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Abstract

Hyperedge-Replacement grammars (HR) have been introduced by Courcelle in order
to extend the notion of context-free sets from words and trees to graphs of bounded tree-
width. While for words and trees the syntactic restrictions that guarantee that the as-
sociated languages of words resp. trees are regular - and hence, MSO-definable - are
known, the situation is far more complicated for graphs. Here, Courcelle proposed the
notion of regular graph grammars, a syntactic restriction of HR grammars that guarantees
the definability of the associated languages of graphs in Counting Monadic Second Order
Logic (CMSO). However, these grammars are not complete in the sense that not every
CMSO-definable set of graphs of bounded tree-width can be generated by a regular graph
grammar. In this paper, we introduce a new syntactic restriction of HR grammars, called
tree-verifiable graph grammars, and a new notion of bounded tree-width, called embed-
dable bounded tree-width, where the later restricts the trees of a tree-decomposition to
be a subgraph of the analyzed graph. The main property of tree-verifiable graph gram-
mars is that their associated languages are CMSO-definable and that they have bounded
embeddable tree-width. We show further that they strictly generalize the regular graph
grammars of Courcelle. Finally, we establish a completeness result, showing that every
language of graphs that is CMSO-definable and of bounded embeddable tree-width can be
generated by a tree-verifiable graph grammar.

1 Introduction

The notion of regular word and tree languages is one of the pillars of the theory of formal lan-
guages because many equivalent representations of regular languages are known. In particular,
we have that Monadic Second Order Logic (MSO) over words defines exactly the class of regular
word languages. On the other hand, regular word languages are a subset of the context-free
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word languages, and regular word grammars can be seen as syntactic restrictions of context-free
grammars that ensure the regularity of the generated languages. Regular languages enjoy many
desirable properties, in particular, the following problems are known to be decidable: (1) empti-
ness: is the language empty? (2) membership: does a given word resp. tree belong to the
language? (3) inclusion: given two languages, is the first included in the second?

Most expressivity (i.e., equivalence between regular and MSO-definable languages) and de-
cidability (i.e., emptiness, membership, inclusion) results can be transferred from words to trees.
Because of the importance of regular languages and their decidability properties, it is highly
desirable to find similar results on graphs, which are important for many branches of comput-
ing, such as e.g., static analysis [19], databases and knowledge representation [1], concurrency
[7] and aspects of machine learning, such as neural networks [20].

In this paper, we study graph languages that lie at the intersection of HR-context-free
and CMSO-definable classes. The sets of graphs in this class are, at the same time (i) least
solutions of a system of recursive equations using operations that substitute a hyper-edge of a
graph by another graph, and (ii) models of a formula that uses (quantification over) variables
denoting combined sets of vertices and edges and relation symbols (from a fixed finite signature)
describing the incidence relation of a graph. In particular, CMSO is the extension of MSO with
atomic propositions that express constraints on the cardinality of a set, modulo a constant.

This intersection class has nice algorithmic properties, because emptiness, membership and
inclusion are all decidable. In particular, the decidability of inclusion follows from a celebrated
theorem proved by Courcelle, stating that the satisfiability of a CMSO formula is decidable over
graphs of bounded tree-width, a parameter that, intuitively speaking, measures the difference
between a graph and a tree encoding of that graph [5]. We recall that the MSO-definability
of a word language defined by a context-free grammar is, in general, undecidable [10]. Hence,
as for words and trees, we will put syntactic restrictions on HR-grammars in order to ensure
CMSO-definability.

The hyperedge replacement (HR) algebra describe the operations used to build graphs, using
zero or more distinguished vertices, called sources, labeled by numbers 1, . . . , n. A substitution
operation replaces a nonterminal edge attached to vertices v1, . . . , vn in a graph H by a disjoint
graph K with sources 1, . . . , n, such that the i-th source of K is glued with vi, for each i =
1, . . . , n and this is the only overlapping between the two graphs. A parallel composition is a
special substitution that glues the i-th sources of two graphs, for i = 1, . . . , n. We note that
HR-grammars generalize context-free word and tree grammars to graphs of bounded tree-width.

The work in this paper is inspired from the class of regular graph grammars introduced
by Courcelle [6] as a graph counterpart to the left- or right-recursive word grammars, which
define regular, and, hence, MSO-definable [2] word languages. The rules of a regular graph
grammar use two disjoint sets of nonterminals, called recursive and non-recursive. Intuitively,
a recursive nonterminal can be composed in parallel with any number of occurrences of the
same non-recursive terminal in a derivation, but a substitution may only generate non-recursive
terminals. The rules of a regular graph grammar are defined by two syntactic conditions: (i) each
two vertices of a graph H in a substitution operation are connected by a path that crosses only
terminal edges and internal (i.e., non-source) vertices, except for endpoints, and (ii) the parallel
composition involves at most one recursive nonterminal.

The graphs generated by regular graph grammars have the property that each parse tree
from the derivation of a graph lies embedded in the structure of the graph and can be extracted
by an MSO-definable relation between the relational structures that represent graphs. Then,
for each set of graphs defined by the grammar there exists an MSO formula that defines it.
This formula is obtained from (i) the MSO definition of the set of parse trees, the existence of
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which is guaranteed by the alternation between recursive and non-recursive nonterminals in the
derivation, and (ii) the definition (i.e., tuple of MSO formulæ) of the relation that extracts the
parse tree from the graph. A natural question that arises is whether each set of graphs that is
both MSO-definable and HR-context-free can be defined by a regular graph grammar.

Our contributions In this paper, we give this question a negative answer and suggest an al-
ternative class that lies at the intersection of CMSO-definable and HR-context-free classes, by
introducing tree-verifiable grammars. We demonstrate that tree-verifiable grammars strictly
generalize the regular graph grammars of Courcelle, and establish a characterization result. We
show that a language of graphs is CMSO-definable and of bounded embeddable tree-width, a
notion we introduce below, if and only if this language can be generated by a tree-verifiable
graph grammar.

The syntactic condition that defines tree-verifiable grammars is that each maps a nonter-
minal u to a graph operation, which is either (A) a substitution described by a graph with a
single terminal hyper-edge attached to an internal root node and several future roots that are
distributed among the nonterminal edges (in this case u is a non-recursive nonterminal), (B) a
parallel composition of u with several occurrences of the same non-recursive nonterminal, or
(C) a parallel composition of non-recursive nonterminals (u is a recursive nonterminal in the
(B) and (C) cases).

We define the embeddable tree-width of a graph to be the minimal width of a tree decom-
position whose backbone is isomorphic to some spanning tree of the graph. The embeddable
tree-width of a graph is, in general, greater than its tree-width, i.e., there are graphs for which
the optimal tree decomposition is not isomorphic to a spanning tree. We show that this stronger
notion allows us to precisely capture the class of graphs generated by tree-verifiable grammars.
We establish that a language of graphs is CMSO-definable and of bounded embeddable tree-
width if and only if this language can be generated by a tree-verifiable graph grammar.

In the special case of trees (i.e., graphs obtained by restricting the parallel composition
to graphs with one root source) tree-verifiable grammars define precisely the CMSO-definable
unranked sets of trees. Moreover, if all the repetition counts from the rules (B) equal one,
tree-verifiable grammars are the same as the MSO-definable unranked sets of trees. This settles
positively another question relative to the definition of associative-commutative (AC) tree gram-
mars of Courcelle [6, Definition 3.7], namely whether AC grammars define all the MSO-definable
sets of unranked trees.

For space reasons, the proofs of the results stated in this paper are given in the technical
report [4].

Related work The intersection of the CMSO-definable and HR-context-free sets of graphs has
been investigated in the seminal paper of Courcelle [6] that introduced regular graph gram-
mars [6, §5] and proves that the set of series-parallel (i.e., graphs with sources 1 and 2 that can
be either serialized or composed in parallel) belongs to this class graphs [6, §6]. More recently,
Doumane refined this result by developing a language of regular expressions that describes the
class of CMSO-definable graphs that can be built using at most two sources [8]. An interesting
question that remains open, for the time being, is whether the sets of graphs defined by these
regular expressions have bounded embeddable tree-width. It is known that their optimal tree
decompositions can be extracted from the structure of the graphs in a canonical fashion, but
these canonical decompositions do not correspond to spanning trees.

Substructural logics [17] are first-order logics extended with a non-idempotent separating
conjunction operator that decomposes logical structures. A distinguished substructural logic
is Separation Logic (SL) [12, 18], that is interpreted over finite partial functions of fixed arity,
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called heaps. With heaps one can model certain graphs of bounded degree, i.e., where the
number of edges attached to a vertex is bounded by a constant. Another model of composition,
used in Graph Logic (GL) of Cardelli et al [3] or the Separation Logic of Relations [15], splits
graphs into subgraphs with disjoint sets of edges. These logics are more general than SL,
because they describe classes of graphs of unbounded degree (e.g., stars and unranked sets of
trees). Used in combination with recursive definitions, the separating conjunction becomes a
powerful means to describe shape-related graph properties (lists, trees, stars, etc.).

One of the first fragments of SL with recursive definitions having a decidable entailment
problem used an ad-hoc translation into equivalent MSO formulæ, together with a syntactic
guarantee of tree-width boundedness [11]. In subsequent work, a decision procedure, not based
on MSO, for the entailment problem in this SL fragment was proposed and implemented [14, 13]
and the complexity of this entailment problem was established [9, 16]. The ideas used in the
definition of the SL fragment motivated the definition of tree-verifiable grammars in this paper.
In particular, considering substitution operations described by graphs with a single edge that
connects the root to the future roots is similar to the connectivity condition from [11]. Moreover,
distributing the future roots among the nonterminals guarantees that each future root will
eventually become the root of a subgraph, which corresponds to the establishment condition
of [11]. These conditions guarantee that the SL-defined heaps of [11] have bounded embeddable
tree-width. We note that the fragment of [11] is restricted to degree-bounded heaps and that [11]
did not attempt to achieve any completeness resp. characterization result that corresponds to
the proposed syntactic restriction.

2 Preliminaries

The set of natural numbers is denoted by N. Given i, j ∈ N, we write [i, j] for the set
{i, i+ 1, . . . , j}, assumed to be empty if i > j. The cardinality of a finite set A is denoted

by card(A). For a set A, we denote by pow(A) its powerset, A0 def
= {ϵ}, Ai+1 def

= Ai × A, for
all i ≥ 0, A∗

def
=

⋃
i≥0A

i and A+ def
=

⋃
i≥1A

i, where × is the Cartesian product and ε de-

notes the empty sequence. Intuitively, A∗ (resp. A+) denotes the set of possibly empty (resp.
nonempty) sequences of elements from A. The length of a sequence α ∈ A∗ is denoted by
len(α) and its i-th element by αi, for i ∈ [1, len(α)]. For a function f : A → B, we denote its

domain by dom(f) = A and its image by img(f)
def
= {b ∈ B | f(a) = b for some a ∈ A}. The

domain-restriction of a function f to a set C is denoted as f⇃C
def
= {(a, f(a)) | a ∈ C}.

Graphs in this paper are multigraphs consisting of edges of arity one or more. Let A be a finite
alphabet of edge labels, ranged over by a and equipped with arities #a ≥ 1.

Definition 1. A concrete graph (c-graph) of type n ≥ 0 is a tuple G = ⟨VG, EG, λG, υG, ξG⟩,
where:

• VG is a finite set of vertices,
• EG is a finite set of edges, such that VG ∩ EG = ∅,
• λG : EG → A is a mapping that defines the labels of the edges,
• υG : EG → V +

G is a mapping that associates each edge a nonempty sequence of vertices
attached to the edge, such that #(λG(e)) = len(υG(e)), for each e ∈ EG,

• ξG : [1, n] → VG is an injective mapping that designates n distinct sources. The vertex
ξG(i) is the i-th source of G. A vertex v ∈ VG is internal if v ̸∈ img(ξG). By intern(G) =
VG \ {ξG(i) | i ∈ [1, n]} we denote the internal nodes of G. For simplicity, we omit the
sources for graphs of type 0.
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Figure 1: Graph operations: substitution (a) parallel composition (b)

We denote by GA the set of c-graphs with edge labels from A.

For example, Fig. 1 (a,b) shows several c-graphs with (numbered) sources depicted in black
and internal vertices in white.

Two c-graphs are disjoint iff their sets of vertices and edges are disjoint, respectively. Two c-
graphs are isomorphic iff there exists a bijection between their vertices and edges that preserves
the edge labels, the sequences of vertices attached to edges and the sources. A graph is the
equivalence class of a c-graph for isomorphism. For any graph G we denote by Ĝ the graph of
type 0 that is obtained from G by removing its sources. A language L of graphs is some set
of graphs. We say L is of type n if all graphs G ∈ L are of type n. By L̂ = {Ĝ | G ∈ L} we
denote the language of type 0 that is obtained by removing the sources of the graphs of L.

Graph Operations If G is a c-graph, e ∈ EG is an edge such that #λG(e) = m and H is a c-graph
of type m disjoint from G, then the substitution G[e/H] deletes the edge e from G, adds H
to G and joins the i-th vertex from υG(e) with the i-th source of H, for all i ∈ [1,m]. The
sources and type of G[e/H] are the same as for G. Fig. 1 (a) shows an example of substitution,
formally defined below:

Definition 2 (Substitution). Let G be a c-graph of type n, e ∈ EG is an edge such that
υG(e) = ⟨v1, . . . , vm⟩ and H is a c-graph of type m disjoint from G. Let ∼ ⊆ (VG ∪ VH)

2 be
the least equivalence relation such that vi ∼ ξH(i) for all i ∈ [1,m]. We denote by [u]∼ the
∼-equivalence class of u ∈ VG ∪ VH. Then G′ = G[e/H] is defined by setting:

• VG′ = {[u]∼ | u ∈ VG ∪ VH},
• EG′ = EG \ {e} ∪ EH,

• λG′
def
= (λG)⇃(EG\{e}) ∪ λH,

• υG′(e′)
def
= ⟨[u1]∼, . . . , [uk]∼⟩, for all e′ ∈ EG \ {e} with υG(e

′) = ⟨u1, . . . , uk⟩, resp. all
e′ ∈ EH with υH(e

′) = ⟨u1, . . . , uk⟩,
• ξG′(i)

def
= [ξG(i)]∼, for all i ∈ [1, n].

The substitution G[e/H] is lifted from c-graphs to graphs (one can always chose c-graphs that are
isomorphic to G and H and are disjoint). Then, the graph G[e/H] is defined as the isomorphism
class of the c-graph that results from the substitution involving these c-graphs.

The graph operation (G, e1, . . . , ek), where e1, . . . , ek ∈ EG are pairwise distinct edges, takes
pairwise distinct c-graphs H1, . . . ,Hk of types #λG(e1), . . . ,#λG(ek), respectively, and returns
the c-graph G[e1/H1, . . . , ek/Hk], where the substitutions can be done in any order. Again this
operation can be lifted from concrete graphs to graphs.

We now introduce an important special case of a graph operation: The parallel composition
∥n denotes the operation (G, e1, e2), where G has exactly n vertices, all of which are sources,
and e1 and e2 are the only edges of G, both of arity n and attached to all n sources. Intuitively,
G1 ∥n G2 denotes the graphs that can be obtained from two graphs G1 and G2 of type n by

169



Tree-Verifiable Grammars Chimes, Iosif, Zuleger

(c)

2 3

a

(a)

1

(1)
(2) (3) (3)

(2)
(1)

uu

u →

(b)

a

1

3
u →

2

Figure 2: Graph Grammar for Trees with Linked Leaves

merging their sources. Fig. 1 (b) shows an example of parallel composition. Note that the
composition operation ∥n is both commutative and associative.

Graph grammars are pairs Γ = (U ,R), where U is a set of nonterminals distinct from A, ranged
over u, v, w with associated arities #u ≥ 1, and R is a finite set of rules of one of the following
forms, with u, v, w ∈ U :

1. u→ v1 ∥n . . . ∥n vk, where u, v1, . . . , vk ∈ U are nonterminals of arity n,
2. u → G[e1(v1), . . . , ek(vk)], with u, v1, . . . , vk ∈ U nonterminals and G[e1(v1), . . . , ek(vk)]

denoting the graph operation (G, e1, . . . , ek), for some c-graph G of type #u, such that
img(λG) ⊆ A ∪ {v1, . . . , vk} and λG(e) = vi ⇐⇒ e = ei, for all e ∈ EG; if λG(e) ∈ U
(resp. λG(e) ∈ A), we say that e is a nonterminal (resp. terminal) edge of G,

3. → u, for some nonterminal u ∈ U , is called an axiom.
We note that in rules of shape 1., we explicitly allow k = 0. With this we denote the rule
u → 1n, where 1n denotes the graph of type n that consists of n vertices (all of which are
sources), and that has no edges. The nonterminal on the left-hand side of → in a non-axiom
rule is called the head of that rule. The language of Γ associated with nonterminal u is the
set LΓ(u) of graphs corresponding to u in the unique least solution1 of the system of recursive
equations defined by the grammar rules, with nonterminals interpreted as sets, operations lifted
to sets and→ interpreted as the right-to-left set inclusion ⊇. Note that each LΓ(u) is a language

of type #u. The language of Γ, denoted by L(Γ), is the union of the sets L̂Γ(u) for all axioms
→ u of Γ. Note that L(Γ) is a language of type 0. A set L of graphs is hyperedge-replacement
(HR) iff L = L(Γ) for some graph grammar Γ.

Example 1. Fig. 2 shows a graph grammar with a single nonterminal u, of arity 3, and two
rules. The first rule (a) is of the form u→ G[e1(u), e2(u)], where G is a c-graph with a (grey-
filled) terminal edge labeled by a, where #a = 3, and two nonterminal (unfilled) edges e1 and
e2, both labeled by u. The order of the vertices attached to these edges is (1) middle, (2) left
and (3) right. The second rule (b) is of the form u→ G, where G consists of a single terminal
edge labeled by a. The language of this grammar consists of all graphs of the form depicted in
Fig. 2 (c).

Monadic Second Order Logic with Counting (CMSO) is the set of formulæ written in the syntax
from Fig. 3 (a) using a set V = {x, y, . . .} of first-order variables, a set X = {X,Y, . . .} of second-
order variables and relation symbols edga of arity #a + 1, for all a ∈ A. By MSO we denote
the subset of CMSO formulæ consisting of formulæ that do not contain atomic subformulæ of
the form cardq,p(X), also called cardinality constraints. A variable is free if it occurs outside
the scope of any quantifier. The set of free variables of a formula ψ is denoted by fv(ψ). A
sentence is a formula without free variables.

1By Tarski’s fixpoint theorem, since the graph operations are monotonic (w.r.t. to inclusion of sets) and
continuous (w.r.t. infinite unions of sets), the system of recursive equations defined by the grammar has a unique
least solution.
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ψ := x = y | edga(x1, . . . , x#a+1) | cardq,p(X) | X(x) | ¬ψ | ψ ∧ ψ | ∃x . ψ | ∃X . ψ

(a) CMSO Syntax

G |=s x = y ⇐⇒ s(x) = s(y)
G |=s edga(x1, . . . , x#a+1) ⇐⇒ s(x1) ∈ EG, λG(s(x1)) = a and

υG(s(x1)) = ⟨s(x2), . . . , s(x#a+1)⟩
G |=s cardq,p(X) ⇐⇒ card(s(X)) = kq + p for some k ∈ N
G |=s X(x) ⇐⇒ s(x) ∈ s(X)
G |=s ¬ϕ ⇐⇒ G ̸|=s ϕ
G |=s ϕ1 ∧ ϕ2 ⇐⇒ G |=s ϕ1 and G |=s ϕ2
G |=s ∃x . ψ ⇐⇒ G |=s[x←u] ψ, for an element u ∈ VG ∪ EG

G |=s ∃X . ψ ⇐⇒ G |=s[X←U ] ψ, for a set U ⊆ VG ∪ EG

(b) CMSO Semantics

Figure 3: Monadic Second Order Logic with Counting (CMSO)

We define the semantics of CMSO, for graphs of type 0, by a satisfaction relation G |=s ψ
between graphs and formulæ, where the valuation s : V ∪ X → VG ∪ EG ∪ pow(VG ∪ EG) maps
each variable x ∈ V to a vertex or and edge, i.e., s(x) ∈ VG ∪ EG, and each variable X ∈ X
to a finite subset of vertices and edges, i.e., s(X) ⊆ VG ∪ EG. The satisfaction relation is
defined inductively on the structure of formulæ in Fig. 3 (b). If ψ is a sentence, the satisfaction
relation does not depend on the variable mapping and we write G |= ψ instead of G |=s ψ. A
language L of graphs of type 0 is CMSO-definable iff there exists a CMSO sentence ψ such that
G = {G | G |= ψ}.

We define the formula e ∈ E def⇐⇒
∨

a∈A ∃x1, . . . , x#a. edga(e, x1, . . . , x#a), which denotes

that e is an edge, and the formula v ∈ V
def⇐⇒

∨
a∈A ∃e, x1, . . . , x#a. edga(e, x1, . . . , x#a) ∧∨

1≤i≤#a xi = v, which denotes that v is a vertex. As usual we define ϕ→ ψ
def⇐⇒ ¬ϕ∨ ψ and

ϕ ↔ ψ
def⇐⇒ ϕ → ψ ∧ ψ → ϕ. For ∆ = E, V , we further define ∀x ∈ ∆ . ψ(x)

def⇐⇒ ∀x . x ∈
∆→ ψ(x), ∃x ∈ ∆ . ψ(x)

def⇐⇒ ∃x . x ∈ ∆ ∧ ψ(x), ∃!x ∈ ∆ . ψ(x)
def⇐⇒ ∃x ∈ ∆ . ψ(x) ∧ ∀y ∈

∆ . ψ(y)→ y = x, and ∃X ⊆ ∆ . ψ
def⇐⇒ ∃X . (∀x . X(x)→ x ∈ ∆) ∧ ψ.

Recognizable Sets of Graphs. A congruence relation on graphs is an equivalence relation ∼= such
that (1) any two equivalent graphs are of the same type, and (2) for every graph H, for every
edge e of H, for every graph G of type #(λH(e)), and every G′ ∼= G, one has H[e/G] ∼= H[e/G′].
Such a congruence is called locally-finite iff it has finitely many equivalence classes of each type
(by the definition of congruences, each equivalence class consists of graphs of the same type).
A set of graphs L is recognizable iff there exists a locally-finite congruence ∼= such that G ∼= G′

only if G ∈ L iff G′ ∈ L.

3 Tree Grammars

This section is concerned with unranked trees, whose nodes may have unbounded numbers of
children, the order of which is not important. We introduce trees as a subset of the set of
graphs of type 1, whose only source denotes the root. We consider the following restricted
graph operations. Let 1 be the graph that consists of a singleton vertex, which is also its only
source, and that has no edges. For an edge label a ∈ A and 1 ≤ i ≤ #a denote by ai the
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Figure 4: Tree operations: substitution (a) parallel composition (b)

operation (G, e1, . . . , ei−1, ei+1, . . . , e#a), where G is a c-graph that consists of a singleton edge
e labelled by a attached to pairwise distinct vertices v1, . . . , v#a, such that ξG(1) = vi and the
other vertices v1, . . . , vi−1, vi+1, . . . , v#a are attached to distinct edges e1, . . . , ei−1, ei+1, . . . , e#a

labeled with unary symbols, respectively. Intuitively, the graph ai(G1, . . . , Gi−1, Gi+1, . . . , G#a)
is obtained by taking the disjoint union of the graphs G1, . . . , Gi−1, Gi+1, . . . , G#a and adding a
new edge labelled by a with sequence of vertices (ξG1

(1), . . . , ξGi−1
(1), v, ξGi+1

(1), . . . , ξG#a
(1)),

where v is a new vertex that becomes the only source of the resulting graph. This operation
is depicted in Fig. 4 (a). The parallel composition operation for trees is ∥1, depicted in Fig. 4
(b).

The set of trees over A is defined as the least set closed under the operations 1, ∥1 and ai, for
all a ∈ A and 1 ≤ i ≤ #a. We retrieve the standard terminology for trees from this definition.
The vertices of a tree T are called nodes. For an edge e ∈ ET introduced by an operation ai, we
say that υT (i) is the parent of υT (1), . . . , υT (i − 1), υT (i + 1), . . . , υT (#a) and the latter nodes
are the children of the former. Note that the trees we consider in this paper are unordered, i.e.,
the relative order of the edges attached to a node is not important, and unranked, i.e., there is
no bound on the number of children of a node.

We are interested in HR sets of trees, generated by tree grammars, which are graph gram-
mars, whose rules use only tree operations. In general, HR sets of trees are not CMSO-definable.

For instance, the grammar with rules u→ a1 ∥1 b
1 ∥1 u and u→ 1, where a and b are binary

edge labels, defines the set of trees of height one, whose root has the same number of a- and
b-labeled edges. Since CMSO cannot describe sets of equal cardinality (see, e.g., [5, Proposition
3.9]), this set is not CMSO-definable.

This motivates the quest for trees grammars defined by easy-to-check syntactic restrictions,
that guarantee the CMSO-definability of their languages. The following definition introduces
such a class of tree grammars. In the rest of this section, we prove that the languages of the
grammars that conform with the following definition coincide with the CMSO-definable tree
languages.

Definition 3. A tree grammar Γ = (U ,R) is regular iff there exists a set W ⊆ U of nonter-
minals such that the rules in R are of one of the following forms, either:
A. w → ai(u1, . . . , u#a−1), for some a ∈ A and 1 ≤ i ≤ #a, where w ∈ W and u1, . . . , u#a−1 ∈
U ,

B. u→ u ∥1 wq, for some q ∈ N, where u ∈ U \W and w ∈ W,
C. u → w1 ∥1 · · · ∥1 wk, where u ∈ U \ W and w1, . . . , wk ∈ W; this rule becomes u → 1, in

case k = 0.
We further require that the axioms are of the form → u, for some u ∈ U \ W. We call the
grammar Γ aperiodic-regular iff q = 1 in all rules of the forms B.

We call a set L of trees regular resp. aperiodic-regular iff there is a regular resp. aperiodic-
regular tree-grammar Γ such that L = L(Γ). The shape of regular tree-grammars as given
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in Definition 3 is inspired by the AC-tree grammars introduced by Courcelle [6, Section 3].
However, Courcelle’s definition of AC-grammars only considers grammars with q = 1 in all
rules of the form rules B in Definition 3 (which correspond to the aperiodic-regular grammars
in our terminology). In this section, we show that the aperiodic-regular tree languages coincide
with the MSO-definable tree languages. Hence, the AC-grammars considered by Courcelle are
not complete wrt CMSO-definability, because there are tree languages that are CMSO-definable
but not MSO-definable, see e.g., [5, Corollary 6.6].

First, we prove that the CMSO-definable tree languages are exactly the regular tree lan-
guages. For this we will make use of the following lemma:

Lemma 1. Given a regular tree grammar Γ = (U ,R) with a set W as in Definition 3, we
can build a regular tree grammar Γ′ = (U ′,R′) with L(Γ) = L(Γ′), such that, for each pair of
non-terminals u ∈ U \W and w ∈ W, there is at most one rule u→ u ∥1 wq of shape B in R′ .

The first direction of the equivalence between regular and CMSO-definable tree languages
is given by the following theorem:

Theorem 1. Let L be a regular tree language. Then, L is CMSO-definable.

In order to establish the completeness of regular tree grammars, we use the already known
equivalence between CMSO-definable and recognizable languages of unranked trees [5, Theorem
5.3]:

Theorem 2 ([5]). Let L be a language of trees. Then, L is CMSO-definable iff L is recognizable.

The dual direction of the equivalence between regular tree languages and CMSO-definable
tree languages is given by the following result:

Theorem 3. Let L be a CMSO-definable tree language. Then, L is a regular tree language.

In the rest of this section, we characterize the class of MSO-definable tree languages by tree
grammars. We show that the MSO-definable tree languages are exactly the languages produced
by aperiodic-regular tree grammars.

Theorem 4. Let L be an aperiodic-regular tree language. Then, L is MSO-definable.

Theorem 5. Let L be a MSO-definable tree language. Then, there exists an aperiodic-regular
tree grammar Γ with L = L(Γ).

We summarize our results on trees in the following corollary:

Corollary 1. Let L be a tree language. Then, the following are equivalent:
• L is CMSO-definable.
• L is regular, i.e., there is some regular tree grammar Γ with L = L(Γ).

Moreover, the following are equivalent:
• L is MSO-definable.
• L is aperiodic-regular, i.e., there is some aperiodic-regular tree grammar Γ with L = L(Γ).

4 Tree Verifiable Graph-Grammars

In this section, we introduce a syntactic restriction on HR graph grammars, that ensures the
CMSO-definability of the generated graph languages. The restriction is given in terms of easy-
to-check syntactic conditions on the rules of the HR grammar. Like in the case of regular tree
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grammars, we partition the set of nonterminals in two alternating subsets. The crucial restric-
tion is then on the shape of the graphs G in the rules of the form w ← G[e1(v1), . . . , ek(vk)],
where we require G to consist of a single terminal edge e, which needs to contain at least some
source and some vertex of each ei. Some additional conditions ensure that these edges and ver-
tices give rise to a spanning tree of the generated graph that witnesses the bounded embeddable
tree-width of the graph (see Definition 6 and Proposition 1 below). The spanning tree property
also underlies our proof of CMSO-definability, which motivates the term tree-verifiable. As we
shall argue next (§5), tree-verifiable grammars define an expressive class of graph languages, as
they strictly subsume the regular graph grammars of Courcelle [6, §5].

Definition 4. A graph grammar Γ = (U ,R) is tree-verifiable iff there exist two functions:
• rt : U → N mapping each non-terminal u to an index rt(u) ∈ [1,#u], called the root of u,
• fut : U → pow(N) mapping each non-terminal u to a subset fut(u) ⊆ [1,#u] \ {rt(u)},
called the future roots of u,

and a set W ⊆ U of nonterminals, such that the rules in R are of one of the following forms,
either:
A. w → G[e1(u1), . . . , ek(uk)], for some w ∈ W and u1, . . . , uk ∈ U \ W, where G has exactly

one terminal edge e, the vertices {ξG(rt(w))} ∪ {υG(ei)rt(ui)}i∈[1,k] are pairwise distinct and
attached to e, and

intern(G) ∪ {ξG(i) | i ∈ fut(w)} =
⊎

i=1..k

{υG(ei)j | j ∈ {rt(ui)} ∪ fut(ui)}

i.e., the internal nodes of G plus the future roots associated to w can be partitioned into the
roots and future roots associated to all the non-terminals ui.

B. u → u ∥n wq, for some q ∈ N, where u ∈ U \ W, w ∈ W with #u = #w = n, such that
rt(w) = rt(u) and fut(w) = ∅, i.e., the roots of u and w agree and, moreover, w has no
future roots,

C. u → w1 ∥n · · · ∥n wk, where u ∈ U \ W, w1, . . . , wk ∈ W with #u = #wi = n, such that
rt(u) = rt(wi) and fut(u) =

⊎
i=1..k fut(wi), i.e., the roots associated to the non-terminals

of the right-hand side agree with the root of the left-hand side and that future roots of the
left-hand side are partitioned into the future roots of the non-terminals of the right-hand
side.

Furthermore, the axioms are of the shape→ u for some u ∈ U\W with [1,#u] = {rt(u)}∪fut(u),
i.e., for every start non-terminal u every source must be a root or future root.

A set of graphs L is said to be tree-verifiable iff there is a tree-verifiable graph-grammar Γ
such that L = L(Γ). The following example states a tree-verifiable grammar for the trees with
linked leaves from Example 1 plus an additional binary edge from the bottom-right node of the
tree to the root of the tree (see the left of Fig. 6 for the depiction of such a graph)2:

Example 2. Let us consider the tree-verifiable grammar from Fig. 5, with the set of non-
terminals U = {uaxiom , vaxiom , zaxiom , waxiom , u, v, w} and distinguished non-terminals W =
{vaxiom , waxiom , w}, with arities, roots and future roots, as follows:

• #uaxiom = #vaxiom = 1, rt(uaxiom) = rt(vaxiom) = 1, fut(uaxiom) = fut(vaxiom) = ∅,
• #zaxiom = #waxiom = 2, rt(zaxiom) = rt(waxiom) = 1, fut(zaxiom) = fut(waxiom) = ∅,
• #u = #w = 3, rt(u) = rt(w) = 1, fut(u) = fut(w) = {2},

2We note that we chose to add the binary edge as the easiest way of setting up a tree-verifiable grammar
(with axioms) that meets the requirements of Def. 4. However, one can also state a slightly more complicated
tree-verifiable grammar that exactly produces the trees with linked leaves from Example 1.
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Figure 5: Tree-Verifiable Grammar for Trees with Linked Leaves

• #v = 1, rt(v) = 1, fut(v) = ∅.
We write the indices 1, . . . ,#n enclosed in parenthesis next to each nonterminal n ∈ U , where
rt(n) is overlined and fut(n) are underlined. Internal nodes are drawn as black circles and
sources are white numbered circles. Binary terminal edges are drawn with solid lines and bi-
nary nonterminal edges are dashed. Ternary terminal edges are filled with grey and ternary
nonterminal edges are unfilled.

The first result is that tree-verifiable graph grammars produce CMSO-definable sets of
graphs:

Theorem 6. Let L be a tree-verifiable graph language. Then, L is CMSO-definable.

The rest of this section is concerned with proving a partial completeness result. We define a
parameter, called embeddable tree-width, which is an over-approximation of the standard tree-
width of a graph. We show that the class of CMSO-definable sets of graphs, for which the
embeddable tree-width is bounded, coincides with the class of tree-verifiable graph languages.

Before defining embeddable tree-width formally, we recall the standard definitions of tree
decomposition and treewidth of a c-graph, by considering trees over an alphabet of edge labels
that consists of a single binary element. A path from v1 to vk+1 in a c-graph G is a sequence
of tuples of the form:

⟨v1, i1, e1, v2, j1⟩, ⟨v2, i2, e2, v3, j2⟩, . . . , ⟨vk, ik, ek, vk+1, jk⟩

where v1, . . . , vk+1 ∈ VG, e1, . . . , ek ∈ EG and vℓ and vℓ+1 are the iℓ-th and jℓ-th vertices
attached to eℓ, respectively, for all ℓ ∈ [1, k]. A set C ⊆ VG is connected in G iff for any u, v ∈ C
there exists a path from u to v in G containing only vertices from C.

Definition 5. A tree decomposition of a c-graph G of type n is a pair (T, β), where T is a
tree, called backbone, and β : VT → pow(VG) maps the vertices of T into sets of vertices from
G, such that:

1. for each e ∈ EG, υG(e) = ⟨v1, . . . , vk⟩, there exists n ∈ VT such that v1, . . . , vk ∈ β(n),
2. for each v ∈ VG the set {n ∈ VT | v ∈ β(n)} is nonempty and connected in T .

The width of the tree decomposition is wd(T, β)
def
= maxn∈VT

card(β(n)) − 1. The tree-width

of G is tw(G)
def
= min{wd(T, β) | (T, β) tree decomposition of G}. The tree-width of a graph

is the tree-width of some c-graph from it3. A set G of graphs has bounded tree-width iff
{tw(G) | G ∈ G} is a finite set.

We refine the above definition by considering only backbones that are spanning trees of the
graph. The spanning trees considered cover both the vertices and the edges of the graph:

3Isomorphic c-graphs have equal tree-widths.
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Figure 6: Embeddable Tree Decomposition

Definition 6. An embeddable tree-decomposition of a c-graph G is a tuple (T, β, γ, δ) such
that (T, β) is a tree-decomposition of G, and there is some subset W ⊆ VT of the nodes of T
such that:

• the root of T does not belong to W ,
• for every node u ∈ VT and every child w ∈ VT of u, we have w ∈ W iff u ̸∈ W , i.e., the
membership in W alternates for the nodes on every path of T ,

Moreover, γ : VT \W → VG is a bijective mapping of the nodes from VT \W to the vertices of
G, and δ : W → EG is a bijective mapping of the vertices in W to the edges of G, satisfying
the conditions:

1. for all u ∈ VT \W we have that γ(u) ∈ β(u), and
2. for all w ∈W and e = δ(w) we have

• if w is the child of u in T then there is some i ∈ [1,#λG(e)] such that υG(e)i = γ(u),
• for every child v of w in T there is a distinct j ∈ [1,#λG(e)]\{i} such that υG(e)j =
γ(v),

• υG(e)i ∈ β(w) for all 1 ≤ i ≤ len(υG(e)).
The embeddable tree-width of G is:

etw(G)
def
= min{wd(T, β) | (T, β, γ, δ) is an embeddable tree decomposition of G}

The embeddable tree-width of a graph is the embeddable tree-width of some c-graph from it. A
set G of graphs has bounded embeddable tree-width iff {etw(G) | G ∈ G} is a finite set.

For example, Fig. 6 shows a graph that is generated by the tree-verifiable grammar from
Example 2 and an embeddable tree decomposition of this graph (this tree decomposition is
the tree decomposition that underlies the proof of Proposition 1). The nodes from the inverse
image of γ (resp. δ) are depicted by filled circles (resp. rectangles). The sets in the image of
β (called bags) associated with the nodes of the tree decomposition are stated next to the tree
nodes.

The following variation of Def. 6 will be useful for working with the notion of an embeddable
tree-decomposition in analyzing graph grammars and for conducting inductive proofs about
graph grammars:

Definition 7. Let G be c-graph G of type n and let z ∈ [1, n] and π ⊆ [1, n]\{z}. We consider
a tuple (T, β, γ, δ) and subset W ⊆ VT such that the conditions of Def. 6 are satisfied, except
for the bijectivity requirement on γ, and the requirement that the root of T does not belong to
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W . Let r be the root of T . We now call (T, β, γ, δ) a (z, π)-embeddable tree-decomposition of
G iff the following hold:

1. ξG(i) ∈ β(r) for all i ∈ [1, n],
2. γ : VT \W → intern(G)∪A is a bijective mapping of the vertices in VT \W to the internal

vertices of G plus the set A = π in case of r ∈W and A = {z} ∪ π otherwise,
3. if r ∈ W then there is some i ∈ [1,#λG(δ(r))] such that υG(δ(r))i = ξG(z) and γ(u) ̸=

ξG(z) for every child u of r,
4. else (r ∈ VT \W ) we have that γ(r) = ξG(z).

We call the tree-decomposition pointed, if r ∈W , and non-pointed, otherwise.

To begin with, we note that tree-verifiable graph grammars are set up such that the resulting
languages always have bounded embeddable tree-width:

Proposition 1. Let L be a tree-verifiable set of graphs. Then, L has bounded embeddable
tree-width. In more detail, given a tree-verifiable graph-grammar Γ = (U ,R), let k be the
maximum of card(VG) for the graphs G appearing in R of shape A and the maximum of #u for
all non-terminals u ∈ U ; then we have etw(G) ≤ k for all G ∈ L(Γ).

We now prove the existence of a tree-verifiable grammar that generates all graphs with
embeddable treewidth ≤ n for some given n ∈ N. While the existence of such a grammar is
an interesting result on its own, we will build on this result in our partial completeness proof
(Theorem 7), where we pair the non-terminals of this grammar with the equivalence classes of
some congruence relation.

Proposition 2. For each finite alphabet A of edge labels and each n ∈ N, there exists a tree-
verifiable grammar Γ, such that L(Γ) = {G ∈ GA | G has type 0 and etw(G) ≤ n}.

The following result combines ideas from Theorem 3 and Proposition 2:

Theorem 7. Let L be a CMSO-definable graph language with bounded embeddable tree-width.
Then, L is a tree-verifiable graph-language.

We are ready to state the main result of this paper:

Corollary 2. Let L be a graph language of type 0. Then, the following are equivalent:
• L has bounded embeddable tree-width and is CMSO-definable.
• L is tree-verifiable.

5 Comparison with Regular Graph Grammars

In this section we compare our tree-verifiable grammar to the regular graph-grammars of Cour-
celle [6]. We will establish that the tree-verifiable grammars strictly generalize regular graph
grammars. We will first demonstrate that for every regular graph grammar there is a tree-
verifiable grammar that generates the same graph language. We will then show that cycles
are tree-verifiable but not regular, see Example 3. We begin by recalling the regular graph
grammars of Courcelle [6], under a slightly different notation:

Definition 8 ([6]). A graph operation (G, e1, . . . , ek) is regular iff the following hold:
1. G has at least one edge, either (a) a single terminal edge attached to sources only, or

(b) each of its edges is attached to an internal vertex, and
2. between any two vertices of G there is a path that traverses only internal vertices (excepting

the endpoints) and terminal edges.
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A graph grammar Γ = (U ,R) is regular iff there exists a set W ⊆ U of nonterminals and the
rules in R are of one of the following forms, either:

A. w → G[e1(u1), . . . , ek(uk)], for some nonterminals w ∈ W, u1, . . . , uk ∈ U \ W and some
regular graph operation (G, e1, . . . , ek),

B. u→ u ∥n wq, for some q ∈ N, where u ∈ U \W and w ∈ W, such that #u = #w = n,
C. u→ w1 ∥n · · · ∥n wk, u ∈ U \W and w1, . . . , wk ∈ W, such that #u = #wi = n.

We further require that axioms are of the shape → u for some u ∈ U \ W, and that #u > 1
implies that k ≥ 1 for all rules u→ w1 ∥n · · · ∥n wk with head u.

We note that the restriction that → u and #u > 1 imply k ≥ 1 for all rules u → w1 ∥n
· · · ∥n wk with head u is not part of the definition by Courcelle [6]. This only excludes a
constant number of graphs, namely the graphs of n isolated vertices, for which there is an axiom
u→ 1n, with n = #u > 1, and a rule → u. We make this assumption in order to facilitate the
comparison with tree-verifiable graph grammars, which always generate connected graphs. We
note, however, that we could alternatively have weakened the definition of tree-verifiable graph
grammars in order to allow for the generation of the graphs 1n.

Courcelle established the CMSO-definability of regular graph grammars, see [6, Theorems
4.8 and 5.10]. We now show that tree-verifiable graph grammars can simulate regular graph
grammars (see Theorem 8 below). We note that the simulation result together with Theorem 6
also establishes the CMSO-definability of regular graph grammars. For the purposes of the
upcoming proofs, we introduce the following simplified form of regular graph grammars:

Lemma 2. For every regular graph grammar Γ there is a regular graph grammar Γ′ with
L(Γ) = L(Γ′) and #u = 1 for all axioms → u of Γ′.

Theorem 8. For every regular graph grammar Γ there is a tree-verifiable graph grammar Γ′

such that L(Γ) = L(Γ′).

Next, we prove that tree-verifiable grammars strictly subsume regular graph grammars.
Given a graph G, we recall that a set of vertices C ⊆ VG is connected in G iff between any two
vertices in C there exists a path in G that traverses only vertices from C. If VG is connected in
G, we say that G is connected. A graph is disconnected iff it is not connected. A cut C ⊆ VG

of a connected graph G is a set of vertices, such that the graph obtained by removing from G
the vertices in C and the edges incident to some vertex from C is disconnected.

Proposition 3. Let Γ be a regular graph grammar. Then, there is a constant n ∈ N such that
every graph G ∈ L(Γ) with card(VG) ≥ n has a cut C ⊆ VG that is connected in G.

The following example shows a graph language consisting of simple cycles of arbitrary size.
These graphs do not have connected cuts, because by removing any sequence of one or more
consecutive vertices in a cycle we always obtain a connected acyclic path.

Example 3. We define cycles by the tree-verifiable grammar from Fig. 7, with the set of non-
terminals U = {uaxiom , waxiom , u, w} and distinguished non-terminals W = {waxiom , w}, with
arities, roots and future roots, as follows:

• #uaxiom = #waxiom = 1, rt(uaxiom) = rt(waxiom) = 1, fut(uaxiom) = fut(waxiom) = ∅,
• #u = #w = 2, rt(u) = rt(w) = 1, fut(u) = fut(w) = ∅.
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Figure 7: Tree-Verifiable Grammar for Cycles

6 Conclusions

We introduced the notion of tree-verifiable grammars, a class of hyperedge-replacement gram-
mars that produce CMSO-definable languages. Since CMSO-definable context-free graph lan-
guages come with a decidable inclusion problem, the class of tree-verifiable graph languages
is a useful tool for reasoning about and verifying systems that can be modeled using graphs,
such as, e.g., distributed networks. We characterize tree-verifiable languages by showing their
equivalence with the class of CMSO-definable graph languages that have bounded embeddable
tree-width, a novel parameter, which strengthens the standard graph-theoretic tree-width. Fi-
nally, we show that the class of tree-verifiable graph languages strictly subsumes the languages
produced by the regular graph grammars introduced by Courcelle, providing a more expres-
sive class of languages at the intersection of the hyperedge-replacement context-free and the
CMSO-definable sets of graphs.
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