
EPiC Series in Computing

Volume 99, 2024, Pages 15–20

Proceedings of the 7th and 8th Vampire Workshop

The Spawns of the Saturation Framework – Extended

Abstract

Sophie Tourret1,2

1 Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
sophie.tourret@inria.fr

2 Max-Planck-Institut für Informatik, Saarland Informatics Campus, Saarbrücken, Germany

In 2001, Leo Bachmair and Harald Ganzinger authored “Resolution Theorem Proving”, a
chapter of the Handbook of Automated Reasoning [1]. In section 4, they introduce a framework
for saturation-based theorem proving. It lifts the refutational completeness results of a calculus
from static to dynamic, i.e., the fact that “a saturated unsatisfiable set necessarily includes ⊥”
(static) is enough to ensure that “⊥ is necessarily generated from an unsatisfiable set during the
saturation under some fairness conditions” (dynamic). They also introduce RP, a resolution
theorem prover for first-order logic, and show its dynamic completeness. However, they do not
rely on their own framework for this proof because redundancy as provided by their framework
is too restrictive in that it does not cover subsumption deletion, a technique used by all realistic
provers, including RP. Moreover, their proof of completeness for RP mixes properties of the
derivations, of the underlying calculus and of the groundings of this calculus at every step, so
that adapting this proof is non-trivial.

Nevertheless, since then this chapter has been the primary reference for proving the com-
pleteness of saturation-based calculi. However, due to the non-modular nature of the proof of
RP, most subsequent works stop at proving the static completeness of their calculi, remaining
vague on how these transfer to the completeness of the actual implemented provers. In 2021,
Uwe Waldmann, Simon Robillard, Jasmin Blanchette and myself proposed an extension of the
framework [10] generalising the original one, so as to include subsumption deletion as a legit-
imate redundancy deletion operation. Our extended framework is modular in that it cleanly
separates static completeness of a ground calculus, lifting of the calculus from ground to non-
ground, lifting from static to dynamic completeness and lifting to the dynamic completeness of
a concrete given-clause prover architecture built on top of the calculus.

Since then, our extended framework (subsequently denoted simply as the framework) has
been verified in the Isabelle/HOL proof assistant and successfully used in various completeness
proofs. In my invited talk I presented this formalisation as well as the different calculi whose
completeness has been proved using the framework, highlighting relevant features of the frame-
work along the way. Here, I will focus on the calculi and features of the framework. Indeed the
mechanisation of the framework and of a refinement into variants of the given clause loop—the
main loop of saturation-based theorem provers—have already been described in papers [6, 9].

The framework is organised in several layers. The first one is the so-called ground layer. It
assumes given a set of formulas and a consequence relation. Beyond that, the underlying logic

L. Kovács and M. Rawson (eds.), Vampire23 (EPiC Series in Computing, vol. 99), pp. 15–20



The Spawns of the Saturation Framework Tourret

does not matter. It models a calculus using a set of inferences and functions that provide the set
of formulas (resp. inferences) redundant with respect to a given set of formulas (resp. inferences).
Note that the set of inferences is really just a collection of tuples made of the premisses and
conclusion of each inference. There is no notion of inference rule in the framework. If the
calculus is proven statically complete, then its dynamic completeness can be obtained via the
framework. The second layer, called non-ground, is defined on top of the first one. It only
requires a set of inferences and grounding functions for formulas and inferences, describing how
to over-approximate the ground calculus from the inferences at the non-ground level. Using the
grounding functions, the framework defines a consequence relation as well as the redundancy
functions at the non-ground level. From the static completeness of the ground calculus, the
framework can then derive the static and dynamic completeness of the non-ground calculus.
Finally, a labelling scheme is added on top of the calculi, to simulate the active and passive sets
found in an abstract given clause prover. Transition rules covering the manipulations realised
by provers are given in this layer and completeness of the prover under fairness assumptions
can be derived from the static completeness of the ground layer’s calculus.

Currently, the calculi that were proved complete using the framework can be organised
in two main categories, depending on the logic they target: first-order or higher-order. In
first-order logic there are:

Resolution This is the calculus underlying the RP prover. Its completeness proof is noth-
ing new. The version using the framework is described in [9]. It was formalised in
Isabelle/HOL as a sanity check for the formalisation of the framework.

Superposition The standard superposition calculus can also be integrated in the framework.
Again, the result in itself is nothing new. Currently, the detailed version of the proof using
the framework exists only as a draft in a private repository. It is being used to define
an instance of the superposition calculus in Isabelle/HOL. The ground version of the
calculus, with a proof of static completeness, is already publicly available on the IsaFoL
repository1 and should at some point move to the Isabelle Archive of Formal Proofs2

along with the calculus for full first-order logic that is ongoing work.

Superposition with delayed unification This calculus is fairly recent [5] and it should be
noted that its authors have no intersection with the framework’s authors. The main
difference between this calculus and standard superposition is that only the outermost
part of the unification is performed at each inference, while the rest of the unification
is added as constraints to the resolvent. However, these constraints differ from the ones
used in constrained superposition in that they are not isolated from the rest of the clause.
On the contrary, they appear as standard literals, later eligible for performing further
inferences. The result is a calculus whose efficiency is currently far below that of standard
superposition in first-order logic, but that achieves state-of-the-art performances when
lifted to higher-order,3 as demonstrated at the CADE ATP System Competition (CASC)
in 2023.4 This calculus is not yet formalised in Isabelle/HOL, but it could be done on top
of the version of ground superposition previously described, that is available in IsaFoL.

The main features of the framework used by these calculi are

1https://bitbucket.org/isafol/isafol/src/master/Superposition_Calculus/
2https://www.isa-afp.org/
3Note that the higher-order version has not been proven complete.
4Vampire with this calculus received first place in the higher-order division at CASC 2023 (https://www.

tptp.org/CASC/29/WWWFiles/DivisionSummary1.html)

16

https://bitbucket.org/isafol/isafol/src/master/Superposition_Calculus/
https://www.isa-afp.org/
https://www.tptp.org/CASC/29/WWWFiles/DivisionSummary1.html
https://www.tptp.org/CASC/29/WWWFiles/DivisionSummary1.html


The Spawns of the Saturation Framework Tourret

• a well-founded tiebreaker ordering in the definition of redundancy over formulas at the
non-ground level, which allows it to handle subsumption; and

• the use of a family of ground redundancy criteria upon which the non-ground calculus is
lifted to handle the selection function.

Here is how the tiebreaker ordering ≺ affects the definition of redundancy over formulas. It
replaces the standard lifted definition:

RedF(N) = {C | ∀D ∈ GF(C). D ∈ RedFG(GFset(N))}

by

RedF(N) = {C | ∀D ∈ GF(C). D ∈ RedFG(GFset(N)) ∨ ∃E ∈N. E ≺ C ∧ D ∈ GF(E)}.

In these statements, N is a set of formulas, C, D and E are formulas, GF denotes the grounding
function over formulas and GFset is its natural extension over sets of formulas. Finally RedFG
provides the set of all formulas that are redundant with regard to a given set of formulas.
The introduction of the tiebreaker ≺ ensures that, instead of only relying on the lifting of the
redundancy at the ground level, a formula C is also considered redundant at the non-ground
level if for each of its groundings D there is a clause in the set N that has the same grounding
D and is smaller using ≺ than C. Note that it is possible to parametrise the tiebreaking
order, so that for each of the groundings D in the above definition, a different ≺ relation is
considered. This is unneeded for most variants of resolution and superposition but there are a
few exceptions [10, Ex. 49] and so this is how it is done in the actual framework. Returning to
subsumption, defined as “D subsumes C if there exists a substitution σ such that Dσ ⊆ C”,
only the case where Dσ = C is problematic with the first definition of RedF. To cover it, the
tiebreaker ordering must be instantiated with the instantiation ordering (i.e., D ≺ C if there is
σ such that D = Cσ and no γ such that Dγ = C) which is well-founded in first-order logic.

The family of ground redundancy criteria is introduced as a means of avoiding the choice
of a selection function to lift from the ground level, at a point where it is not possible to know
which one is appropriate. Indeed the choice of the proper grounding of the non-ground selection
function is only possible in the static case, because it depends of the saturated set. With the
family, instead of having to guarantee fairness with regard to the appropriate (but unknown)
grounding, we guarantee it with regard to every grounding, so there is no need to choose.

Another interesting feature, used only by superposition with delayed unification among the
first-order calculi, is the definition of a non-standard grounding function that omits the extra
constraints in the ground resolvent, so that the standard superposition calculus at the ground
level can still be used as the ground layer of the framework for this calculus.

In higher-order logic and logics in between first- and higher-order, the following calculi were
proved complete using the framework.

Boolean-free λ-free superposition (λfSup) This calculus [2], or rather, this family of cal-
culi, can handle applied variables such as x in x t t′ where t and t′ are arguments of x,
and partial applications such as add in “add a” that is the binary addition with only one
argument a. The main problem faced by these calculi is that term orderings are usually
not compatible with arguments, i.e., s ≻ s′ does not imply s t ≻ s′ t. To compensate
this, the calculi allow some superpositions at variable positions, but otherwise behave like
first-order superposition. In particular, inferences can only apply on green contexts, i.e.,
contexts that look first-order, as g a in f (g a) b but not as g. In addition, the congru-
ence and extensionality axioms must be handled and whereas extensionality is kept as an
axiom, congruence becomes a rule of the calculus.

17



The Spawns of the Saturation Framework Tourret

Boolean-free λ-superposition (λSup) This calculus [4] is built on top of λfSup. It addi-
tionally handles λ-expressions such as λx. x a b. A first consequence of this added ex-
pressiveness is that unification becomes infinitary. The notion of a most general unifier
from first-order logic must be replaced by that of a possibly infinite family of unifiers
that subsume all others. This is handled at the prover level by only pulling a finite
amount of unifiers at a time and dovetailing this process with the standard given-clause
loop operations. The framework can mirror this behaviour thanks to its flexible labelling
scheme [6]. Another consequence of the presence of λ-terms is that terms may look very
different before and after a unification. For example consider the term s = x a b c and
the substitution θ = {x 7→ λy.λy′.λy′′. y′′ (y′ y)}. Then the term sθ is c (b a). In this new
term, a superposition at b a is possible, while it is not directly possible in s. Such terms
are called fluid and to make inferences on them possible, the calculus includes a rule for
fluid superposition that adds an arbitrary context around a term before the unification.
This context permits the appearance of arbitrary positions below a term, even if they are
not immediately accessible, such as in s before applying θ.

Boolean λ-superposition (λoSup) This calculus [3] works in full higher-order logic. It
builds upon λSup and a superposition variant for first-order logic with interpreted
Booleans that was proved complete without using the framework [8]. It handles inter-
preted Booleans as the latter, including the symbols ⊥, ⊤, ¬, ∧, ∨, =⇒ , ≃, ̸≃, ∀ and ∃.
The outer layer of the formula stays in clausal form. Dedicated rules are added for simpli-
fying the inner Boolean structure (e.g., to replace ⊤∨⊥ with ⊤), and to hoist innermost
Boolean terms as equational literals of the outermost disjunction. For example, given a
formula C[u] where u is a Boolean, one can infer C[⊥] ∨ u ≃ ⊤. This in turn may allow
for further inferences on u and simplifications in C[⊥]. As in the case of superposition
with lambdas, it is also necessary to allow for inferences below an arbitrary context.

For all of these calculi, a pen-and-paper proof of refutational completeness with Henkin
semantics5 using the framework has been provided. There is no Isabelle/HOL formalisation.

Henkin semantics is a workaround for the incompleteness of higher-order logic with classical
semantics. It makes it possible to have refutationally complete procedures for higher-order
logic. A good explanation of this workaround can be found in Chapter 2 of Melvin Fitting’s
book Types, Tableaus and Gödel’s God [7]. A noteworthy point is that this semantics requires
the use of Tarski entailment, defined as “M |= N if any model of M is a model of N” while the
framework, at the non-ground level, provides results using Herbrand entailment, i.e., defined
by lifting from the ground level. Fortunately, these entailments coincide for entailing the false
formula, which is enough to fix the discrepancy [4].

The proofs of completeness of the higher-order calculi above all have a structure in three
layers. First, a ground first-order calculus is proven statically complete (GF) by providing a
method to generate a model for satisfiable formulas. Then a ground higher-order calculus that
over-approximates the one in GF is considered (GH) and the model from GF is manually lifted
to the GH level, proving the corresponding calculus complete. Finally, the framework provides
the dynamic completeness of the non-ground higher-order calculus (H) from GH. For λfSup
and λSup, the GF layer is the usual superposition calculus for ground first-order logic. For
λoSup, the GF calculus is the one designed for first-order logic with interpreted Booleans [8].

In their completeness proofs, λfSup, λSup and λoSup use the two main features presented
earlier. The “purifying” variants of λfSup use a non-standard grounding function on inferences,

5For λfSup, a simpler semantics resembling Henkin prestructures is used instead [2] thanks to the absence
of λ-terms.

18



The Spawns of the Saturation Framework Tourret

due to a purifying mechanism only available at H. The other calculi do not need this feature.
In addition the following features of the framework are used:

• ignoring inferences from H to GH,

• mapping an inference from GH to several inferences from H, and

• allowing inferences with no premisses.

The first two features are simple consequences of the fact that the non-ground calculus in the
framework only has to be an over-approximation of the ground one. Hence it is not a problem
to have inferences that cannot be grounded, or to have a single ground inference covered by
several non-ground inferences, as is the case for the superposition rule for λSup and λoSup. In
these calculi, the superposition rule has two variants (Sup and FluidSup) in H but only one
in GH. The only thing that matters is that all inferences from GH are covered by grounded
inferences from H.

The last feature, allowing inferences with no premisses, is critical for handling extensionality
in the three calculi since inH they use the axiom directly to ensures that (∀x.f x = g x) → f = g
for all functions f and g of the same type. This introduces new clauses as instances of this
axiom that are subsequently used in derivations. Thus, it is necessary to introduce in GH all
the groundings of these new clauses to be able to mirror the non-ground derivations, which is
done via an inference rule without premisses.

In summary, the framework has allowed various researchers, including myself, to develop
modular completeness proofs of resolution- and superposition-like calculi on paper and in Is-
abelle/HOL. The core of the argument is performed at the ground level and lifted to the
non-ground level. Then, using the framework’s tiebreaker ordering, (static) completeness of the
calculus is extended to dynamic completeness of an abstract prover. This results in streamlined,
more intelligible, and more complete completeness proofs.

Acknowledgments. Ahmed Bhayat, Michael Rawson and Johannes Schoisswohl gave ad-
vice on how best to represent their work. Alexander Bentkamp, Jasmin Blanchette and Uwe
Waldmann suggested textual improvements and technical clarifications. I thank them all.

References

[1] Leo Bachmair and Harald Ganzinger. Resolution theorem proving. In Handbook of Automated
Reasoning, pages 19–99. Elsevier and MIT Press, 2001.

[2] Alexander Bentkamp, Jasmin Blanchette, Simon Cruanes, and Uwe Waldmann. Superposition for
lambda-free higher-order logic. Log. Methods Comput. Sci., 17(2), 2021.

[3] Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, and Petar Vukmirovic. Superposition
for higher-order logic. J. Autom. Reason., 67(1):10, 2023.

[4] Alexander Bentkamp, Jasmin Blanchette, Sophie Tourret, Petar Vukmirovic, and Uwe Waldmann.
Superposition with lambdas. J. Autom. Reason., 65(7):893–940, 2021.

[5] Ahmed Bhayat, Michael Rawson, and Johannes Schoisswohl. Superposition with delayed unifica-
tion. In CADE, Lecture Notes in Computer Science. Springer, 2023.

[6] Jasmin Blanchette, Qi Qiu, and Sophie Tourret. Verified given clause procedures. In CADE,
Lecture Notes in Computer Science. Springer, 2023.

[7] Melvin Fitting. Types, tableaus, and Gödel’s god, volume 12. Springer Science & Business Media,
2002.

19



The Spawns of the Saturation Framework Tourret

[8] Visa Nummelin, Alexander Bentkamp, Sophie Tourret, and Petar Vukmirovic. Superposition with
first-class booleans and inprocessing clausification. In CADE, volume 12699 of Lecture Notes in
Computer Science, pages 378–395. Springer, 2021.

[9] Sophie Tourret and Jasmin Blanchette. A modular isabelle framework for verifying saturation
provers. In CPP, pages 224–237. ACM, 2021.

[10] Uwe Waldmann, Sophie Tourret, Simon Robillard, and Jasmin Blanchette. A comprehensive
framework for saturation theorem proving. In IJCAR (1), volume 12166 of Lecture Notes in
Computer Science, pages 316–334. Springer, 2020.

20


	References

