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Abstract

In this paper, we present a simulation study for a bike-sharing network. The model
is analyzed with the Birth-Death process as well as a multidimensional Markov queueing
system. We evaluate the steady-state probability of running out of docking stations or
bikes. The results provide guidelines for the setup of the network with optimized system
efficiency.
Keywords: Bike sharing, birth-death process, equilibrium state, Markov network.

1 Introduction

In today’s advanced world, resource-sharing concepts such as vehicle-sharing, or bike-sharing
systems are becoming increasingly popular. Bike sharing began in the 1960s in Amsterdam
and spread to different parts of the world [6]. Bike-sharing services are perceived as a great
means of transportation for short trips because they are more environment-friendly, involve
fewer headaches for tasks such as finding parking, getting insurance, performing maintenance,
and require less overhead investment from customers.

As an interdisciplinary research area, bike-sharing systems have been widely studied from
different perspectives including management [10], transportation [3], geography [1], medicine
[4], environmental science [11, 12], sustainability [2], mathematics [5], big data [12] and com-
puter science [9]. It has been shown that bike-sharing programs have a positive impact on the
consumption of natural resources, air pollution, intelligent transportation systems, health and
the economy. It helps to promote social and leisure activities, increase transport choice and
convenience, and reduce travel time and cost. On the other side, it is also shown that it does
not reduce traffic congestion and carbon emissions. A recent review of impact of bike-sharing
programs for smart cities is given in [2].

One of the major challenges encountered in bike-sharing systems is the restocking of the
bikes to the docking stations in a way that the system is optimized by the measure of customers
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satisfaction and resource management. In this paper, we use a computer simulation technique
to study the restocking of a bike-sharing system aimed at an efficient performance from both the
points of management and customers. In addition, a network model following the Birth-Death
(BD) system, and a multidimensional Markov process are presented to analyze the performance
of the system. Steady-state probabilities of running out of docking stations or bikes are obtained
by the combination of simulation and Markov models. The results provide insight into a well-
balanced system and suggestions for the implementation of management policies.

The rest of the paper is organized as follows. In Section 2, we present birth-death models
with some equilibrium analysis. Experiments and performance comparisons are discussed in
Section 3. Lastly, some conclusions and recommendations are summarized in Section 4.

2 Birth-death process for bike sharing system modelling

As an example, the network of a 4-station system is shown in Figure 1. For a given station, we
refer the definitions and terminologies listed in Table 1. Customers arrive at a station to rent a
bike for a duration of time and use it to make a trip from the original station to a destination.
The difference in customer arrival rates at each station can result in an imbalanced distribution
of bikes among the bike stations. This may result in two undesirable scenarios: 1- the station is
full so returning a bike is not possible, and 2- customers cannot rent a bike due to no availability.
In either of these scenarios, the customer has to exit the system immediately and try another
time. An alternative assumption is to force the customers to wait till availability arises.

Original Station Where a bike is rented from
Destination Station Where a bike is returned to
Trip Start Time When a bike is checked out
Trip End Time When a bike is returned to a docking station
Trip duration The difference between Trip Start Time and Trip End Time
Rate of bike check-out (µ) Rate of bikes being checked out at a station
Rate of bike return (λ) Rate of bikes being returned to a station
Transfer rate Rate of bikes transferring from one station to another
Station capacity Total number of docks in the station

Table 1: Definitions

The following birth-death models are based on a single station. The state of the station is
defined to be the number of bikes available at the station.

Case 1: negative states are not considered

Assume that the transfer rates are independent of time so that we can model each station as
an M/M/1/K queue. To be able to solve this system as a Markov process, the system’s state
needs to be defined in a way that the future state only depends on that of the present and not
that of the past. We define our system’s states based on the number of available bikes at the
stations. Thus the array of states is shown in (1). This case assumes that if a customer arrives
at a troubled station (no bikes or docks), he or she will have to exit the system immediately.

X = [0, 1, ...,K − 1,K], where K is the capacity of the station. (1)
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Figure 1: Network of stations

The state transition diagram is simply shown in Fig. 2, where µi, (i = 1, 2, · · · ,K) are the
rates of checking out bikes, and λi, (i = 0, 1, 2, · · · ,K − 1) are the rates of returning bikes at a
specific station.

Figure 2: Case 1: State transition diagram

Assuming constant rates for both checking out and returning, the probability of zero cus-
tomers in the state can be calculated by equilibrium analysis for the birth-death process:

P0 =
1− ρ

1− ρk+1
, where ρ =

λ

µ
< 1. (2)

Case 2: negative states are considered

In case 2, we assume that customers arriving at a troubled station will wait till a dock/bike
becomes available. Let the number of docks at station A be K, the maximum number of
customers waiting for a bike be N , and the maximum number of customers waiting for a dock
be M . To define the state parameter, the following two scenarios are considered:

(1) The number of bikes at Station A is non-zero, and the number of customers waiting for
docks is zero or positive;

(2) The number of bikes at Station A is zero, and there are customers at the station waiting
for a bike.
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In the first scenario, the state parameter is defined as the sum of the number of bikes in the
system and the number of customers waiting for a dock to return a bike. If the number of bikes
is less than K, then M = 0. The state parameter is non-positive. In this second scenario, the
state parameter is defined to be negative with the absolute value as the number of customers
waiting for a bike. The system’s total number of states is 2M +N − 1 as listed below.

X = [−N,−N + 1, · · · ,−1, 0, 1, 2, · · · , 2M − 1, 2M ]. (3)

Fig. 3 shows the state transition diagram for the special case M = N = K. It can be easily
generated to the general case with M,N and K are any positive integers.

Figure 3: Case 2 state transition diagram

Similar to case 1, assuming constant rates for both checking out and returning, the proba-
bility of zero customers in the state can be calculated. To be complete, we show the balance
equations for the equilibrium states:

State −K : λP−K = µP−K+1

→ P−K+1 =
λ

µ
P−K (4)

State −K + 1 : λP−K + µP−K+2 = (λ+ µ)P−K+1

→ P−K+2 =

((
λ

µ

)2

+
λ

µ

)
P−K − λ

µ
P−K =

(
λ

µ

)2

P−K (5)

State 2K − 2 : λP2K−3 + µP2K−1 = (λ+ µ)P2K−2

→ P−K−1 =

((
λ

µ

)K−1

+
λ

µ

)
P−K − λ

µ
P−K =

(
λ

µ

)3K−1

P−K (6)

State 2K − 1 : λP2K−2 + µP2K = (λ+ µ)P2K−1

→ P2K =

((
λ

µ

)K

+
λ

µ

)
P−K − λ

µ
P−K =

(
λ

µ

)3K

P−K (7)

State 2K : λP2K−1 = µP2K

→ P2K =

((
λ

µ

)K

+

(
λ

µ

)2
)
P−K −

(
λ

µ

)2

P−K =

(
λ

µ

)3K

P−K (8)

Using the fact that
∑

Pi = 1 for −K ≤ i ≤ 2K

we have
∑(

λ

µ

)i+K

P0 = 1 for −K ≤ i ≤ 2K
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(a) Case 1: ρ = 1
9

(b) Case 1: ρ = 4
5

Figure 4: Case 1: Effects of ρ on the probability distribution

Therefore, P0 = 1−ρ
1−ρ3K+1 , where λi = λ (i = −K,−K = 1, · · · , 2K − 1), µi = µ (i = −K +

1,−K = 2, · · · , 2K) and ρ = λ
µ < 1. Our experiments presented next section follow the process

shown as Fig. 3 for case 2.

3 Experiments and comparison

3.1 Steady-state simulation - case 1

Various simulations in Python have been performed to study the effect of different parameters
on the probability of having a troubled station (probability of state 0 or K). First the effect of ρ
on the steady-state probability distribution of each state for an individual station is studied. We
have calculated the steady-state probability distribution of all possible states for low, medium,
and high values of ρ. Fig. 4 summarizes the results from the experiments.

As expected, a high ratio of ρ will push the system towards maxing out the capacity and
available docks at the station, vs. a low ratio of ρ which will result in the unavailability of bikes
for customers. An ideal situation is a case where ρ = 1, that is, for every bike checkout, there
is a corresponding bike return.

Next, the effect of capacity on probability distribution is displayed in Fig. 5. This effect on
P0 is observed more precisely in Fig. 6. It is visible in the figure that an increase in capacity
results in a decrease in the probability of state 0, which is equivalent to having no available
bikes for customers.

Next, the average number of bikes/docks in the system is calculated. Fig. 7 illustrates the
effect of the ratio of λ over µ on the average number of bikes in this system. As can be seen in
this figure, as λ over µ ratio increases, the number of available bikes increases, while available
docks drop.

Consequently, the average number of failed returns (when no docks are available) increases
while the number of failed checkouts (when no bikes are available) drops to zero as seen in
Fig. 8.
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(a) Case 1: ρ = 4
5
and K = 4 (b) Case 1: ρ = 4

5
and K = 10

Figure 5: Case 1: Effects ρ and K on the probability distribution

Figure 6: Case 1: Effect of capacity on the probability of the first (troubled) state

3.2 Steady-state simulation - case 2

First the effect of ρ on the steady-state probability distribution of each state in Fig. 9. Similarly
to Fig. 4, it is visible that as the ratio of bikes returned to bikes checked out increases, the lower
the probability of having docks with no available bikes (state 0).

The effect of capacity on this probability distribution is seen in Fig. 10. The higher the
capacity of the station, the greater the likelihood of bike unavailability and consequently, more
customers waiting.
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Figure 7: Case 2: Effect of ρ

Figure 8: Case 2: effect of ρ
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(a) Case 2: ρ = 1
9

(b) Case 2: ρ = 4
5

Figure 9: Case 2 probability distribution for different values of ρ

(a) Case 2: ρ = 4
5
and K = 4 (b) Case 2: ρ = 4

5
and K = 10

Figure 10: Case 2: effect of ρ and K

The effect of capacity on P−K , where troubled states have lower probabilities vs. case 1 is
shown in Fig. 11. As the capacity increases, the probability of state −K decreases.

4 Conclusions and recommendations

In this paper, a bike-sharing station with two resources (bikes and docks) and two types of
services (bike returns or bike check-outs) has been modelled as an M/M/1/K queue. Two
cases have been simulated and compared under two different scenarios. In case 1, customers
exit the system in case of no availability. The state variable here is the number of available
bikes at the station which can range between 0 and K + 1, where K is the capacity of the
station. In case 2, up to K customers can wait to check out or return a bike. Here the state
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Figure 11: Case 2: Effect of capacity on the probability of the first (troubled) state

variable extends to negative values and can fall between −K and 2K, to account for customers
waiting for either of the services.

First, the effect of ρ, the ratio of return rates to checkout rates on the steady-state probability
distribution of each state has been studied. The simulation illustrates that higher ratios of ρ will
result in a higher probability of having more bikes available for case 1 and having K customers
waiting for bikes in case 2.

Next, the effect of the capacity of the station on the probability of the troubled state of
0 bikes or K customer waiting has been studied. The simulation results show that increasing
the capacity of the station drops this probability, and ultimately for the case of ρ < 1 this
probability converges to 0.2 where further increase in capacity will not result in any additional
improvement.

Finally, comparing case 1 to case 2, it can be concluded that forming a waiting line-up for
customers can reduce the probability of having a troubled state, depending on the capacity of
the station. In stations with lower capacity, this effect is more evident.

In future works, a network of stations can be modelled to study the interrelationship between
stations. In this scenario, each station can also be modeled with the assumption that when
there are no bikes or docks available, customers will transit to a nearby station.
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