt

′′ + eεK which implies that
∧
L∈P LJt

′′ + eε ±∞K which in
turn means due to the condition V1 that

∧
L∈φ LJt

′′ + eε±∞K. Thus φJt0 + pZK holds.

49



VIRAS: Conflict-Driven Quantifier Elimination for Integer-Real Arithmetic Schoisswohl, Korovin and Kovács

a
case V 1.∀L ∈ A.lim±∞L = >.

case V 2.∃L ∈ A.L = u ≈ 0:

If for some z ∈ Z we have sInter(t′ + eε + pz, x, φ), then as lim±∞u≈0 = ⊥, by Lem. 6 it
must be the case that the solution interval [t′ + eε + pz, x] is within the core interval
I = [distX−u≈0, distX+

u≈0], which means x ∈ I and t′ + pz ∈ I. As by Lem. 3 all such t′ + pz

are covered by finφt′+pZ we can reason as in the base cases before to get
∨
t′′∈finφ

t′+pZ
φJt′′+eεK.

Thus φJt0 + pZK holds.

a
case V 2.∃L ∈ A.L = u ≈ 0.

case V 3.otherwise:

If for some z ∈ Z we have sInter(t′+eε+pz, x, φ), then there are the following cases:

case t′ + pz ∈ [distX−L , distX+
L ] for some L ∈ A with lim−∞L = ⊥ :

Then we can reason as in the case V2.

a
case t′ + pz ∈ [distX−L , distX+

L ] for some L ∈ A with lim−∞L = ⊥ .

case otherwise:

Then by Lem. 6 t′ + pz must be in (distX+
L ,∞) for every L ∈ A with lim−∞L = ⊥. Note

that there must be at least one such L because the opposite was covered by V 1. Let
distX+ be the maximal of all these distX+

L . Thus t′ + pz ∈ (distX+,∞). Hence, we have
t′+pz+λz′ ∈ (distX+, distX++λ] for some z′ ∈ Z. All aperiodic literals are true t′+pz+λz′

as it is in (distX+,∞). As all aperiodic literals’ truth values repeat Lem. 5 at a period of
λ, we also have that they all hold for t′ + pz + λz′. This means t′ + pz + λz′ ≈ t′ + pz′′

for some z′′ ∈ Z. All such t′ + pz′′ are covered by finφt′+pZ thus we can again reason as in
the base cases to get that

∨
t′′∈finφ

t′+pZ
φJt′ + eε+ pZK which means that φJt0 + pZK holds.

a
case otherwise.

case V 3.otherwise.

case t = t0 + pZ.

Lemma 19. Let t be some virtual term, and φ be a conjunction of Lira-literals.

R |= φJtK→ ∃x.φ

Proof. We reason in an arbitrary R-interpretation I and case split on t.

case t = t0 is a plain virtual term :

Then the implication obviously holds.

a
case t = t0 is a plain virtual term .

case t = t0 + ε where t0 is a plain virtual term :
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Then φJtK holds for every literal L. Let L be any of these literals. We will show that L is true
for all values in some non-empty interval (t0, xL]. If this is the case then obviously φ will be
true (t0,min{xL | L ∈ φ}], which measn that the lemma holds.

For this let us first show the properties P1, and P2:

lemma P1:

lims[t0] ≥ 0 & sslps > 0 =⇒ ∃xL.∀x ∈ (t0, xL].s[x] > 0 (P1)

Consider the interval (t0, b
+), where b+ = min{b ∈ breaks∞t | t0 < b+}, and any x ∈ (t0, b

+).

lims[t0] ≥ 0

=⇒ lims[t0] + sslps(x− t0)︸ ︷︷ ︸
>0

> 0

=⇒ s[x] > 0 by Piecewise Linearity (Lem. 4)

Hence we can choose any value in (t0, b
+) for xL.

a
lemma P1.

lemma P2:

lims[t0] > 0 & sslps < 0 =⇒ ∃xL.∀x ∈ (t0, xL].s[x] > 0 (P2)

Consider the intervals (t0, zeros(t0)], and (t0, b
+), where b+ = min{b ∈ breaks∞t | t0 < b+},

and any x ∈ (t0, b
+). The interval (t0, zeros(t0)] is non-empty:

lims[t0] > 0⇐⇒ − lims[t0]
sslps

> 0⇐⇒ t0 − lims[t0]
sslps︸ ︷︷ ︸

zeros(t0)

> t0

Thus let xL be any value in the intersection of the two intervals. For any value x ∈ (t0, xL)
we get

x <

zeros(t0)︷ ︸︸ ︷
t0 − lims[t0]

sslps

⇐⇒ sslps · (x− t0) + lims[t0] > 0

⇐⇒ s[x] > 0 by Piecewise Linearity (Lem. 4)

a
lemma P2.

Thus let us now case split on L:

case s � 0 & sslps = 0:
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Consider the interval (t0, b
+), where b+ = min{b ∈ breaks∞t | t0 < b+}, and any x ∈ (t0, b

+).

LJt0+εK︷ ︸︸ ︷
lims[t0] � 0

=⇒ lims[t0] + sslps(x− t0)︸ ︷︷ ︸
≈0

�0
=⇒ s[x] � 0 by Piecewise Linearity (Lem. 4)

Hence we can choose any value in (t0, b
+) for xL.

a
case s � 0 & sslps = 0.

case s & 0:

case sslps > 0:

Then LJt0 + εK = lims[t0] ≥ 0, thus we can use P1, to get (t0, xL).
a

case sslps > 0.

case sslps < 0:

Then LJt0 + εK = lims[t0] > 0, thus we can use P2, to get (t0, xL).
a

case sslps < 0.

case s & 0.

case s ≈ 0:

Then it must be the case that sslps = 0, thus we already handled this case.
a

case s ≈ 0.

case s 6≈ 0:

We know that sslps 6= 0. Thus there are 4 cases in which we can use P1 and P2 to find the
right interval (t0, xL]:

• if sslps < 0 & lims[t0] > 0 we use P2

• if sslps < 0 & −lims[t0] ≥ 0 we use P1

• if sslps > 0 & lims[t0] ≥ 0 we use P1

• if sslps > 0 & −lims[t0] > 0 we use P2

a
case s 6≈ 0.

case t = t0 + ε where t0 is a plain virtual term .

case t = t0 −∞:

If φJt0−∞K holds then by Virtual Substitution (Def. 9) for all aperiodic literals A of φ it must
be the case that lim−∞L = >. Further for every periodic literals P we know that P Jt0K holds.
Thus by the previous cases of this lemma we know that there is some value x0 such that all
periodic literals hold for x0. Let distX− be the minimum of all distX−A of all aperiodic literals
A. Choose some z such that x0 + λz < distX−. All aperiodic literals are true x0 + λ due to
Limit Value (Lem. 6), and all peridic literals will be true due to Periodic Literals (Lem. 5).
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a
case t = t0 −∞.

case t = t0 +∞:

Can be proven in the same way as the case where t = t0 −∞.
a

case t = t0 +∞.

case t = t0 + pZ:

If φJt0 + pZK holds, then φJs+ eεK holds for some s ∈ fint0+pZφ . Thus we can reason as in the
base cases of this lemma we get that φ holds for some x.

a
case t = t0 + pZ.

Lemma 20 (Solution Interval Intersection). Let x be a variable, s, t be virtual terms, and φ, ψ
be formulas, and I be an R-interpretation. If [s, x] is a solution interval of φ, and [t, x] is a
solution interval of ψ, with respect to I then either of the two is a solution interval of φ ∧ ψ.
More formally:

R |= sInter(s, x, φ) ∧ sInter(t, x, φ)→ sInter(s, x, φ ∧ ψ) ∨ sInter(t, x, φ ∧ ψ)

Proof. This can be easily seen by just unfolding definitions.

Theorem 1 (Quantifier Elimination; repeated). Let φ be a non-empty conjunction of Lira-
literals.

R |= ∃x.φ↔
∨

t∈elim(φ)

φJtK

Proof. We reason in an arbitrary R-interpretation I. Suppose I |= φ. Then I |= L every L ∈ φ.
From Lem. 17 we get terms vL such that sInter(vL, x, L). By lemma Lem. 20 we get some v sch
that sInter(v, x, φ). Thus by Lem. 18 we know that φJx � vK holds.

Now suppose that φJtK holds for some t ∈ elim(φ). Then by Lem. 19 we know that ∃x.φ
holds.

Lemma 7 (repeated). Let φ be a conjunction of literals and v be a virtual term with Z(v) = 0.
Our function lemmaφ satisfies the following properties:

1. ¬φJx � vK→ ∀x(φ→ lemmaφ(x 6≈ v)). (soundness)

2. ¬lemmaφJx � vK. (completeness)

Proof. We first show soundness: In the following let s, t be terms. We case split on v 6≈ 0, along
the defintion of lemmaφ Def. 12.
case t 6≈ 0:

Then lemmaφ(v 6≈ 0) = x 6≈ t. In this case the lemma obviously follows, as φ[x/v] ↔
∃x(φ[x] ∧ x ≈ v).

a
case t 6≈ 0.
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case s+ ε 6≈ 0:

Then lemmaφ(v 6≈ 0) = ¬inFalseIntervalFs+ε(x). Assume ¬φJs+ εK. To proof the lemma need

now show that for any x if inFalseIntervalFs+ε(x) holds, then φ[x] is false.

Let x be arbitrary, such that inFalseIntervalFs+ε(x) holds. As φJs + εK is false there must be
some literal L = t � 0 of φ such that LJs+ εK is false.
case breaks = ∅ ∧ sslp = 0:

Then the value of t is constant wrt. x, hence L is false for any x.
a

case breaks = ∅ ∧ sslp = 0.

case breaks = ∅:

As breaks = ∅ by Lem. 11 we know that t is a linear function with zero zero(()0).
We case split on t � 0.
case t ≈ 0:

The only value where t ≈ 0 can be true is zero(0), and zero(0) is in nxt>t≈0s+ ε. Thus we
know by the defintion of inFalseIntervals+ε(x) that either x < zero(0) or zero(0) ≤ t < x,
thus t ≈ 0 is false for any such x.

case t ≈ 0.

case t 6≈ 0:

This cannot be the case as then LJs+ εK = >, thus it cannot be false as assumed before.
a

case t 6≈ 0.

case t > 0 & sslp > 0:

Then we got ¬LJs+ εK = lims[t] < 0 = s[t] < 0.
We have zero(0) + ε in nxt>t>0(s + ε), and therefore by the defintion of the false interval
we know that there are two cases:
case ¬(t+ εl zero(0) + ε):

If we expand the defintions this means that t ≥ zero(0), Which means t[s] ≥ 0, which
contradicts the assumption that ¬LJs+ εK.

a
case ¬(t+ εl zero(0) + ε).

case xl zero(0) + ε:

If we expand the defintions this means that x ≤ zero(0). As t is a linear term this
obviously means that t > 0 will be false for t.

a
case xl zero(0) + ε.

case t > 0 & sslp > 0.

case t ≥ 0 & sslp > 0:

Then we got ¬LJs+ εK = lims[t] < 0 = s[t] < 0.
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We have zero(0) in nxt>t≥0(s + ε), and therefore by the defintion of the false interval we
know that there are two cases:
case ¬(t+ εl zero(0)):

If we expand the defintions this means that t > zero(0), Which means t[s] > 0, which
contradicts the assumption that ¬LJs+ εK.

a
case ¬(t+ εl zero(0)).

case xl zero(0):

If we expand the defintions this means that x < zero(0). As t is a linear term this
obviously means that t ≥ 0 will be false for t.

a
case xl zero(0).

case t ≥ 0 & sslp > 0.

case t & 0 & sslp < 0:

Then we got ¬LJs+ εK = lims[t] ≤ 0 = s[t] ≤ 0.
In order for s[t] ≤ 0 to be true it must be the case that zero(0) ≤ t, thus as t < x we have
s[x] ≤ 0 as well.

case t & 0 & sslp < 0.

case breaks = ∅.

case breaks 6= ∅:

Let b ∈ breaks∞ be the least discontinuity greater than s. It is easy to see that it must be
the case that b ∈ nextBreak(s). By Piecewise Linearity (Lem. 4) we know that within the
interval (s, b), is equal to a linear function t[x] ≈ sslp(x− s) + limt[s].
case sslp = 0:

We have b ∈ nxt>t�0(s+ ε), and s < b, thus by the defintion of the false interval we know
that s < x < b, hence as ¬LJs + ε� =K¬(limt[s] � 0), and t[x] ≈ sslp(x− s)︸ ︷︷ ︸

0

+limt[s] we

know that L does not hold for x.
a

case sslp = 0.

case sslp 6= 0:

We case split on t � 0.
case t ≈ 0:

Then we have ¬LJs+ εK = >, and zero(s), b ∈ nxt>t�0(s+ ε).
case s < zero(s):

Then by the definition of the false interval we have that x < zero(s), thus as t is a
line segment in (s, b) and x ∈ (s, b), L does not hold for x.

a
case s < zero(s).

case zero(s) ≤ s:
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As s < x this means that as t is a line segment in (s, b) that L cannot hold for x.
a

case zero(s) ≤ s.

case t ≈ 0.

case t 6≈ 0:

Then we have ¬LJs+ εK = ⊥. This means this case is not reachable.
a

case t 6≈ 0.

case t ≥ 0 & sslp > 0:

Then we have ¬LJs+ εK = limt[s] < 0, and zero(s), b ∈ nxt>t�0(s+ ε).
case s < zero(s):

Then by the definition of the false interval we have that x < zero(s), thus as t is a
line segment with positive slope in (s, b) and x ∈ (s, b), L does not hold for x.

a
case s < zero(s).

case zero(s) ≤ s:

This case is unreachable as we established limt[s] < 0.
a

case zero(s) ≤ s.

case t ≥ 0 & sslp > 0.

case t > 0 & sslp > 0:

Then we have ¬LJs+ εK = limt[s] < 0, and zero(s) + ε, b ∈ nxt>t�0(s+ ε).
case s < zero(s):

Then by the definition of the false interval we have that x ≤ zero(s), thus as t is a
line segment with positive slope in (s, b) and x ∈ (s, b), L does not hold for x.

a
case s < zero(s).

case zero(s) ≤ s:

This case is unreachable as we established limt[s] < 0.
a

case zero(s) ≤ s.

case t > 0 & sslp > 0.

case t & 0 & sslp < 0:

Then we have ¬LJs+ εK = limt[s] ≤ 0 and b ∈ nxt>t�0(s+ ε).
As limt[s] ≤ 0, and sslp < 0, L must be false for all x ∈ (s, b).

a
case t & 0 & sslp < 0.

case sslp 6= 0.

case breaks 6= ∅.
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As L is false for any x such that inFalseIntervalφs+ε(x) so will be φ. Thus the lemma holds.
a

case s+ ε 6≈ 0.

case t+ eε+∞ 6≈ 0 & lim+∞
L = ⊥ for some L ∈ A :

Then lemmaφ(v 6≈ 0) = x ≤ distX+
L Let x be arbitrary such that ¬lemmaφ(v 6≈ 0) ⇐⇒

distX+
L < x holds for x. By Lem. 6 we know that L[x] does not hold, thus φ[x] does not hold

either.
a

case t+ eε+∞ 6≈ 0 & lim+∞
L = ⊥ for some L ∈ A .

case t+ eε−∞ 6≈ 0 & lim−∞L = ⊥ for some L ∈ A :

Can be shown analgous to the case before.
a

case t+ eε−∞ 6≈ 0 & lim−∞L = ⊥ for some L ∈ A .

case t±∞ 6≈ 0 & ∀i ∈ A.lim+∞
L = lim−∞L = >:

Then lemmaφ(v 6≈ 0) = remλ(x) 6≈ remλ(t) Assume ¬φJt ±∞K. As all aperiodic literals La
have lim±∞La = >, there must be some periodic literal L that is false. Thus by the defintion the
virtual substitution we must have that ¬LJtK. Assume remλ(x) 6≈ remλ(t) = x−λquotλ(x) ≈
t − λquotλ(t) which means x ≈ t + zλ. As the truth value of λ repeats periodically Lem. 5,
this means that L does not hold at x, thus φ does not do so either.

a
case t±∞ 6≈ 0 & ∀i ∈ A.lim+∞

L = lim−∞L = >.

case t+ ε±∞ 6≈ 0 & ∀i ∈ A.lim+∞
L = lim−∞L = >:

Then lemmaφ(v 6≈ 0) = ¬inFalseIntervalFt+λ(quotλ(x)−quotλ(t))+ε
(x). Assume ¬φJt + ε ± ∞K.

As all aperiodic literals La have lim±∞La = >, there must be some periodic literal L that is
false. Thus we must have that ¬LJt + εK, and as L is periodic by Lem. 5 we know that
¬LJt+ λ(quotλ(x)− quotλ(t)) + εK also holds.

Assume inFalseIntervalφt+λ(quotλ(x)−quotλ(t))+ε
(x). We can reason as in the case before v 6≈ 0 =

t+ ε 6≈ 0, to obtain that L does not hold for x.
a

case t+ ε±∞ 6≈ 0 & ∀i ∈ A.lim+∞
L = lim−∞L = >.

Now that we have shown soundness let us show completeness:
case t 6≈ 0:

Then lemmaφ(v 6≈ 0) = x 6≈ t. It is obviously the case that ¬(x 6≈ t)JtK.
a

case t 6≈ 0.

case s+ ε 6≈ 0:

Then lemmaφ(v 6≈ 0) = ¬inFalseIntervalFs+ε(x). This holds as the first literal of inFalseIntervalFs+ε(x) =
s < x, which obviously holds for s+ ε. All other conjuncts are of the shape s+ εl e→ xl e.
Thus the gaurd makes sure that these conjuncts will hold for s+ ε.

a
case s+ ε 6≈ 0.

case t+ eε+∞ 6≈ 0 & lim+∞
L = ⊥ for some L ∈ A :
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This case obviously holds by straight unfolding the defintions.
a

case t+ eε+∞ 6≈ 0 & lim+∞
L = ⊥ for some L ∈ A .

case t+ eε−∞ 6≈ 0 & lim−∞L = ⊥ for some L ∈ A :

This case obviously holds by straight unfolding the defintions.
a

case t+ eε−∞ 6≈ 0 & lim−∞L = ⊥ for some L ∈ A .

case t±∞ 6≈ 0 & ∀i ∈ A.lim+∞
L = lim−∞L = >:

Then lemmaφ(v 6≈ 0) = remλ(x) 6≈ remλ(t) =: lem. As lem is periodic, by defintion lemJt ±
∞K = lemJtK. Therefore obviously ¬lemJtK holds.

a
case t±∞ 6≈ 0 & ∀i ∈ A.lim+∞

L = lim−∞L = >.

case t+ ε±∞ 6≈ 0 & ∀i ∈ A.lim+∞
L = lim−∞L = >:

Then lemmaφ(v 6≈ 0) = ¬inFalseIntervalFt+λ(quotλ(x)−quotλ(t))+ε
(x) = lem.

This holds as the first literal of inFalseIntervalFt+λ(quotλ(x)−quotλ(t))+ε
(x) = t + λ(quotλ(x) −

quotλ(t)) < x, which obviously holds for t + ε. All other conjuncts are of the shape t +
λ(quotλ(x)− quotλ(t)) + εl e→ xl e. Thus the gaurd makes sure that these conjuncts will
hold for t + ε. Thus we know that lemJt + εK is false. Further notice that all the literals in
the lem are periodic, hence we get lemJt+ εK = lemJt+ ε±∞K is false.

a
case t+ ε±∞ 6≈ 0 & ∀i ∈ A.lim+∞

L = lim−∞L = >.

Lemma 8 (repeated). For any state (F, S, L), (F, S | xk+1 ← ⊥, L), or (F, S | xk+1 ←?, L),
where S = 〈x1 ← 〈t1, J1〉 | . . . | xk ← 〈tk, Jk〉〉

R |= ∀¬(F/S)→ ∀(F →
k∨
i=1

lemmaF (xi 6≈ ti))

Proof. Apply induction on k, and use Lem. 7.1.
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