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Abstract

This paper proposes a benchmark for a controller of a pacemaker device developed
as part of the course “SFWRENG 3MD3 - Safe Software-Intensive Medical Devices” pro-
vided at McMaster University. The benchmark includes two alternative Simulink® models,
developed by two different groups of students. Each model comes with a requirement for-
malized in Signal Temporal Logic (STL). We also present the testing results obtained using
S-TaLiRo, a well-known testing framework for Simulink® models.

1 Introduction

This paper proposes a benchmark containing models with requirements for a simple controller
of a pacemaker device. The models and requirements were developed as part of the course
“SFWRENG 3MD3 - Safe Software-Intensive Medical Devices”, provided at McMaster Uni-
versity (Canada). The course 3MD3 teaches students how to design, implement, verify and
validate safe software-intensive devices and specifically medical devices. The elective course,
offered in the 2021-2022 academic year, consisted of 24 students organized into groups. Each
group had to design, implement, test, and deploy a simple controller for a pacemaker device
(see Section 2). The students were supervised by a teaching assistant and a professor.1 Two
groups decided to submit their models and requirements as a part of this benchmark.

The benchmark contains the models, requirements, and testing results provided by the stu-
dents. Specifically, the benchmark contains two models for the pacemaker controller defined
using Simulink® [2], a widely used modeling language in the industrial domain. Each model
comes with a requirement formalized in Signal Temporal Logic (STL) [9], a logic-based specifica-
tion language for system requirements. The testing results are obtained by using S-TaLiRo [3],
a well-known tool for falsification-based testing of Simulink® models.

1Respectively the first and the last author of the paper.
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Figure 1: High-level schema of the pacemaker connections.

This paper (a) provides a high-level description of the behavior of the pacemaker controller,
(b) presents the benchmark models and requirements, (c) summarizes the testing results, and
(d) thoroughly discusses the results and outlines possible use cases for the benchmark. The
benchmark and results are made publicly available [8].

The paper is organized as follows. Section 2 presents a high-level description of functionality
the pacemaker controller has to provide. Section 3 presents the Simulink® models of the
controller proposed by the two groups of students. Section 4 describes the requirement proposed
for each model and its encoding in STL. Section 5 describes the results of the testing activities.
Section 6 discusses the lessons learned and outlines the possible use cases of the benchmark.
Section 7 presents our conclusions and future work.

2 An Overview of the Pacemaker Controller

A pacemaker is a device that regulates the heart rate. To regulate the heart rate, the pace-
maker is physically connected to the heart using one or more leads that are inserted into either
the atrium, the ventricle or both. Figure 1 provides a high-level schema describing how the
pacemaker is connected to the heart. The leads are used by the pacemaker to deliver electrical
signals to the heart as well as monitoring the internal electrical activity of the heart. The pace-
maker artificially stimulates the heart muscle to contract when no natural activity is present for
a given time. Specifically, the pacemaker senses the heart to detect whether there is a natural
activity in the heart. If no natural activity is detected for a given time, the pacemaker has to
send electrical signals into the leads to force the heart to contract.

The controller senses and acts on the heart by controlling the sensing and the pacing cir-
cuits. In the following we present the sensing and pacing circuits for the atrium. The circuits
associated with the ventricle are identical. The Simulink® models describing these circuits of
the controller of the pace-maker were deployed and tested on a FRDM-K64F microcontroller.

The Sensing Circuit. The controller should use the sensing circuit to monitor the natural
activity of the heart. Figure 2a presents a simplified schema for the sensing circuit. The inputs
of the circuit are the signals FRONTEND CTRL and ATR CMP REF PWM. The signal FRONTEND CTRL is
used to control the switch that enables the sensing activity. The signal ATR CMP REF PWM is the
input provided to a comparator. The value of this signal is used as a threshold to detect whether
there is a natural activity in the heart. The output of the circuit is the signal ATR CMP DETECT.
Its value is high when the amplitude of the signal from the heart is above the threshold specified
by the signal ATR CMP REF PWM, the value is low otherwise.

19



Pacemaker Benchmark Ayesh et al.

ComparatorSignal
Input

ATR_CMP
_REF_PWM

ATR_CMP
_DETECT

FRONTEND
_CTRL

(a) Sensing circuit.

PACING
_REF_PWM

PACE_CHARGE
_CTRL

C22 ATR_GND
_CTRL

C21

PACE_GND
_CTRL

ATR_PACE
_CTRL

1 2 3

4

(b) Pacing circuit.

Figure 2: High-level schema of the sensing and pacing circuits.

The Pacing Circuit. Figure 2b presents a high-level representation of the pacing cir-
cuit that is responsible for sending electrical signals to the heart. The circuit contains two
capacitors (C21 and C22) and four switches. The inputs of the circuit are the PACING REF PWM

(determines the output signal’s voltage 0-5V) and the values of the signals PACE CHARGE CTRL,
ATR PACE CTRL, ATR GND CTRL, PACE GND CTRL controlling the status of the four switches. The
output of the circuit is the signal ATR RING OUT which is sent to the lead inserted in the atrium.

The pacing circuit enables to pace the atrium by following two steps: the preparation and
the pacing.

The preparation step prepares the circuit for the pacing activity. It requires to charge the
capacitor C22 and to discharge the capacitor C21. For this reason, switches 1, 3, and 4 must
be closed, and switch 2 must be open: if switch 1 is closed and switch 2 is open, capacitor C22
charges, if switches 4 and 3 are closed, capacitor C21 discharges. Discharging the capacitor C21
also enables removing residual charges present in the tissues of the heart.

The pacing step paces the heart. The pacing step requires to discharge the capacitor C22
and charge the capacitor C21. For this reason, switches 2 and 3 must be closed and switches 1
and 4 must be open. Since switches 2 and 3 are closed and switches 1 and 4 must be open the
current flows from capacitor C22 to capacitor C21 through the heart, that is the ATR RING OUT

signal stimulates the desired chamber to contract .
The Pacemaker Controller. The pacemaker controller should work in different modes.

In this paper, we describe the expected behavior of the controller for the AAI mode.
In the AAI mode, the controller should pace the atrium (A), sense the atrium (A), and

remain inhibited (I) if the pacemaker senses natural activity. Figure 3 exemplifies the expected
behavior of the controller in the AAI mode. The controller should monitor natural activity. If
no natural activity is detected for a period of time (Period), the controller should deliver a
pace. If natural activity is detected, the controller controller should not monitor the heart a
refractory period, a.k.a. Atrial Refractory Period (ARP), with ARP < Period, since some heart
activity is present after a natural event or pace.

The students had to design a controller that regulates the behavior of the pacemaker for
the different modes using Simulink®.

3 Simulink® Models

This section describes the two Simulink® models (model 1 and model 2) of the pacemaker
controller designed by the students for the 3MD3 course.

Model 1. Figure 4 presents a portion of the Simulink® model 1 describing the behavior of
the controller in the AAI mode. The model is designed using Simulink® Stateflow, a graphical
language that includes state transition diagrams.
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Figure 3: Expected behavior of the controller in the AAI mode.

Figure 4: A portion of the Simulink® model 1.

The model has three states: PACE ATR, C22 CHARGE, and REFRACTORY STATE. The C22 CHARGE

state implements the preparation step described in Section 2 while sensing the atrium. The
PACE ATR state paces the heart. The REFRACTORY STATE forces the controller to avoid sensing
the heart for time ARP after a natural pace is detected, or the pacemaker paced the heart.

The controller starts in the C22 CHARGE. State C22 CHARGE mantains the capacitors C22

and C21 respectively charged and discharged while sensing for a natural pace. If a natural
pace is detected within time interval Period, the controller moves to the REFRACTORY STATE.
Otherwise, it moves to the state PACE ATR. State REFRACTORY STATE ensures that the controller
spends time ARP without sensing the heart. After time ARP is passed, the controller returns to
the state C22 CHARGE. State PACE ATR paces the heart. After pacing, the controller moves to
the state REFRACTORY STATE.

Model 2. Figure 5 presents a portion of the Simulink® model 2 describing the behavior
of the controller in the AAI mode.

The model has three states: AAI Refactory, AAI Sensing, and AAI Pacing. The
AAI Refactory state implements the preparation step described in Section 2, i.e., it charges the
capacitor C22 and discharges the capacitor C21. The AAI Pacing state implements the pacing
step described in Section 2, i.e., it discharges the capacitor C22 and charges the capacitor C21.
The AAI Sensing state senses whether there is a natural pace within the time interval Period.
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Figure 5: A portion of the Simulink® model 2.

The controller starts from the AAI Refactory state. After charging and discharging the
capacitors C22 and C21, it moves to the AAI Sensing state. When the controller is in the
AAI Sensing state, if it detects a natural pace within the time interval Period, it returns to
the AAI Refactory state to ensure the capacitors are properly charged before restarting the
sensing. If the controller does not detect any natural pace within the time interval Period, it
moves to the AAI Pacing state. In the AAI Pacing state, the controller paces the heart and
sets 1 as the value for the variable Flag. Then, it moves to the AAI Refactory state. The
value 1 assigned to the variable Flag ensures that the controller spends a time ARP in the
AAI Refactory state ensuring that the heart is not sensed for this period.

The students had to define a set of requirements of their choice during the controller design
and use falsification-based testing to check for requirement violations.

4 Requirements and STL Formalization

This section presents two requirements, respectively for model 1 and model 2, and their for-
malization in Signal Temporal Logic (STL) [9].

Requirement 1. The STL formalization for the requirement ϕ1 of model 1 is as follows.

ϕ1 := G[0,10](PACE COUNT ≤ 15) ∧ F [0,10](PACE COUNT ≥ 8)

where G and F are respectively the globally and eventually STL operators. The requirement
specifies that the number (PACE COUNT) of pacing within the time interval [0, 10]s shall be
(a) lower than 15 across the all interval [0, 10]s, and (b) to eventually become greater than 8.

The Pacemaker System Specification document [12] specifies that the lower rate limit (LRL)
range is 50− 90 Beats Per Minute (BPM). The LRL indicates the desired amount of beats per
minute for the pacemaker. Considering 90BPM as maximum value for the BPM and 10s (1/6m)
as simulation time, the number of beats detected should be lower than 15 paces (i.e., ⌈90 ∗ 1/6⌉)
within the interval [0, 10]s. Considering 50BPM as minimum value for the BPM and 10s (1/6m)
as simulation time, the number of beats detected should be higher than 8 paces (i.e., ⌊50 ∗ 1/6⌋)
within the interval [0, 10]s.

Requirement 2. The STL formalization for the requirement ϕ2 of model 2 is as follows.

ϕ2 := G[0,10](VENT CMP REF PWM ≤ 100)
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The requirement specifies that Pulse Width Modulation (PWM) frequency (VENT CMP REF PWM)
shall be lower than 100Hz.

The students used falsification-based testing to check for requirement violations.

5 Falsification-based Testing

This section describes the results of the falsification-based testing activity conducted by the
students. Specifically, we describe the results obtained by considering a yet-under development
version of the Simulink® model for the pacemaker controller. The results are obtained using
S-TaLiRo [3], a well-known tool for falsification-based testing of Simulink® models. We ran
each experiment 50 times as mandated by the ARCH competition [6] – an international com-
petition among testing tools for continuous and hybrid systems [4] that is held as a part of the
international conference on computer safety, reliability, and security (SAFECOMP) [1].

Testing Requirement 1. The model considered for testing this requirement had a problem
in the condition that triggers one of the transitions of the Stateflow diagram. Specifically, the
condition of the transition connecting the state CHARGE CAPACITOR with the state PACE ATR is
set to “after(Period− 70 ∗ APW)” within the failing model instead of “after(Period− APW)”.

The students tested requirement ϕ1 by considering two testing scenarios. In the first scenario
(Scenario 1 ), they assumed that the value of the desired lower rate limit (LRL) changes across the
simulation. Specifically, the value of the variable Period (see Figure 5) is equal to 1m/LRL. For the
input generation, the students considered [50, 90] as input range, 5 control points, one each 20s,
and the Piecewise Cubic Hermite Interpolating Polynomial (pchip) interpolation function [11],
since it generates smooth and continuous signals. In the second scenario (Scenario 2 ), they
also considered the mode of the pacemaker as input. They considered [1, 4] as input range since
the values 1, 2, 3, 4 represent the different modes of the controller, 5 control points, one each
20s, and the Piecewise Constant (pconst) interpolation function, since it generates constant
values over consecutive intervals. For both the scenarios, the students considered UR TaLiRo
as uniform random generates samples fairly distributed across the input domain.

Table 1 reports the falsification rate (FR), i.e., the number of runs (over 50 runs) for which

S-TaLiRo detected a requirement violation. It also reports the mean (S) and median (S̃)
across the different runs of the number of model simulations required to detect the requirement
violation. The results of Table 1 show that, for Scenario 1 and Scenario 2, S-TaLiRo detected
a failure-revealing input for respectively 50 and 50 runs (out of 50). When S-TaLiRo found a
failure-revealing input for Scenario 1 and Scenario 2, the average number of iterations required
to detect the input was respectively 4.2 and 3.0, the median was respectively 1.1 and 1.0.

When the model was fixed (see Table 1), i.e., model model 1′ was generated, S-TaLiRo still
generated failure-revealing test cases indicating the presence of other faults within the model.

Testing Requirement 2. The model considered for testing this requirement had a prob-
lem: the value assigned to the output signal VENT CMP REF PWM by the state VVI Refactory is
125Hz instead of VENT CMP REF PWM = VENT Sensitivity/5*100

The students tested requirement ϕ2 by considering two testing scenarios. In the first sce-
nario (Scenario 1 ), the value of the amplitude for the pace of the ventricle (VENT Amplitude)
and the mode of the pacemaker (Mode) change across the simulation. The students set 15s
as simulation time. For the input generation, the students considered [1, 5] as input range, 3
control points, one at the beginning, middle, and end of the simulation, and the pchip interpo-
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Requirement Model Scenario FR S S̃

Requirement 1

model 1 Scenario 1 50 4.2 3.0
model 1 Scenario 2 50 1.1 1.0
model 1′ Scenario 1 13.0 136.6 100.0
model 1′ Scenario 2 50.0 1.02 1.0

Requirement 2

model 2 Scenario 1 50 5.3 3.0
model 2 Scenario 2 50 4.2 3.0
model 2′ Scenario 1 0.0 - -
model 2′ Scenario 2 0.0 - -

FR: falsification rate wrt. number of 50 trials,
S and S̃: mean resp. median (rounded down) number of simulations over successful trials.

Table 1: Results of the testing activity of the pacemaker benchmark.

lation function [11] for the input signal VENT Amplitude, and 3 control points and the pconst

interpolation function for the Mode input signal. In the second scenario (Scenario 2 ), they
also assumed that the VENT Pulse Width changes across the simulation. For this signal, they
considered [0, 2] as input range, 3 control points, and the pchip interpolation function.

The results of Table 1 show that, for both the scenarios, S-TaLiRo detected a failure-
revealing input for 50 runs (out of 50). The average number of iterations required to detect the
failure-revealing input was respectively 5.3 and 3.0, the median was respectively 4.2 and 3.0.

When the model was fixed (see Table 1), i.e., model model 2′ was generated, S-TaLiRo
could not generate any failure-revealing test case.

6 Discussion

The pacemaker benchmark contains a representative model from the medical domain. First,
the pacemaker benchmark was defined by consulting the pacemaker system specification [12]
provided by Boston Scientific [5]. Second, the Simulink® models of the controller of the pace-
maker were deployed and tested on a FRDM-K64F microcontroller [7]. A video of the behavior
of one of the controllers when deployed on a FRDM-K64F microcontroller is available online [8].

The pacemaker benchmark can be added to the models of the ARCH competition [6]. The
ARCH competition considers contains different benchmarks. However, it does not contain any
benchmark from the medical domain. Adding the pacemaker benchmark to the ones considered
by the ARCH competition will overcome this limitation. For example, the Scenario 1 of the
model 1′ can be a valuable example for comparing existing tools since (a) S-TaLiRo found a
failure-revealing input in a limited number of runs (13.0 out of 50 runs), and (b) S-TaLiRo
required a considerable number of iterations (on average 136.6).

7 Conclusion

This paper proposes a benchmark containing two Simulink® models for a simple pacemaker
controller. Each model comes with a requirement formalized in STL. The models and re-
quirements can be input in existing falsification-based testing tools, such as S-TaLiRo [3] and
Aristeo [10]. We presented and discussed the results obtained with S-TaLiRo [3].
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We argued that the proposed benchmark is representative since it was defined by considering
the pacemaker system specification [12] provided by Boston Scientific [5] and the controllers
were deployed and tested on the FRDM-K64F microcontroller [7]. We also suggested adding
the pacemaker benchmark to the ARCH competition.

In future work, we plan to evaluate alternative STL formalizations for our requirements
(e.g., by using external variables to count the heartbeats within a sliding window), to split
Requirement 1 into two alternative requirements (one for each subformula of the conjunction),
and to assess the impact of these alternative STL formalizations on our results. Finally, we
will evaluate the impact of the number of control points, interpolation function, and simulation
time on the falsification results.
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