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Abstract

The repeatability evaluation for the 6th International Competition on Verifying Con-
tinuous and Hybrid Systems (ARCH-COMP’22) is summarized in this report. The compe-
tition took place as part of the workshop Applied Verification for Continuous and Hybrid
Systems (ARCH) in 2022, affiliated with the 41st International Conference on Computer
Safety, Reliability and Security (SAFECOMP’22). In its sixth edition, 25 tools had submit-
ted artifacts through a Git repository for the repeatability evaluation, which were applied
to solve benchmark instances through 7 competition categories. The majority of partic-
ipants adhered to the specifications of this year’s repeatability evaluation, which was to
submit scripts to automatically install and execute tools in containerized virtual environ-
ments (specifically Dockerfiles to execute within Docker containers). Some categories used
performance evaluation information from a common execution platform. The repeatability
results represent a snapshot of current tools and the types of benchmarks on which they
are well suited, and so that others may repeat their analyses. Due to the diversity of
problems in verification of continuous and hybrid systems, as well as basing on standard
practice in repeatability evaluations, we evaluate the tools with pass and/or failing of being
repeatable.

1 Introduction

This report summarizes the repeatability evaluation of the 2022 friendly competition of the
ARCH workshop1, namely the ARCH-COMP friendly competition, and aims to provide an
overview of the usability and reproducibility of results for the participating verification tools.
The verification community publishes papers that emphasize computational contributions, but
subsequent re-creation of these computational elements is often challenging because details of
the implementation are unavoidably absent in the papers. To address this challenge, some
authors post code and data to their websites, but there is often limited formal incentive to
do so, and typically there is no easy way to determine whether others can actually use or ex-
tend the results. Owing to such factors, computational results often become non-reproducible,

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH
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sometimes even by the researchers who originally produced them. Over about the past decade
and increasingly in the past few years, the community has instituted artifact evaluations and
repeatability evaluations in various phases of review processes to address these issues. The goal
of the repeatability evaluation for ARCH-COMP is to improve the reproducibility of computa-
tional results for the tools competing on the selected benchmarks evaluated in the competition
and to provide further confidence in the results.

This remainder of this report presents a summary of the repeatability evaluation (RE)
results. The results obtained in the competition have been verified by an independent repeata-
bility evaluation conducted by the author of this report. To establish further confidence in
the results, the artifacts, code, documentation, benchmarks, etc. with which the repeatability
results have been obtained are publicly available on the ARCH website (https://cps-vo.org/
group/ARCH) and a Git version control repository (https://gitlab.com/goranf/ARCH-COMP).

The repeatability evaluation of the competition featured seven categories and 17 software
tools, where several tools participated in multiple categories, but have been counted distinctly
for their participation in each category. The categories of problems that tools participated in
the repeatability evaluation are:

• AFF: affine and piecewise affine dynamics (5 tools),

• AINNCS: artificial intelligence and neural network control systems (4 tools),

• FALS: falsification (2 tools),

• HSTP: hybrid systems theorem proving (3 tools),

• NLN: nonlinear dynamics (6 tools),

• PCDB: piecewise constant dynamics and bounded model checking (4 tools), and

• SM: stochastic models (1 tool).

The tools evaluated, broken into their competition categories, are:

• AFF

– CORA [1],

– SpaceEx [11],

– HyDRA [27],

– JuliaReach [8, 26], and

– XSpeed [25].

• AINNCS

– NNV [32, 31, 28, 29],

– JuliaReach [8],

– CORA [21], and

– POLAR [14].

• FALS

– FalStar [33] and
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– ARIsTEO [23].

• HSTP

– HHL Prover [30],

– IsaVODEs, and

– KeYmaera X [24, 12].

• NLN

– Ariadne [4, 6],

– CORA [1],

– Dynibex [10],

– Kaa [20],

– JuliaReach [7], and

– KeYmaera X [24, 12].

• PCDB

– Bach [9]

– PHAVer-lite [5],

– SAT-Reach [22], and

– XSpeed [25].

• SM

– SySCoRE [13].

All of the tools listed above were deemed repeatable based on the evaluation, as summarized
next and detailed further in the next section that describes in more depth the process and results.
In advance of the competition, the author merged pull/merge requests submitted by the tool
authors in the Git repository, and executed the tools on the common AWS platform, detailed
in the appendix. In some instances, interaction and revisions to the scripts, Dockerfiles, or
other artifacts were necessary, and the author generally provided feedback in the comments
of the pull requests to provide a centralized location of the feedback. In a couple instances,
the authors provided execution logs and results in addition or in contrast to these steps, but
the author also reviewed these results, albeit the requested execution setup is ideal. For those
tools and categories that reproduced performance measurements, the author posted the results
typically as figures or archives to the comments of the pull requests, where the authors checked
and confirmed them.

A few tools may have participated in the competition, but did not participate in the re-
peatability evaluation, so only those tools that participated in the repeatability evaluation by
providing information through the Git repository are listed. In future iterations, we encourage
all participants of the competition to complete the repeatability evaluation to make it easier
for others in the research community to build on these results, and are considering requiring
repeatability participation in the future given the enhancement in confidence it provides.
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2 Repeatability Evaluation Plan, Execution, and Results

The repeatability evaluation was conducted primarily before and partially following the presen-
tations of the competition results at the ARCH’22 workshop. The basic mechanism followed
in the repeatability evaluation was similar to that done in related conferences, and builds on
the evaluation conducted in prior iterations of ARCH-COMP [15, 16, 17, 18, 19].The primary
difference in the ARCH-COMP repeatability relative to those done at conferences is this eval-
uation was done solely by the author of this report, and not an evaluation committee. In many
repeatability evaluations, three basic criteria are generally evaluated: coverage, instructions,
and quality, each of which may be rated on a scale, typically of one through five, where one
indicates a missing component or significantly below acceptability, and five indicates the crite-
ria significantly exceeds expectations. Coverage evaluates the repeatability packages’ ability to
regenerate the images, tables, and log files presented in the competition. Instructions evaluates
the packages’ ability to describe to another researcher how to reproduce the results, including
installation of the tool and how to execute it. Quality evaluates the packages’ level of docu-
mentation and trustworthiness of results with respect to the quality of the software tool and
the results it produces. This report does not describe the ratings of these review criteria for
each tool evaluated, only the aggregate result of whether the submission was repeatable or not
as deemed by the submitted package and corresponding artifacts.

The participants were sent instructions to provide their tool setup instructions and tool
execution commands for the benchmarks evaluated in their respective categories, which were
collected on a Git repository (https://gitlab.com/goranf/ARCH-COMP) by the competitors
issuing commits and subsequent pull/merge requests that were reviewed and approved by the
author of this report. The repeatability evaluation was performed on the competition bench-
marks, the selection of which has been conducted within the forum of the ARCH website (cps-
vo.org/group/ARCH), which is visible for registered users and registration is open for anyone
to enable sharing of these models and benchmarks.

For all the tools listed above, which are those participating in the repeatability evaluation,
all were evaluated to have passed the repeatability evaluation with their benchmark analysis
results deemed repeatable. The repeatability evaluation was conducted by the author, and
required approximately four weeks to complete. As in the last three iterations of the repeata-
bility evaluation at ARCH-COMP19 [17], ARCH-COMP20 [18], and ARCH-COMP21 [19], the
usage of Docker significantly simplified the repeatability process, and we strongly encourage
using this type of mechanism for repeatability evaluations, relative to earlier efforts where the
evaluation was conducted primarily on a VMWare virtual machine by installing and executing
all the tools, which required significantly more time to conduct and was more error-prone. The
majority of tool authors that followed these specifications used Docker by providing Dockerfiles,
and also provided a script to execute their tool with appropriate parameters for all the bench-
marks. All tools that provided Dockerfiles were able to be installed by setting up the Docker
containers, then executed by the author with their provided instructions, but the author in-
teracted with some tool developers for additional instruction for installing, executing, and/or
plotting their results, in some cases interacting through the version control repository. The
host machine (MRepeatability Host) used for executing the tools and benchmarks was an Amazon
EC2 g4dn.4xlarge instance. As aforementioned, a couple participants submitted logs and exe-
cution artifacts instead of an execution environment due to the specific requirements of these
frameworks, but were also evaluated as being sufficiently representative and repeatable based
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on the instructions provided. Finally, some participants submitted CodeOcean capsules, which
is another and perhaps superior method, as the actual built container is available in perpetuity
and also has an underlying Dockerfile, although it makes more complex the reproduction of
performance evaluation measures.

As begun at ARCH-COMP20, several categories provided batch execution scripts that would
execute all tools on all benchmarks in a given category, with a standardization process conducted
on the CPS-VO forums for the output format to generate performance comparison tables in
the individual category reports. This process in particular had a few difficulties as it only
had been tested in most cases when attempting the repeatability evaluation, but most issues
were resolved, and several categories (AFF, NLN) presented performance evaluation results
generated for the repeatability evaluation in their competition results and category reports.
Overall, the tool developers provided sufficient information to install, execute, and repeat the
results they obtained in the competition, although there were some issues with installation,
such as missing dependencies or incompatible library versions.

3 Conclusion and Outlook

This brief report summarizes the repeatability evaluation for the fifth competition for the for-
mal verification of continuous and hybrid systems (ARCH-COMP’22), conducted as part of the
ARCH’22 workshop at the 41st International Conference on Computer Safety, Reliability and
Security (SAFECOMP’22). Detailed reports for the categories can be found in the proceed-
ings (https://cps-vo.org/group/ARCH/proceedings) and on the ARCH website (http://cps-
vo.org/group/ARCH). All documentation, benchmarks, and execution scripts for the repeata-
bility evaluation are also archived on the ARCH website, and authors contributed their repeata-
bility evaluations to the Git repository: https://gitlab.com/goranf/ARCH-COMP.

As in previous iterations of the competition and corresponding repeatability evaluation,
several aspects to improve the process were identified. In particular, across the hybrid systems
verification community, there are still needs for (1) greater standardization of input formats, (2)
standardization of output formats and results, and (3) improved execution in a common compu-
tational platform so that results, particularly performance metrics and relative comparisons, are
more meaningful. Of these challenges, this iteration of the repeatability evaluation continued
some improvement upon the standardization of output formats and results, and execution on
a common computational platform, with both the AFF and NLN categories including partial
performance evaluation results produced through this repeatability process on standardized ex-
ecution hardware. This however could be improved further in future iterations with increased
standardization of the aggregated results, such as by using spreadsheets automatically generated
by the batch scripts.

For future competitions and repeatability evaluations, several factors may still be improved
by the community, participants, and organizers. While the somewhat common input format
of SpaceEx in part via HyST [2] provides some means for standardizing problem specifica-
tions, there is still a greater need for utilizing a common language for specifying models and
specifications. Future participants may make increased use of the HyST design studio on the
CPS-VO to address this issue, if desired, as it provides a common input and execution platform
(https://cps-vo.org/group/hyst). In some categories however, there still remain more fun-
damental issues with input formats and specifications. Particularly, for the stochastic models
and falsification categories, there are currently no standardized formats, so effort is highly rec-
ommended to address such standardization, although this area is even more challenging than
non-stochastic hybrid systems, as there are many ways to model sources of uncertainty (such
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as through stochastic transitions a la Markov chain transitions, continuous uncertainty with
stochastic differential equations, etc.) and that in falsification, often model agnostic (”black
box”) approaches are used. For the AINNCS category, standardization of formats for repre-
senting both plants (e.g. as SpaceEx models) and machine learning components (e.g., neural
networks) should continue to be pursued, and for the neural networks, recent community efforts
such as the Open Neural Network Exchange (ONNX) format or the more recent formalization
of neural network semantics and specifications such as VNN-LIB (http://www.vnnlib.org/)
should be leveraged, and taking advantage of lessons learned in the Verification of Neural Net-
works Competition (VNN-COMP, https://sites.google.com/view/vnn2022) [3]. As has
been the case in past iterations of ARCH-COMP, providing the ability to specify comparable
parameters across different tools, as well as the particular problem domain/category (verifica-
tion vs. falsification, etc.), remains a major challenge.

A second challenge still remains to determine more quantitative means to compare the
output results of the tools, although some libraries for common representations of reachable
sets are starting to become available that may aid this process in the future, such as HyPro [27].
Figures of reachable sets and yes/no/maybe verified results for a given specification are means
to make comparisons currently, but developing and standardizing a common output format may
provide increased benefits and improve the ability to make quantitative comparisons between
methods and tools. This however remains a challenge for the community as a whole, beyond
ARCH-COMP itself.

Thirdly, while this iteration continued for the third time partial performance comparisons
in several categories, this remains a significant challenge for the repeatability evaluation to also
repeat the performance results fairly, as this is an important criterion for potential industrial
application of these methods. In the future, performance evaluation should continue to be
pursued, both for the potential end-user comparisons and for understanding which methods are
most effective for which problems.

Finally, for future iterations, rather than a single person (the author) reproducing the results
of the categories, we suggest forming a committee with a representative from each category to
repeat the results of that category. In earlier iterations of ARCH-COMP this was unnecessary,
but the numbers of categories, tools, and complexity of artifacts therein has risen, and it is time
to distribute the workload, and also take advantage of the localized expertise of participants
within each category. While arguments could be made regarding independence of reproducing
the results and this would now be done by one of the participants in a category, as the competi-
tion is a friendly one, and as similar conflicts exist in conferences, it is a minor concern relative
to the enhanced benefits of having the localized expertise. Mechanisms could be deployed for
fairness, such as a voting scheme where two or more participants in a given category reproduce
the results of the others in that category. An alternative mechanism under discussion is to use
an automated evaluation and submission process, although this requires in-advance infrastruc-
ture and greater planning for the participants, relative to just needing to provide Dockerfiles
and execution scripts, so there are advantages and disadvantages. In either case, this will sig-
nificantly ease the workload of the evaluation, and also likely improve the usability of the tools,
as given the number of packages to repeat by one person would be decreased and the category
participant would be more familiar with the specific intricacies of the given category.

Beyond these suggested improvements, there are still numerous aspects to improve, but
in part through this competition and evaluation, our efforts may serve to enhance the repro-
ducibility of computational results and increase the scientific rigor in the community.

227

http://www.vnnlib.org/
https://sites.google.com/view/vnn2022


ARCH-COMP22 Repeatability Evaluation Report T. T. Johnson

4 Acknowledgments

The material presented in this report is based upon work supported by the National Science
Foundation (NSF) under grant number 1910017 and 2220426, the Air Force Office of Scien-
tific Research (AFOSR) under contract number FA9550-22-1-0019, and the Defense Advanced
Research Projects Agency (DARPA) Assured Autonomy program through contract number
FA8750-18-C-0089. The U.S. Government is authorized to reproduce and distribute reprints
for Government purposes notwithstanding any copyright notation thereon. The views and con-
clusions contained herein are those of the authors and should not be interpreted as necessarily
representing the official policies or endorsements, either expressed or implied, of DARPA or
NSF.

A Specifications of Used Machines

A.1 MRepeatability Host

• Amazon EC2 Instance Type: g4dn.4xlarge

• Processor: Intel Xeon Scalable (2nd Generation Cascade Lake), 16 vCPUs (AWS/EC2
Custom), 2.5 GHz base, roughly Xeon Gold 5200 Series with 24 physical cores

• Memory: 64GB

• Average CPU Mark on www.cpubenchmark.net: 25740 (full), 2396 (single thread) (for
comparable Xeon Gold 5200 series)

• Host Operating System: Ubuntu
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[27] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf, and Stefan Kowalewski. HyPro: A
c++: A library of state set representations for hybrid systems reachability analysis. In Clark
Barrett, Misty Davies, and Temesghen Kahsai, editors, NASA Formal Methods: 9th International
Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings, pages 288–294.
Springer International Publishing, 2017.

[28] Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T. Johnson, and
Xenofon Koutsoukos. Safety verification of cyber-physical systems with reinforcement learning
control. ACM Trans. Embed. Comput. Syst., 18(5s), October 2019.

[29] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. Johnson. Nnv: The neural network verification tool
for deep neural networks and learning-enabled cyber-physical systems. In Shuvendu K. Lahiri and
Chao Wang, editors, Computer Aided Verification, pages 3–17, Cham, 2020. Springer International
Publishing.

[30] Shuling Wang, Naijun Zhan, and Liang Zou. An improved hhl prover: An interactive theorem
prover for hybrid systems. In Michael Butler, Sylvain Conchon, and Fatiha Zäıdi, editors, Formal
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