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Abstract

We introduce a simple game of resource-conscious reasoning. In this two-player game,
players P and O place tokens of positive and negative polarity onto a game board according
to certain rules. P wins if she manages to match every negative token with a corresponding
positive token.

We study this token game using methods from computational complexity and proof
theory. Specifically, we show complexity results for various fragments of the game, in-
cluding PSPACE-completeness of a finite restriction and undecidability of the full game
featuring non-terminating plays. Moreover, we show that the finitary version of the game
is axiomatisable and can be embedded into exponential-free linear logic. The full game
is shown to satisfy the exponential rules of linear logic, but is not fully captured by it.
Finally, we show determinacy of the game, that is the existence of a winning strategy for
one of the players.

1 Introduction

Games and logic have a long-standing and fruitful relationship. We mention just a few products
of this happy union and refer to [HV19] for a more detailed account. Ehrenfeucht-Fräıssé games
or model comparison games, which characterize elementary equivalence, go back to [Ehr61]. In
the 1960s and 70s Lorenzen and Lorenz [Lor60, LL78, Lor01] used a dialogue game to provide
pragmatic foundations for constructive thinking. A little later, Hintikka [Hin74] characterized
truth in a model by a game for classical first-order logic. Also in the 1970s, Giles [Gil74, Gil77]
characterized infinite-valued  Lukasiewicz logics by a game involving bets on the outcomes of
dispersive elementary experiments. More recently, and closer to our current concern, formal
games have been used to model resource-conscious reasoning, leading to the rich field of game
semantics for substructural logics, in particular linear logic, see e.g. [Bla92, AJ94]. We also draw
inspiration from Japaridze’s research program on ‘computability logic’ [Jap03], which explores
a game model for many different kinds of interactions between machine and environment.

Like Japaridze, we follow a ‘games first’ approach here: Instead of coming up with a logic
that exhibits aspects of resource-conscious reasoning, we devise a game that clearly has these
features, and then study its logic afterwards. Our guiding principle is simplicity: What is
a minimalistic model of interaction that enforces resource-conscious reasoning and supports
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the basic moves of choice and repetition? Although simple, the token game we present here
gives rise to an intricate interaction. This is corroborated through its high computational
complexity: The repetition-free fragment of the game is PSPACE-complete (Theorem 27),
while the full game is already undecidable (Theorem 31). We establish a relationship between
the game and logic by showing that the rules of linear logic with mix are sound for the token
game (Theorem 35) and complete for its repetition-free fragment (Prop. 16). Finally, we derive
determinacy of the game (Theorem 37) from the Borel determinacy theorem.

2 The token game

In this section we introduce the token game. We start from an intuitive description before
moving on to the formal study.

2.1 An informal description

Two players, P and O, place polarized tokens a+, a−, b+, b−, . . . and tasks (defined below) on
a board. At any point P can take a matching pair a+, a− and remove it from the board. She
wins by ensuring that no negative token remains unmatched indefinitely.1 As an example, P
will win if the board is {a+, a+, a−, b+} as she can match a− with one of the a+’s, but she loses
in {a+, b+, a−, b−, b−} since one of the b−’s cannot be matched. Apart from polarized tokens,
the game board may contain choice tasks of the form

{s1, . . . , sn} ⊕P {t1, . . . , tm} and {s1, . . . , sn} ⊕O {t1, . . . , tm}

that P (respectively O) can replace by either all of the si’s or all of the tj ’s, each si and tj
again being a task or a polarized token. Moreover, we have repetition tasks

Js1, . . . , snKP and Js1, . . . , snKO

that allow P (respectively O) to add all the si’s simultaneously to the game board. The
repetition task itself remains on the board, and so adding the si’s can be repeated.

As the players’ actions—matching, choice and repeat—do not interfere with each other, the
order in which they move can essentially be left unspecified; we just require that every player
gets to move eventually. This condition trivially holds in a turn-based game model, but it can
also be realized in an asynchronous game satisfying a fairness condition on plays.

More importantly however, we stipulate the following principle that rules out certain dead-
locks: P does not lose as long as there is an ⊕O-task on the board. Effectively, this allows P
to wait for O to move in ⊕O.2

This concludes the informal description of the game. The reader familiar with linear logic
will of course see the connection from choice and repetition tasks to the additive and exponential
connectives of linear logic. Our chief interest will be whether P has a winning strategy in a
given game. Below are some examples of games and their analysis.3

• a− ⊕O b− , a+ ⊕P b+

P wins by waiting for O’s choice in his task, and then answering appropriately using her
own choice task. If O never makes a choice, P wins by definition.

1In finite plays this is equivalent to saying that the board is eventually free of negative tokens; in infinite
plays the board may never be free of negative tokens, but P must at least make sure that every single negative
token eventually disappears.

2At the end of Section 2.2 we give an intuitive motivation for this particular choice.
3We often identify singleton (multi)sets with their elements, thus writing a+ ⊕O b− for {a+} ⊕O {b−}.
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• d− , {(a− ⊕O c−), d+} ⊕P {(b− ⊕O c−), d+} , (a+ ⊕O b+) ⊕P c+

P must move as otherwise d− remains unmatched. If for example she chooses (a− ⊕O

c−), d+ in the first choices task, O can make a further choice to place a− on the board.
To match this a− P will then choose a+ ⊕O b+ in the third choice task, but her attempt
is thwarted by O moving into b+. The other cases are similar, and we conclude that P
has no winning strategy in this game.

• Ja−, a−KO , Ja+KP
P wins this game: For every number of a−’s that O puts on the board, she adds the same
number of a+’s and does the matching. Even if O never stops, every occurrence of a− on
the game board will eventually be matched.

• Ja−, b+KP , Ja+, b−, b−KO
Here O wins by unpacking the repeat exactly once, thus placing a+, b−, b− on the game
board. Now P needs to unpack her repeat task twice to match the two b−’s. This results
in two a−’s on the board, one of which will remain unmatched.

• a− ⊕P a−

P wins this game by simply not moving.

2.2 A formal account

In this section, we formalize the game introduced in Section 2.1. The purpose of this is to
eliminate any potential misunderstandings about the informal presentation and to provide a
solid basis for formal reasoning about the game. However, the reader may also skip this and
the subsequent Section 2.3 on first reading, taking only note of Prop. 10 and 11, and then refer
back as needed.

We first formalize a liberal version, where players move independently (asynchronously). We
will later see that, if one cares only about the existence of winning strategies for P, the game
is equivalent to a strict version, with P as the scheduler of moves. The strict game is easily
analyzed using a calculus, and we often work with it in subsequent sections. The reason that
we nevertheless start with the liberal version is that, in our opinion, it is more intuitive as a
game and closer to applications. Moreover, by showing the equivalence of the liberal and strict
semantics the scope of all subsequent results is extended.

We assume an countably infinite set a, b, c, . . . of tokens. Polarized tokens are of the form
a+ (positive) or a− (negative). Tasks and Multitasks are defined via mutual recursion:

Definition 1 (tasks and multitasks). Multitasks (denoted by uppercase letters S, T, . . .) are
finite families of tasks. Tasks (denoted by lowercase letters s, t, . . .) are of the following form:

s ::= a+ | a− | S ⊕P T | S ⊕O T | JSKP | JSKO

For multitasks we use multiset notation, e.g. S = {a+, a+, ({b−, c+} ⊕P ∅), Jb+, a−KO}.
Multitasks are allowed to be empty. Since multitasks are families rather than multisets, we
retain the possibility of distinguishing between different occurrences of the same task within a
multitask.4

We write S, T for the disjoint union of multitasks S and T , and let S, s := S, {s}. Conse-
quently, the line between tasks and multitask is somewhat blurred in the notation. Keeping in

4Families are formalised as functions X : I → dom(X), where |{i ∈ I | f(i) = a}| denotes the multiplicity of
a in X. Different occurrences of a can be distinguished, as they are associated to different indices i.
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mind the following should prevent any confusion: The arguments of ⊕O, ⊕P, JKP and JKO are
always multitasks, and the elements of multitasks are always tasks.

Definition 2 (moves). The relations →P,→O denote single moves by players P and O and
are defined through the following clauses (i = 1, 2):

S, a−, a+ →P S (match)

S, T1 ⊕P T2 →P S, Ti (P-choice) S, T1 ⊕O T2 →O S, Ti (O-choice)

S, JT KP →P S, JT KP, T (P-repeat) S, JT KO →O S, JT KO, T (O-repeat)

Their reflexive transitive closures are denoted →∗
P and →∗

O.

Here are some examples of moves:

{s, t, a−, a−, a+} →P {s, t, a−} {s, t, {s1, s2} ⊕O T} →O {s, t, s1, s2}
{s, t, Js1, s2KP} →P {s, t, Js1, s2KP, s1, s2}

Definition 3. SP denotes the submultitask of S where P can move: Tokens and tasks with
principal connective ⊕P or JKP. SO, its complement, contains tasks with principal connective
⊕O or JKO.

Every P-move in S is essentially a move in SP, and likewise for O. Formally: Whenever
S →∗

P T , there exists U such that SP →∗
P U and T = U, SO (and similar for O).

We consider a game where P and O may move simultaneously. A round in the game consists
of both players looking at the history of the play so far and deciding on a (possibly empty) finite
sequence of moves they will carry out independently of the other player’s concurrent moves.
Once both players have moved, they inspect the game state again (now seeing the effect of the
other player’s moves) and decide on the next move, and so on. This notion of asynchronous
play is relatively liberal, and in particular it allows players simply to wait for the other to move.

For purely technical reasons, in Definition 4 below the players will take turns with O taking
the lead, instead of playing concurrently as described above. When we define strategies we will
however enforce that P cannot take O’s preceding move into account. This has the desired effect
that we can think of a pair of subsequent moves by O and P as taking place simultaneously.

Definition 4 (play). A play on S is an infinite sequence (S1, S2, S3, . . .) such that

S = S1 →∗
O S2 →∗

P S3 →∗
O . . .

An initial segment (S1, . . . , Sk) of a play is called a position, and we say that it ends in Sk. A
play is said to terminate in T if for some k > 0, Si = T for all i ≥ k. The set of all plays on
S is denoted G∞(S). A position is realized in a set of plays if it appears as an initial segment
of some play.

Note that if neither P nor O has a move in Sk then the only play realizing the position
(S1, . . . , Sk) is (S1, . . . , Sk, Sk, Sk, . . .), which according to Def. 4 terminates in Sk. In this way
the definition also captures finite games.

Definition 5 (strategy). An O-strategy in S is a nonempty subset H ⊆ G∞(S) with the
following property: If (S1, . . . , Sk) is realized in H and k is even, then for all Sk →∗

P T there
exists a unique T →∗

O U such that (S1, . . . , Sk, T, U) is realized in H.
A P-strategy in S is a nonempty subset H ⊆ G∞(S) with the following property: If (S1, . . . , Sk)

is realized in H and k is odd, then there exists a unique SP
k →P U such that for all SO

k →∗
O T ,

(S1, . . . , S
P
k ∪ SO

k , SP
k ∪ T,U ∪ T ) is realized in H.
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As mentioned earlier, the somewhat complicated definition of a P-strategy guarantees that
her moves do not depend on the immediately preceding move of O.

Lemma 6. Let H1 and H2 be P- and O-strategies in G∞(S) respectively. Then H1 ∩ H2

contains a single play.

Proof. Straightforward.

Definition 7 (guarantees and winning conditions). Let h ∈ G∞(S).

1. h is O-responsive if for all σ ⊆ h containing an occurrence of S ⊕O T , there exists a
σ ⊆ σ′ ⊆ h where O has moved in that occurrence.

2. h is P-responsive if for every σ ⊆ h containing an occurrence of a−, there exist an
σ ⊆ σ′ ⊆ h where that occurrence has been matched.

3. h is O-winning if it is O-responsive but not P-responsive; it is P-winning otherwise.

Put differently, being P-winning means satisfying the implication ‘if O-responsive, then P-
responsive’.

Definition 8 (winning strategies). A strategy H for P (O) is winning if it contains only
P-winning (O-winning) plays. We write |=P S (|=O S) if P (O) has a winning strategy in S.

The asymmetric nature of the token game, as apparent in Definition 7, warrants further
explanation. We envision a scenario where P is a system providing a resource-sensitive service,
as exemplified by condition P-responsiveness. O is the user of that system. A task S ⊕O T
can be understood as a prompt requiring input from O. In practice, there might be various
reasons why such input does not arrive (e.g., the user drops out of the connection), and in that
case, it is unfair to require P to deliver its service. Formally, we therefore declare plays failing
O-responsiveness to be won by P.

There is no similar requirement for the task S ⊕P T , which in our scenario corresponds
to a P-computation waiting to be continued. This is because we consider P’s basic function
to guarantee P-responsiveness; if this can be achieved without all computations terminating,
then this is considered acceptable. Note also that since we are working with multitasks, an
unanswered ⊕P corresponds to only one computation of the system being halted, and not the
whole system coming to a halt.

Of course, different scenarios might call for different connectives and guarantees. We believe
that the combination of operators and guarantees as given here is interesting in its own right,
but also note that some alternative connectives are definable in the present setup:

defined connective interpretation definition
S ⊕•P T forced P-choice (Def. 23) a−, {S, a+} ⊕P {T, a+} (a fresh)
JSK∗P forced P-repetition Ja−KO, JS, a+KP (a fresh)

S ⊕l
O T liberal O-choice (S ⊕O T ) ⊕O {}

2.3 Some basic properties of the token game

We begin with two simple observations, whose proof can be found in the appendix. First, P
never loses by letting O move before her. Second, if P has winning strategies in two games
then she can play them in parallel.

Lemma 9. If |=P S and S →∗
O T , then |=P T .
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Proposition 10. If |=P S and |=P T , then |=P S, T .

Proposition 11.

1. If |=P S, T1 or |=P S, T2, then |=P S, (T1 ⊕P T2).

2. |=P S, (T1 ⊕O T2) iff (|=P S, T1 and |=P S, T2)

Proof. For (1), let P have a winning strategy in, say, S, T1. Then she can win in S, T1 ⊕P T2

as follows. First, she makes the move SP, T1 ⊕P T2 →P S, T1, while O moves SO →∗
O T . The

resulting multitask is SPT1 ∪ T . This multitask is obtainable from S, T1 by O-moves. Since P
has a winning strategy for the latter multitask, she can win in the former by Lem. 9.

The left-to-right direction of (2) is a direct application of Lemma 9. For the other direction,
note that P can simply wait until O makes his move in T1 ⊕O T2 (if O never makes a move
in this task, he loses). Then at some point, P finds a multitask T where S, Ti →∗

O T for some
i = 1, 2. By the assumption and Lem. 9, P has a winning strategy for this multitask.

3 The elementary token game

We begin our in-depth examination of the token game by focussing on its elementary fragment.

Definition 12. A multitask is elementary if it contains no repeat tasks.

If S is elementary, then every play in G∞(S) terminates in some multitask T .

3.1 Axiomatisability

With the groundwork laid in Section 2.3, it is now straightforward to provide a calculus WS
that derives exactly those elementary multitasks where P has a winning strategy. WS has
three rules that correspond to moves in the game:

S
(match)

S, a−, a+
S, Ti

(⊕P)i=1,2
S, T1 ⊕P T2

S, T1 S, T2
(⊕O)

S, T1 ⊕O T2

Initial multitasks are elementary multitasks without ⊕O’s and without negative tokens. Intu-
itively, initial multitasks are multitasks where O cannot move and P wins without continuing
the game. A proof in WS of a multitask S is a tree rooted in S, leaves are initial multitasks,
and each node is obtained from its parent by applying the above rules bottom-up.

Theorem 13. Let S be elementary. Then |=P S iff there is a proof of S in WS.

Proof. ⇐: It suffices to show that the rules and axioms of WS are sound with respect to |=P,
i.e. they preserve P-winnability. Initial multitasks are sound because P wins by doing nothing.
The soundness of (⊕P) and (⊕O) has been established in Prop. 11.1 and 11.2, respectively.
Finally, soundness of (match) is obvious.

⇒: By induction on the total number of connectives and tokens occurring (nested) in S.
Suppose |=P S. If S contains ⊕Os, i.e., S = S′, T1 ⊕O T2 then P has winning strategies for
S′, T1 and S′, T2, by Prop. 11.2. The inductive hypothesis gives us WS-proofs for S′, T1 and
S′, T2, which can be combined into a proof of S by applying (⊕O).

We can therefore assume that O cannot move in S, i.e. S = SP. If S wins by not moving,
then S is initial multitask and therefore has a trivial proof in WS. Otherwise, according to her
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MALL + (mix):

⊢ a, a⊥ ⊢
⊢ Γ ⊢ ∆
⊢ Γ,∆

(mix) ⊢ Γ
⊢ Γ, 1

(1)

⊢ Γ, A ⊢ ∆, B

⊢ Γ,∆, A⊗B
(⊗)

⊢ Γ, A,B

⊢ Γ, A

&

B
(

&

)
⊢ Γ, Ai

⊢ Γ, A1 ⊕A2
(⊕)

⊢ Γ, A ⊢ Γ, B

⊢ Γ, A&B
(&)

LL + (mix) : All rules above plus

⊢ Γ
⊢ Γ, ?A

(w?)
⊢ Γ, ?A, ?A

⊢ Γ, ?A
(c?)

⊢?Γ, A

⊢?Γ, !A
(pr!)

⊢ Γ, A

⊢ Γ, ?A
(dr?)

Figure 1: LL + (mix) and MALL + (mix).

winning strategy, P makes a nontrivial sequence of moves S →P S′ →P · · · . Obviously, P has
a winning strategy in S′, and so by induction hypothesis S′ has a WS-proof. We can extend
this to a WS-proof of S by adding an inference (match) or (⊕P) below that mirrors the move
S →P S′.

From the completeness of WS it follows immediately that the following strict version of
the game is equivalent to the liberal one: Instead of moving asynchronously, P now acts as a
scheduler, that is, in every round she decides in which tokens to match or which ⊕P to resolve.
Additionally, she may point at a ⊕O that O then has to resolve. P wins if she manages to
arrive at an initial multitask this way (note that this implies that all ⊕O’s have been resolved).

Proposition 14. The following rules are admissible in WS:

S
S, a+

(weak+) S
S, T1 ⊕P T2

(weak⊕P
) S T

S, T
(mix)

Proof. Obviously, the rules (weak+) and (weak⊕P
) preserve P-winnability, as P can simply

ignore the additional positive token or P-choice. Admissibility of (mix) is Prop. 10.

3.2 A connection to linear logic

Having linked the elementary game to a relatively conventional calculus, we can also draw
a comparison to linear logic. This will be achieved by translating elementary multitasks to
formulas of linear logic, and then showing that P-winnability of a multitask is equivalent to
provability of its translation in linear logic. The most natural translation goes into the variant
of linear logic called MALL + (mix), that is, exponential-free linear logic with the mix rule5,
as presented in Figure 1. Translations in other variants of linear logic are also possible.

Definition 15 (from elementary multitasks to formulas of linear logic).

τ({s1, . . . , sn}) := τ(s1)

&

. . .

&

τ(sn)

τ(∅) := 1

τ(a+) := a⊕ 1

τ(a−) := a⊥

τ(S ⊕P T ) := (τ(S) ⊕ τ(T )) ⊕ 1

τ(S ⊕O T ) := τ(S)&τ(T )

5Following [FR94], we include ⊢ (the empty sequent) in MALL + (mix), which can be seen as a 0-ary
version of (mix). We also omit the logical constant ⊤.
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The ⊕1 in τ(a+) and τ(S ⊕P T ) indicates that P can choose to not match a positive token, or
to not make a P-choice. Note that this translation does not use the tensor ⊗ of linear logic.

Proposition 16. For elementary S = {s1, . . . , sn}, |=P S iff MALL + (mix) proves ⊢
τ(s1), . . . , τ(sn).

Proof. By Thm. 13, it suffices to show that S is provable in WS iff τ(s1), . . . , τ(sn) is provable
in MALL + (mix). This is established in a straightforward manner by showing how the rules
and axioms of both calculi simulate each other.

From WS to MALL + (mix). If S is an initial multitask, then each τ(si) is of the form
∗ ⊕ 1, and therefore the whole sequent is derivable from ⊢ using the rules (1) and (⊕). The
(match)-rule of WS, below left, is simulated by the MALL + (mix)-derivation below right:

S
S, a−, a+

(match)
⊢ τ(S)

⊢ a⊥, a

⊢ a⊥, a⊕ 1
(⊕)

⊢ τ(S), a⊥, a⊕ 1
(mix)

The simulation of (⊕P) and (⊕O) in MALL + (mix) is straightforward.
From MALL + (mix) to WS. Straightforward, using Prop. 14.

This relation between the token game and linear logic should not be overemphasized, as the
image of the τ -translation is a rather odd fragment of linear logic. It is also worth pointing out
here that the game is not closed under substitution (tokens are not variables), and thus fails to
be a logic according to at least some definitions.

Nevertheless, some simple conclusions can be drawn from the embedding, and we discuss one
that relates to cut-admissibility in MALL+ (mix). For this, call a pair s, t of elementary tasks
pseudo-dual if MALL + (mix) proves ⊢ τ(s)⊥, τ(t)⊥. This holds in particular if τ(t) = τ(s)⊥.

Corollary 17. If s, t are pseudo-dual, then the following rule is admissible in WS:

S, s T, t

S, T
(cut)

Proof. Assume |=P S, s and |=P T, t where S = {s1, . . . , sn} and T = {t1, . . . , tm}. By Prop. 16
the sequents ⊢ τ(s1), . . . , τ(sn), τ(s) and ⊢ τ(t1), . . . , τ(tm), τ(t) are provable in MALL+(mix).
By provability of ⊢ τ(s)⊥, τ(t)⊥ and cut-admissibility in MALL+ (mix) we conclude that also
⊢ τ(t1), . . . , τ(tm), τ(s)⊥ is provable in MALL + (mix), and by yet another cut it follows that
the same holds for ⊢ τ(s1), . . . , τ(sn), τ(t1), . . . , τ(tm). Thus |=P S, T by Prop. 16.

As an example, we can show that |=P S, a+ and |=P T, a− implies |=P S, T . Indeed,
|=P T, a− implies |=P T, a− ⊕O ∅. But6 τ(a− ⊕O ∅) = a⊥&1 = (a ⊕ 1)⊥ = τ(a+)⊥, which
implies that a+ and a− ⊕O ∅ are pseudo-dual, and hence by Cor. 17 we get |=P S, T .

3.3 Computational complexity

Definition 18 (token count). The a-count of an elementary (multi)task is defined as follows:

a :S =
∑
s∈S

a :s a : (S ⊕O T ) = min{a :S, a :T} a : (S ⊕P T ) = max{0, a :S, a :T}

a :a+ = 1 a :a− = −1 a :b = 0 (b /∈ {a+, a−})

6Note here that 1⊥ = 1 in the presence of (mix).

348



A Simple Token Game and its Logic Fermüller, Freiman and Lang

If S does no contain choice connectives, then a :S simply counts the number of a+’s in S
minus the number of a−’s. More generally, we have the following:

Lemma 19. Let S be elementary. Then a :S is the minimal integer k such that O can enforce
a :T ≤ k in every play terminating in T .

Proof. Straightforward; the 0 appears in max{0, a :S, a :T} because P can choose to never move
in S ⊕P T .

We first observe that O-winnability in the elementary token game without P-choices is a
simple optimisation task that is independent across subgames, and thus efficiently decidable.

Proposition 20. O-winnability in the ⊕O-fragment is PTIME.

Proof. For any elementary multitask S, |=O S iff O has a strategy σ such that in every play in
σ terminating in T we have a :T < 0 for some token a. If S is in the ⊕O-fragment, then there is
only one play once O’s strategy σ is fixed, and so a is determined by σ. Together with Lem. 19,
it follows that |=O S iff for some token a occurring in S, a : S < 0.7 A PTIME-algorithm
for determining whether |=O S now proceeds as follows: For every token a appearing in S,
calculate a :S. If one of the a :S’s is negative, accept; Otherwise reject.

As games in the ⊕O-fragment are finite and thus determined, we obtain immediately:

Corollary 21. P-winnability in the ⊕O-fragment is PTIME.

For the next proposition, we need two additional definitions.

Definition 22. For a natural number k and a task s, k · s = {s, . . . , s} (k times).

Definition 23 (forced P-choice). S ⊕•P T := {t−, (t+, S)⊕P (t+, T )}, where t is a fresh token.

The multitask S ⊕•P P is like S ⊕P T , only that P loses if she does not make a choice.

Proposition 24. P-winnability in the ⊕P-fragment is NP-complete.

Proof. A strategy in the ⊕P-fragment of the token game is a sequence of consecutive choices
by P, bounded in length by the number of ⊕P’s in the multitask. Therefore we can guess
in polynomial time a strategy for P, and then check (also in polynomial time) whether the
resulting multiset of tokens has a matching. Hence winnability in the ⊕P-fragment is in NP.

We show NP-hardness by reducing 3SAT to winnability for the ⊕P-fragment. For this, let
φ be a boolean formula of the form n∧

i=1

(li ∨mi ∨ ri)

where each li,mi, ri is a literal. φ is satisfiable if and only if one can choose one literal in each
clause of the conjunction (intuitively: making it true) in a consistent way, meaning that no
literal and its converse are chosen.

It is this property that we now model as a multitask. For this, we identify x ∈ vars(φ)
with a token; we also introduce a token x̄ that stands for ¬x. In particular, all literals in φ are
identified with a token. Using one additional token t, define:

Cx := (n · x+) ⊕•P (n · x̄+) Si := l−i ⊕•P m−
i ⊕•P r−i

φ† := {S1, . . . , Sn} ∪ {Cx | x ∈ vars(φ)}
7This equivalence would not hold if P-choices were involved: For example, O could win by enforcing that in

every play either the a-count or the b-count for some tokens a, b is negative, but which one it is might depend
on choices by P.
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Clearly, the map φ 7→ φ† is computable in polynomial time, and φ† is in the ⊕P-fragment. To
win φ†, P has to make choices in all of the Cx’s, and we interpret these choices as picking a
variable assigment: P’s choice of n · x+ makes x true, and P’s choice of n · x̄+ makes x false.
She also has to make choices in all of the Si’s, thereby she effectively chooses a literal from each
clause (li, mi or ri).

The consistency of P’s choices is enforced as follows. If P chooses both a literal x and its
converse x̄, then the resulting multitask contains both tokens x− and x̄−. They cannot both be
matched using the positive tokens in Cx, and so P will inevitably lose. On the other hand, if this
is not the case—say only x̄ occurs in the multitask—then there are at most n such x̄’s in total
(one from each Si) and so Cx contains enough positive tokens x+ to obtain a matching.

Sequential choices. Consider a sequence (S1⊕X1
T1), (S2⊕X2

T2), . . . , (Sn⊕Xn
Tn) of choice

tasks by either player. We want to come up with a game that P can only win if the choices
are made in the indicated order, that is, first X1 chooses between S1 and T1, then X2 chooses
between S2 and T2 and so forth. (We do not impose anything about the order of the subsequent
moves in the multitasks Si, Ti.)

The obvious solution to this is to use nested choices. For example, the multitask (S1, (S2⊕X2

T2)) ⊕X1
(T1, (S2 ⊕X2

T2)) enforces that X1 chooses between S1 and T1 before X2 chooses
between S2 and T2. It is however easy to see that this approach leads to a multitask whose size
is exponential in the number n of consecutive choices. For n = 3 we already have:

(S1,(S2,(S3⊕X3
T3))⊕X2

(T2,(S3⊕X3
T3)))⊕X1

(T1,(S2,(S3⊕X3
T3))⊕X2

(T2,(S3⊕X3
T3)))

We now discuss an encoding that avoids the exponential blowup. This will be key to showing
PSPACE-hardness of the elementary game.

Definition 25. (Si ⊕Xi Ti)1≤i≤n be a sequence of choice tasks. The modified task ⟨Si ⊕Xi Ti⟩
is defined as follows, where a1, b1, . . . , an, bn is a sequence of ‘fresh’ tokens:

for 1 < i < n: ⟨Si ⊕Xi
Ti⟩ := ((Si, (a

−
i ⊕O b−i ), a+i−1) ⊕Xi

(Ti, (a
−
i ⊕O b−i ), a+i−1))

⊕P((Si, (a
−
i ⊕O b−i ), b+i−1) ⊕Xi

(Ti, (a
−
i ⊕O b−i ), b+i−1))

⟨Sn ⊕Xn Tn⟩ := ((Sn, a
+
n−1) ⊕Xn (Tn, a

+
n−1))

⊕P((Sn, b
+
n−1) ⊕Xn

(Tn, b
+
n−1))

⟨S1 ⊕X1 T1⟩ := (S1, (a
−
1 ⊕O b−1 )) ⊕X1 (T1, (a

−
1 ⊕O b−1 ))

We define ⟨Si ⊕Xi
Ti⟩1≤1≤n as the multitask {⟨S1 ⊕X1

T1⟩, ⟨S2 ⊕X2
T2⟩, . . . , ⟨Sn ⊕Xn

Tn⟩}.

Unlike the naive encoding, ⟨Si ⊕Xi
Ti⟩1≤1≤n grows only linearly in the size of n. We now

claim that it enforces that all choices are made in the right order.
The idea for the ⟨⟩-encoding is the following. For i > 0, ⟨Si ⊕Xi Ti⟩ is a P-choice between

two modified copies of the task Si ⊕Xi Ti, one of which has an a+i−1 appended to it while the

other one has b+i−1. However P only knows which one of these positive tasks she needs to win

the game once O has made his choice in the task a−i−1 ⊕O b−i−1, and this O-choice can only
happen after P has moved in ⟨Si−1 ⊕Xi−1

Ti−1⟩.

Lemma 26. Let (Si ⊕Xi
Ti)1≤i≤n be a sequence of choice tasks. Assume that at some point

during a play on S, ⟨Si ⊕Xi
Ti⟩1≤1≤n, the choice between Sk and Tk is being made, where the

choice between Sk+1 and Tk+1 has already taken place. Then O has a winning strategy for the
remaining game.
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Proof. The choice between Sk and Tk adds a−k ⊕Ob−k to the multitask; and as the choice between
Sk+1 and Tk+1 has been made, there is exactly one of a+k and b+k in the multitask. Now O wins
by choosing the token in a−k ⊕O b−k that does not match.

Theorem 27. P-winnability in the elementary game is PSPACE-complete.

Proof. Containment in PSPACE follows, for example, from Prop. 16 and the fact that MALL+
(mix) is in PSPACE [Hor15].

The hardness proof is an extension of the NP-hardness proof in Prop. 24. We translate a
quantified boolean formula φ of the form

Q1x1 . . . Qmxm

n∧
i=1

(li ∨mi ∨ ri)

where Qi ∈ {∀,∃} to P to an elementary game φ† such that validity of φ is equivalent to
P-winnability of φ†.

Without loss of generality, we assume that all variables in φ are bound by a unique quantifier.
We will use again the multitask Si defined as in the proof of Prop. 24. Moreover, we define

Dxi := (n · x+
i ) ⊕Xi (n · x̄+

i ) and φ† := ⟨Dxi⟩1≤i≤n, S1, . . . , Sn.

Just like in Prop. 24, we interpret a choice in Dxi
as fixing the value of xi to be either true (left

disjunct) or false (right disjunct). This time the choice is by P if xi is existentially quantified
and by O if xi is universally quantified. To make sure that both players choices are made in
an order respecting the quantifier string Q1x1 . . . Qmxm we now use the ⟨⟩-encoding. The map
ϕ 7→ ϕ† is computable in polynomial time. Using the same argument as in the proof of Prop. 24
and Lem. 26, it is easy to see that |=P φ† iff φ is valid.

A similar but different ‘trick’ for encoding the quantifier order appears in the PSPACE-
hardness proof for MALL in [LMSS92]. However the encoding in [LMSS92] uses the tensor ⊗
which does not have a direct correspondent in the game, see Section 3.2.

4 The full token game

4.1 Undecidability of the full game

In this section, we show the undecidability of the full game by encoding the halting problem
of a Turing-complete machine model, namely and-branching two counter machines. The same
model is used in the undecidability proof [LMSS92] of linear logic, and we loosely follow the
outline given there.

An and-branching two counter machine (ACM) X = (Q,T, qI , qE) consists of a finite set Q
of states with distinguished initial state qI ∈ Q and final state qE ∈ Q and a finite set T of
transitions (to be defined below). ACMs are models of parallel computation, and therefore one
is interested in multisets of states. An instantaneous description (ID) of an ACM is a finite
multiset of machine states (q, a, b) where q ∈ Q is the current state and a, b ∈ N0 are the values
of the two counters. An ID is accepting if all of its elements are (qE , 0, 0). Each transition
replaces one state within an ID by one or two states. The possible forms of transitions and
their effect on an ID are described in the first two columns of Figure 2. Note in particular that
a decrease instruction can only be carried out if the respective counter is positive.
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Figure 2: ACM instructions and their encoding

t ∈ T effect of instruction encoding t̂

(p, inc(A), q) (p, a, b) →t (q, a + 1, b) {p−, a+0 , a
−
1 , q

+}
(p, dec(A), q) (p, a + 1, b) →t (q, a, b) {p−, a+1 , a

−
0 , q

+}
(p, inc(B), q) (p, a, b) →t (q, a, b + 1) {p−, b+0 , b

−
1 , q

+}
(p, dec(B), q) (p, a, b + 1) →t (q, a, b) {p−, b+1 , b

−
0 , q

+}
(p, fork, q1, q2) (p, a, b) →t (q1, a, b), (q2, a, b) {p−, q+1 ⊕O q+2 }

Definition 28. An ACM X is accepting if there is a computation sequence from {(qI , 0, 0)}
to an accepting ID.

Note that there are two types of counter tests in an ACM: First, whenever we apply dec(A)
or dec(B), the counter A or B is implicitly tested for positivity. Second, there is a zero test for
both counters at the end of the computation.

For technical reasons, in Figure 2 we assume p ̸= qE (no transition applies to the final state)
and p /∈ {q, q1, q2} (no simple loops). It is easy to see that both requirements are not essential.8

We now move towards the encoding of ACMs into multitasks. We first discuss the encoding
of counter values, as this is the tricky bit. An idea is to assign to a counter value A a token a,
and model the value A = n by a multitask k ·a+, l ·a− where k− l = n. This idea does not work
as we must be able to implement a zero test in final states, i.e. a test for k = l. But increasing
k always preserves P-winnability and increasing l preserves O-winnability, while violating the
equation k = l. Thus, with this encoding, it seems impossible to relate a successful zero test
with winnability by either player.

Instead, we will use two tokens a0, a1 and encode A = n by k · {a+0 , a
−
1 }, l · {a

+
1 , a

−
0 } where

n = k − l. It is easy to see that this multitask is P-winnable iff k = l, i.e. A = 0. This is
progress, but we also need to test for A ≥ 0, i.e k ≥ l for the dec(A) instruction. We do so
by allowing O to abort the game at any point where he suspects a previous dec(A) was illegal,
and therefore A < 0. However, when O does so he must grant P a Ja+1 KP. Thus P has to win
k · {a+0 , a

−
1 }, l · {a

+
1 , a

−
0 }, Ja

+
1 KP to prove O wrong, and indeed this game is P-winnable iff k ≥ l.

Consider now an ACM X = (Q,T, qI , qE) where T = {t1, . . . , tk}. We identify each state
q ∈ Q with a state token, and add four counter tokens a0, a1, b0, b1 for encoding the two counters
A and B.

Definition 29. The multitask encoding of an ACM X is

X̂ := {q+I , q
−
E , JC ⊕O (t̂1 ⊕P . . .⊕P t̂k)KP}

where C := {q+E , Ja
+
1 KP, Jb+1 KP} is the control multitask and t̂i is defined as in Figure 2.

Proposition 30. X is accepting iff |=P X̂.

Theorem 31. It is undecidable whether P has a winning strategy in a given multitask S.

Proof. Follows from Prop. 30 and the undecidability of the halting problem for ACMs [LMSS92].

We will need some preparations before we can prove Prop. 30.

8Both properties are used in the proof of Lem. 33, see appendix.
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Definition 32. A quasi-simulation state is any multitask of the form

S = R,U, q−E , JC ⊕O (t̂1 ⊕P . . .⊕P t̂k)KP

where R contains polarized counter tokens such that a0 :R = −a1 :R and b0 :R = −b1 :R, and
U contains polarized state tokens such that

∑
p∈Q p :U = 1 and qE :U ≥ 0.

A quasi-simulation state S is p-proper, if a0 : R ≥ 0, b0 : R ≥ 0, p : U = 1, and q : U = 0
for all q ∈ Q \ {p}. To such a proper simulation state we associate the machine state ρ(S) =
(p, a0 :R, b0 :R). A pE-proper simulation state is called final.

X̂ is a simulation state with R = ∅, U = {q+I } and ρ(X̂) = (qI , 0, 0). Note also that a proper
simulation state S is final iff qE :S = 0, as qE :S = qE :U − 1.

The quasi-simulation states serve as an over-approximation to proper states encoding a
machine state. In our encoding we cannot prevent P from choosing an instruction that decreases
a register that is already zero, or one that does not match the current state. However, such
‘illegal’ moves lead from proper states to improper ones (Lem. 33) and we will make sure that
O wins all improper states (Lem. 34.1).

Lemma 33. Let S be a proper simulation state and t ∈ T .

• If t is non-forking, then S, t̂ is a quasi–simulation state. S, t̂ is proper iff ρ(S) →t ρ(S, t̂).

• If t = (p, fork, q1, q2), then S, t̂1 and S, t̂2 are quasi-simulation states, where t̂i = {p−, q+i }.
They are both proper iff ρ(S) →t ρ(S, t̂1), ρ(S, t̂2).

Proof. See appendix.

Lemma 34 (properties of simulation states).

1. If S is an improper simulation state, then |=O S.

2. If S is a proper simulation state, then |=P S,C.

3. If S is a final simulation state S, then |=P S ⇐⇒ ρ(S) = (qE , 0, 0).

Proof. (1) There are three possible sources of improperness in a quasi-simulation state: Either
a0 :S < 0, b0 :S < 0, or q :U < 0 for some q ∈ Q (where by the properties of a quasi-simulation
state, q ̸= qE). In any case, O’s strategy is to choose the control task C whenever prompted.
This means that all three aforementioned counts remain unchanged in the remainder of the
game. But then P loses, as one of the counts is negative.

(2) By assumption, the only tokens that can have negative counts in S are qE (being at
least −1) and a1, b1. However, these can all be matched using positive tokens in C.

(3) As we assumed that no transitions start in qE , Lem. 33 implies that S, t̂ is improper for
all t ∈ T , and therefore |=O S, t̂ by (1). Therefore P has no incentive to unpack her repeat task.
It follows that P needs to win in the remaining multitask, i.e. in R,U, q−E . As S is final, there is a
matching for the state tokens in U, q−E ; and the counter tokens a0, a1, b0, b1 in R can be matched
if and only if their counts are all non-negative. But as a0 :R = −a1 :R and b0 :R = −b1 :R this
can only be the case if all token counts are 0, which amounts to ρ(S) = (qe, 0, 0).

Proof of Prop. 30. It is straightforward to encode an accepting run of X as a P-winning strategy
in X̂. We therefore focus on the direction from |=P X̂ to X being accepting.

Consider the game on any proper and non-final simulation state S. Assuming that both
players move in the best of their interest, the game proceeds as follows: P is the only player who
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can move; and she must move, as by assumption qE :S = −1. She will then unpack one task
from the repeat and waits for O’s choice (it is easy to see that is not beneficial for P to unpack
multiple times before getting O’s answer). O now chooses the right disjunct t̂1 ⊕P . . . ⊕P t̂k,
as otherwise the game becomes P-winnable (Lem. 34.2). Then P chooses a transition in such
a way, if possible, that the resulting quasi-simulation state (or both states, in the case of a
fork instruction) is again proper, as otherwise O would have a winning strategy (Lem. 34.1).
Together with Lem. 33 this shows that if both players play in the best of their interests, the
arising sequence S1, S2, . . . of simulation states is such that ρ(S1) →t1 ρ(S2) →t2 . . . for suitable
transitions ti ∈ T . Moreover P can only win if the sequence arrives at a final simulation state
Sn with ρ(S) = (qE , 0, 0) (Lem. 34.3).

4.2 Some rules for the full game

Extending the τ -translation of Definition 15 to repeat tasks via τ(JSKP) =?τ(S) and τ(JSKO) =
!τ(S) we have the following partial extension of Prop. 16.

Theorem 35. Let S = {s1, . . . , sn}. If LL + (mix) proves ⊢ τ(s1), . . . , τ(sn), then |=P S.

Proof sketch. It is not difficult to show that all rules below preserve P-winnability. Modulo τ ,
they correspond to the exponential rules of linear logic (pr!), (c?), (dr?) and (w?) (see Figure 1).

JS1KP, . . . , JSnKP, T
JS1KP, . . . , JSnKP, JT KO

JSKP, JSKP, T
JSKP, T

S, T

JSKP, T
T

JSKP, T

On the other hand, these rules do not fully characterize the infinite game: The multitask
Ja−, a+KP, a− (corresponding to ?(a⊥

&

(a ∧ 1)), a⊥ ) in linear logic) is P-winnable, but not
provable using the rules given so far. P’s strategy consists in unpacking the repeat once,
matching one a+ with the preexisting a−, and then repeat the whole procedure to match the
newly introduced a−; the resulting non-terminating play is P-winning. Ja−, a+KP, a− becomes
provable if we allow the following rule, which can easily seen to be sound in the token game:

S, T

JS, T KP, T
(interleave)

The rule (interleave) implements a simple kind of cyclic reasoning, and it might indeed be the
case that the full power of cyclic proof systems (see e.g. [BS11]) is needed to fully capture the
token game.

4.3 Determinacy

In this section, we use the Borel Determinacy Theorem (BDT) [Kec12, Chapter 20] to prove
the determinacy of the token game: For every multitask S, one of the players has a winning
strategy. Strictly speaking the BDT applies only to sequential games, and so we show in the
appendix (Prop. 40) that the token game can be reformulated in a sequential format.

Let us for now assume that the BDT applies to the token game as-is. By the BDT, deter-
minacy follows if we can show that the set of winning plays (Definition 7) forms a Borel set in
the product topology on G∞(S). Recall that the basic open sets of the product topology on
G∞(S) are sets consisting of all plays that realize a given position.

Lemma 36. The set of winning plays for P in G∞(S) is a Borel set.
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Proof. Let O⊕(S) and T−(S) be the set of all occurrences of O-choices and negative tokens that
can appear in a token game starting on S; by a suitable encoding, both sets are countable.9 So
if t ∈ O⊕(S) and (S1, S2, . . .) ∈ G∞(S) is a play with t ∈ Sk and t ∈ Sl for l > k, this indicates
that the O-choice in t has not been made between Sk and Sl. Similarly, if a− ∈ T−(S) and
(S1, S2, . . .) is a play with a− ∈ Sk and a− ∈ Sl for l > k, this indicates that the occurrence of
a− has not been matched between Sk and Sl. For any t ∈ O⊕(S) ∪ T−(S), we let

Jt ∈ ρiK = {(S1, S2, . . .) ∈ G∞(S) : t ∈ Si}

be the set of all plays that contain t at the i-th position. It is not difficult to see that Jt ∈ ρiK
can be written as a union of basic open sets and is thus itself open. Its complement Jt /∈ ρiK :=
G∞(S) \ Jt ∈ ρiK is therefore closed. The set of O-responsive and P-responsive (Definition 7)
plays in G∞(S) can now be written as

ORes =
⋂
i≥1

⋂
t∈O⊕(S)

⋃
j≥i

Jt /∈ ρjK and PRes =
⋂
i≥1

⋂
a−∈T−(S)

⋃
j≥i

Ja− /∈ ρjK.

Both ORes and PRes are obtained from closed sets by the operations of countable union and
countable intersection, and are therefore Borel sets. Hence (G∞(S) \ ORes) ∪ PRes, the set of
winning plays for P in G∞(S), is Borel as well (in fact, it is a ∆0

4 set in the Borel hierarchy).

Theorem 37. For every multitask S, the token game starting at S is determined.

Proof. The Borel Determinacy Theorem deals with sequential games only, but by Prop. 40, we
can investigate an equivalent sequential game instead. As demonstrated in Lem. 36, the set of
winning plays for P is a Borel set. Hence, the game is determined.

Corollary 38. It is undecidable whether O has a winning strategy in a given multitask S.

Proof. By Thm. 37, |=O S iff not |=P S, and the latter is undecidable by Thm. 31.

5 Conclusion

Token games and the logic of tasks. The token game presented here shares some ideas
with Japaridze’s logic of tasks [Jap02, Jap06], especially in its presentation as a two-player ‘coin
game’ given in [MV08]. In both games a player has to obtain matchings between positive and
negative occurrences of atoms, and both players make certain choice moves. A crucial difference
is that the coin game features an additional level of arbitrariness: Once all choice moves are
made, truth values are assigned to all atom occurrences, and then these post-assigned truth
values are used to determine which player has won. The token game is simpler than the coin
game, but the latter is more ‘logical’ (for example it is closed under substitution). Ultimately,
the logic of the coin game unravels in quite a different way (it turns out to be a model of affine
logic) and it is not clear to us if there is a correspondence between both games that goes beyond
the basic conceptual ideas.

9For example, we could formalise a task occurrence t as function that takes a multitask T as an argument
and returns the index of t in T if t ∈ T , and a default value if t /∈ T .
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Further work. In Section 4.2 we discussed a sound calculus for the full game. The most
obvious open question is that of the axiomatisability of the full game; in fact we do not even know
if the set of P-winnable multitasks is computably enumerable. It could also be enlightening to
describe the subclass of games for which reasoning in linear logic is not only sound (cf. Thm. 35),
but complete.

In light of the undecidability of the full token game, it could be instructive to investigate
the decidability for some of its fragments, e.g. those using only tasks of a specific shape or only
a fixed number of tokens. For example, it should not be too difficult to show that the fragment
based on a single token is decidable.

Acknowledgements. We thank the anonymous reviewers for their careful reading and help-
ful suggestions.
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Appendix

Proof of Lemma 9

Lemma. If |=P S and S →∗
O T , then |=P T .

Proof. Let S →∗
O T = SP ∪ U ′ and let H be P’s winning strategy in S. According to H, P

makes the move SP →∗
P U in S. By the definition of a strategy, the position (S, SP∪U ′, U ∪U ′)

is realized in H. Let V = U ∪ U ′. Following H, P then chooses some V P →∗
P W .

P’s strategy in T is as follows. She starts by moving directly to TP →∗
P W ∪ UO. This is

possible since

TP = (SP ∪ U ′)P = SP ∪ U ′P →∗
P U ∪ U ′P = UP ∪ UO ∪ U ′P = V P ∪ UO →∗

P W ∪ UO.

After an arbitrary O-move TO =→∗
O W ′, the new position in the T -game is (T, TP ∪W ′,W ∪

UO ∪W ′). Back to the S-game, we note that also V O = UO ∪ (U ′)O = UO ∪TO →∗
O UO ∪W ′

is a legal O-move. Hence, the position (S, SP ∪ U ′, V, V P ∪ (UO ∪ W ′),W ∪ (UO ∪ W ′)) is
realized in H. Now the two games are synchronized and P can use H to continue playing in
the T -game. Clearly, this strategy is winning, since none of the winning conditions depend on
finite initial segments.

Proof of Proposition 10

Proposition. If |=P S and |=P T , then |=P S, T .

Proof. Let HS and HT be winning strategies for P in S and T , respectively. Intuitively, P’s
strategy in S, T is to play HS on S and HT on T . We define this strategy H to consist of plays

(S1 ∪ T1, S2 ∪ T2, . . .)

such that (S1, S2, . . .) ∈ HS and (T1, T2, . . .) ∈ HT . To show that H is indeed a well-defined
strategy for P according to Definition 5, assume that (S1 ∪ T1, . . . , Sk ∪ Tk) is realized in H
and k is odd. Since HS and HT are P-strategies, there are unique moves SP

k →∗
P U and

TP
k →P V such that for all SO

k →O U ′, TO
k →O V ′, the position (S1, . . . , Sk, S

P
k ∪ U ′, U ∪ U ′)

is realized in HS and (T1, . . . , Tk, T
P
k ∪ V ′, V ∪ V ′) is realized in HT . Let W = U ∪ V . We

note that (S∪
k Tk)P = SP

k ∪ TP
k →P U ′ ∪ T ′ = W is the unique P-move dictated by H in the

current position. To see that it satisfies the required independence of O’s preceding move, let
(Sk ∪ Tk)O →O W ′ be an arbitrary O-move. We easily see that this move decomposes into
Sk →O U ′ and TO

k →O V ′ with W ′ = U ′ ∪ T ′. By the above,

(S1 ∪ T1, . . . , Sk ∪ Tk, (Sk ∪ Tk)P ∪W ′,W ∪W ′)

is realized in H. The fact that H is winning follows directly from the the corresponding facts
for HS and HT .
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Proof of Lemma 33

Lemma. Let S be a proper simulation state and t ∈ T .

• If t is non-forking, then S, t̂ is a quasi–simulation state. S, t̂ is proper iff ρ(S) →t ρ(S, t̂).

• If t = (p, fork, q1, q2), then S, t̂1 and S, t̂2 are quasi-simulation states, where t̂i = {p−, q+i }.
They are both proper iff ρ(S) →t ρ(S, t̂1), ρ(S, t̂2).

Proof. We consider only the case where t = (p, dec(A), q), and consequently S, t̂ = S, p−, a+1 , a
−
0 , q

+.
The other cases are similar.

The equations a0 :R = −a1 :R and
∑

p∈Q p :U = 1 are both preserved by adding the four

polarized tokens in t̂. Moreover qE : (S, t̂) = qE :S + 1 if q = qE and qE : (S, t̂) = qE :S otherwise
(recall that always p ̸= qE). Thus S, t̂ is a quasi-simulation state.

We observe that a0 : (S, t̂) = a0 :S − 1, b0 : (S, t̂) = b0 :S, q′ : (S, t̂) = q′ :S for q′ ∈ Q \ {p, q},
p : (S, t̂) = p :S − 1 and q : (S, t̂) = p :S + 1 (recall that always p ̸= q by assumption).

Therefore S, t̂ is proper iff the following are satisfied: a0 : (S, t̂) ≥ 0, and thus a0 : S ≥ 1;
p : (S, t̂) = 0 and thus p :S = 1; and q : (S, t̂) = 1. But this means that ρ(S) = (p, a0 : (S, t̂)−1, b0 :
S) and ρ(S, t̂) = (q, a0 : (S, t̂), b0 :S), which is equivalent to ρ(S) →t ρ(S, t̂).

Sequentialising the token game

We show how to reformulate the token game as a sequential game, as the BDT only holds
for such games. In this game, O starts by making finitely many moves on the multitask S.
Unlike in the original game, P is now informed about the new multitask and makes finitely
many moves herself. The resulting sequence of multitasks is a play, in the sense of Definition 4.
However, the notion of strategy must be adapted to capture the sequentiality of moves:

Definition 39 (sequential strategy). A sequential O-strategy (P-strategy) in S is a nonempty
subset H ⊆ G∞(S) with the following property: If (S1, . . . , Sk) is realized in H and k is even
(odd), then there exists a unique Sk →O Sk+1 (Sk →P Sk+1) such that (S1, . . . , Sk, Sk+1) is
realized in H.

The definition of guarantees and winning strategies is like in Definition 7. For technical
reasons, we introduce a second sequential game. This game is exactly as before, only that now
P starts. The definition of play and strategies are adapted accordingly, while the definition of
guarantees and winning strategies remains the same. For reference, we call the game where O
starts the OP-sequential game (or just OP-game), the game where P starts the PO-sequential
game, and our original game the asynchronous game. The order of turns for all three games is
depicted schematically in Figure 3.

Strategically speaking, the games get easier for P from left to right in Figure 3. Indeed, in
the PO-game, every move of P is reported to O before he makes his move. Hence, if P has a
winning strategy in this game, certainly she has a winning strategy in the asynchronous game,
where O does not have this informational advantage10.

Similarly, the OP-game is easier for P than the asynchronous game. If she can win the
asynchronous game, she can simply ignore the additional information she receives in the OP-
game about O’s preceding move.

Completing the circle, P can also use a winning strategy for the OP-game in the PO-game
by skipping the first round in the latter. We thus have:

10This is not always true in game theory: more information does not always give the player an advantage.
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PO-Sequential Game

P starts

P

O

P

O

P

O

...

Asynchronous Game

simultaneous moves

O

P

O

P

O

P

...

OP-Sequential Game

O starts

O

P

O

P

O

P

...

Figure 3: Three variants of the game.

Proposition 40. Let T be a multitask. The following are equivalent:

1. P has a sequential winning strategy in the PO-game starting in T .

2. P has a winning strategy the asynchronous game starting in T .

3. P has a sequential winning strategy in the OP-game starting in T .

The same holds for O’s winning strategies.

Proof. 1 → 2: Let H be a winning strategy for P in the PO-game. Let us call a play (S1, S2, . . .)
of that game essentially asynchronous if O plays without taking P’s latest move into consid-
eration, i.e., for k odd we have Sk+1 = U ∪ U ′, with SO

k−1 →∗
O U ′, whenever SP

k−1 →∗
P U . We

construct the strategy H′ in the asynchronous game by adding for every such play a sequence
(S1, T2, S3, T4, . . .) to H′ as follows. Remember that in the asynchronous game, O formally
moves at odd positions, while P at even positions but without taking O’s previous move into
account. Since in (S1, S2, . . .), O plays essentially asynchronous, we can change the order of
moves. We set for k even, Tk = SP

k−1 ∪ U ′ with SO
k →∗

O U ′ as above. P then moves to

Sk+1 = U ∪ U ′ with SP
k−1 →∗

P U . It is easily seen that this is a well-defined winning strategy
in the asynchronous game.

2 → 3: Every sequential winning strategy for P in the asynchronous game is also a winning
strategy in the PO-game.

3 → 1: If H is a winning strategy for P in the OP-game, then H′ consisting of all plays
(S1, S1, S2, S3, . . .) where (S1, S2, S3, . . .) is a play in H is a winning strategy for P in the
PO-game.
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