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Abstract 

Mismatch between the patient’s knee morphology and the implant geometry is 

linked to poorer clinical outcome after total knee arthroplasty (TKA). Hence, patients 

whose knee morphology differs strongly from the norm may have a higher risk to be 

dissatisfied after surgery. Consequently, a preoperative risk assessment regarding 

differences between individual knee morphology and implant geometry is favorable. 

For adequate availability and limited radiation dose, this should be based on standard 

imaging in TKA, being conventional radiographs. 

We reviewed morphological measures of the knee to be evaluated on X-ray images. 

Only measures of the articulating areas, without connections to pathologies such as 

patellar instability or pain, were included. In addition, the accuracy of 2D-3D knee 

reconstruction was reviewed, in order to assess the potential use for 3D X-ray based 

analysis. 

Various parameter definitions for the evaluation on anterior-posterior and lateral 

X-rays exist in the literature. If given, the inter- and intraobserver reliability can be 

interpreted as moderate to excellent. Several authors have reported on 2D-3D 

reconstruction accuracies with maximum absolute errors of ~5-6 mm for in vitro 

studies. 

Mismatch between the bone morphology implant geometry can partly be assessed in 

2D, using single X-rays. Methods for 2D-3D reconstruction demonstrated potential for 

enabling 3D X ray-based analyses. However, improvements regarding accuracy and 

larger in vivo validation studies are pending. 

A basic preoperative risk assessment using X-rays is possible. Future steps could 

include the automation of the parameter derivation and an enhancement of 2D-3D 

reconstruction for enabling a more comprehensive assessment. 
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1 Introduction 

Total knee arthroplasty (TKA) is one of the most common procedures in orthopedic joint surgery, 

with a prospectively increasing relevance. Compared to total hip arthroplasty, improvements in 

patient satisfaction (pre-op vs. post-op) are significantly lower (OECD 2019). While there are many 

influence factors for patient satisfaction, implant design is one aspect to consider. Mismatch between 

the patient’s knee morphology and implant geometry is linked to poorer clinical outcome (Bonnin et 

al. 2013; Mahoney and Kinsey 2010). Hence, patients whose knee morphology differs strongly from 

the norm may have a higher risk to be dissatisfied after TKA. Consequently, a preoperative risk 

assessment is favorable; in order to decide whether other measures such as more extensive analyses 

and planning or even a patient-specific knee implant is advisable. Standard imaging prior to TKA 

includes a weight-bearing anterior-posterior (AP), a lateral and a patellofemoral joint X-ray (Tanzer 

and Makhdom 2016). With accurate positioning and the use of scaling objects, a derivation of 

morphological parameters from those X-rays is possible. While measurement accuracy is expected to 

be sufficient (La Fuente Klein 2008), measurement reliability would have to be ensured.  

Relevant parameters which cannot be evaluated in 2D are e.g., the TT-TG distance or overhang 

along the full bone contour. Therefore, methods for 2D-3D surface reconstruction are also of interest 

for a mismatch analysis. Based on a small number of (calibrated) X-ray images, the knee surface is 

reconstructed, potentially enabling analyses of the whole bone morphology. While parameter 

definitions for 3D bone assessment have already been studied by our group (Asseln et al. 2018), the 

applicability of surface models from 2D-3D reconstruction has not been investigated. For an adequate 

assessment, an accuracy of 1mm (Grothues and Radermacher 2021) to 3mm (Mahoney and Kinsey 

2010) at minimum would be required. 

Therefore, the aim of this study was to evaluate the applicability of conventional TKA imaging for 

preoperative risk assessment by reviewing morphologic parameters to be assessed on single X-rays 

and the accuracy of X-ray-based 2D-3D surface reconstruction of the knee. 

2  Materials and Methods 

A literature research on morphological parameters of the distal femur, the proximal tibia and the 

patella to be evaluated on single X-rays was performed. As search engine, Google Scholar and as 

search terms, knee, X-ray/ radiographs, parameter, and anatomy/ morphology were used. The 

reference lists of the papers considered were also searched for potential articles. Morphological 

parameter definitions requiring 3D bone models were not considered in this article, as they have been 

previously studied by our group (Asseln et al. 2018). Only parameters with relevance for an implant 

mismatch assessment were searched, being parameters describing the articulating areas of the knee. 

Parameter definitions where abnormal measures are linked to pathologies such as patellar instability 

or pain were excluded. In addition to the parameter search, articles on the general accuracy of 2D-3D 

reconstruction were reviewed, in order to evaluate their potential use for more comprehensive, 3D 

morphological analyses. As search terms, knee, X-ray, 2D-3D reconstruction, anatomy/ morphology 

and computed tomography were used. The requirement for consideration was the comparison against 

segmented bone models from CT images, being the gold standard for in vivo bone surface model 

derivation. 
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3 Results 

Overall 32 definitions of different morphological parameters to be evaluated on single X-ray 

images were found in the literature, which are listed in Table 1. For some parameters, several 

references were found e.g., for the tibial slopes. In addition, for some measurements different 

parameter names were found (e.g., coronal tibial slope and tibial plateau - tibial shaft angle). 

Anteroposterior measurements were mostly described as “depth”, proximodistal measurements as 

“height” and mediolateral measurements as “width”. In case of deviations, the naming was adjusted. 

Most parameter definitions were found for the femur, second for the tibia and none for the patella. 

Relevant landmarks or reference points were identified manually, or no details on landmark 

identification was given. For several measurements, inter- and intraobserver reliabilities were 

evaluated. Seven studies evaluated intra class coefficients (ICC) for the respective parameter 

definitions, which ranged from 0.64 to 0.99 for interobserver- and from 0.77 to 0.98 for intraobserver 

reliability.  

14 studies reported measures of accuracy for 2D-3D reconstruction of the knee, which are 

presented in Table 2. The methods for 2D-3D reconstruction include the use of e.g. statistical shape 

models (Baka et al. 2011; Cerveri et al. 2017; Wu and Mahfouz 2021; Zheng et al. 2018) and/or bone 

databases/atlases (ElHak et al. 2007; Messmer et al. 2001). The reconstruction was based on 

standard/calibrated X-rays, EOS/Fluoroscopy images or DRRs. We classified studies using DRRs as 

in vivo & in silico or in vitro & in silico, according to the data source (subjects/cadavers). Different 

error metrics were reported in the literature, including the mean absolute error (MAE), the root mean 

square error (RMSE) and the Hausdorff distance. Furthermore, different calculation methods were 

applied e.g., point-to-point (P2P) and point-to-surface (P2S) distances. In addition one group 

quantified normal/projected error vectors (Shetty et al. 2021). The errors were either calculated 

unidirectional, or no information regarding directionality was given. 
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Table 1: Morphological parameter definitions for the evaluation on single X-ray images. KF = Knee 

Flexion. AP = Anteroposterior. PA = Posteroanterior. * = more specific description to be found in the 

respective article. 

 No. Bone Parameter name Xray 

side 

Xray 

requirements 

Weight 

bearing 

in vivo/ in 

vitro 

(number of 

subjects/ 

knees) 

Method for 

reliability 

measurement 

Inter-

observer 

reliability 

Intra-

observer 

reliability 

source 

 1 Femur Sagittal depth of 

the condyles 

Lateral Standard No in vivo 

(100/100) 

Correlation 

coefficients 

0.98 0.89 (Fridén et al. 

1993) 

 2 Femur Medial femoral 

condyle depth 

Lateral True lateral, with 

apparatus* 

Yes in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 3 Femur Lateral femoral 

condyle depth 

Lateral True lateral, with 

apparatus* 

Yes in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 Femur Lateral femoral 

condyle depth 

Lateral 30° KF, 

overlapping 

condyles 

n.a.  In vivo 

(36/n.a.) 

n.a.  n.a.  n.a.  (Fernandes et al. 

2017) 

 4 Femur Height of the 

condyles 

Lateral Standard No in vivo 

(100/100) 

Correlation 

coefficients 

0.96 0.95 (Fridén et al. 

1993) 

 5 Femur Height to depth 

ratio 

Lateral Standard No in vivo 

(100/100) 

n.a.  n.a.  n.a.  (Fridén et al. 

1993) 

 6 Femur Flattened portion 

of the condyle 

Lateral 30° KF, 

overlapping 

condyles 

n.a.  In vivo 

(36/n.a.) 

n.a.  n.a.  n.a.  (Fernandes et al. 

2017) 

 7 Femur Anterior Femoral 

Offset 

Lateral Standard n.a. in vivo 

(970/n.a.) 

n.a.  n.a.  n.a.  (Matz et al. 

2017) 

 8 Femur Posterior Condylar 

Offset 

Lateral True lateral  n.a.  in vivo 

(150/n.a.) 

n.a.  n.a.  n.a.  (Bellemans et al. 

2002) 

 Femur Posterior Condylar 

Offset 

Lateral True lateral, 

overlapping 

condyles* 

n.a.  in vivo 

(n.a./105) 

ICC 0.84 (95% 

CI 0.1 -

0.95) 

0.94 (95% 

CI 0.74-

0.98 

(Clement et al. 

2014) 

 9 Femur Posterior Condylar 

Offset Ratio 

(divided by 

cortical depth) 

Lateral True lateral, 

overlapping 

condyles* 

n.a.  in vivo 

(n.a./105) 

ICC 0.93 (95% 

CI 0.86-

0.97) 

0.9 (95% 

CI 0.63-

0.96) 

(Clement et al. 

2014) 

 10 Femur Posterior Condylar 

Offset Ratio 

(divided by 

condylar depth) 

Lateral True lateral, 

overlapping 

condyles* 

n.a.  in vivo 

(100/100) 

ICC 0.882 0.899 (Johal et al. 

2012) 

 11 Femur Lateral femoral 

condyle ratio 

Lateral Condylar overlap < 

6mm 

n.a. in vivo 

(200/n.a.) 

ICC 0.80 0.77 (Pfeiffer et al. 

2018) 

 12 Femur Width of the femur PA Modified tunnel 

view* 

No in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 13 Femur Medial femoral 

condyle width 

PA Modified tunnel 

view* 

No in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 14 Femur Lateral femoral 

condyle width 

PA Modified tunnel 

view* 

No in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 15 Femur Intercondylar 

notch width 

PA Modified tunnel 

view* 

No in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 16 Femur Medial condyle 

height ratio 

PA Rosenberg, 45° KF n.a. in vivo 

(66/n.a.) 

ICC 0.64  n.a.  (Minami et al. 

2018) 

 17 Femur Lateral condyle 

height ratio 

PA Rosenberg, 45° KF n.a. in vivo 

(66/n.a.) 

ICC 0.72  n.a.  (Minami et al. 

2018) 

 18 Femur Distal condylar 

angle 

AP n.a.  n.a.  n.a.  n.a.  n.a.  n.a.  (Luo 2004) 

 19 Femur Joint line angle 

(method 1) 

AP Standard n.a.  in vitro 

(n.a./5)  

ICR (Eliasziw 

et al. 1994) 

0.796 

(95% CI 

0.675–1.0) 

0.973 / 

0.85 

(Weber et al. 

2013) 

 20 Femur Joint line angle 

(method 2) ≙ 

Anatomical lateral 

distal femur angle 

AP Standard n.a.  in vitro 

(n.a./5) 

ICR (Eliasziw 

et al. 1994) 

0.836 

(95% CI 

0.742–1.0) 

0.958 / 

0.832 

(Weber et al. 

2013) 

 Femur Anatomical lateral 

distal femur angle 

AP Standard Yes in vivo 

(n.a./20) 

ICC 0.992 

(95% CI 

0.979 - 

0.997) 

0.984 (95% 

CI 0.959 - 

0.994) 

(Springer et al. 

2020) 
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 21 Femur mechanical 

lateral distal femur 

angle 

AP Standard Yes in vivo 

(n.a./20) 

ICC 0.989 

(95% CI 

0.971-

0.996) 

0.978 (95% 

CI 0.944- 

0.991) 

(Springer et al. 

2020) 

 22 Tibia Anteroposterior 

depth 

Lateral n.a. No in vivo 

(157/157) 

ICC ~0.82 ~0.89 (Zhang et al. 

2018) 

 Tibia Anteroposterior 

depth 

Lateral 30° KF, 

overlapping 

condyles 

n.a. in vivo (36) n.a. n.a. n.a. (Fernandes et al. 

2017) 

 23 Tibia Medial plateau 

depth 

Lateral True lateral, with 

apparatus* 

Yes in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 24 Tibia Medial posterior 

slope 

Lateral n.a. n.a. n.a. (286) n.a. n.a. n.a. (Luo 2004) 

 25 Tibia Lateral posterior 

slope 

Lateral n.a. n.a. n.a. (286) n.a. n.a. n.a. (Luo 2004) 

 26 Tibia Posterior slope Lateral n.a. No in vivo 

(157/157) 

ICC ~0.77 ~0.9 (Zhang et al. 

2018) 

 Tibia Posterior tibial 

slope 

Lateral Standard No in vitro 

(20/40) 

n.a. n.a. n.a. (Dargel et al. 

2009) 

 Tibia Tibial slope Lateral 30° KF, 

overlapping 

condyles 

n.a. In vivo 

(36/n.a.) 

n.a. n.a. n.a. (Fernandes et al. 

2017) 

 Tibia Tibial slope Lateral n.a. No in vitro 

(n.a./10) 

n.a. n.a. n.a. (Giffin et al. 

2004) 

 Tibia Tibial slope Lateral n.a.  n.a. n.a. n.a. n.a. n.a. (Massin and 

Gournay 2006) 

 27 Tibia Mediolateral width AP n.a. No in vivo 

(157/157) 

ICC ~0.85 ~0.85 (Zhang et al. 

2018) 

 Tibia Mediolateral width PA Modified tunnel 

view* 

No in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 28 Tibia Medial tibial 

plateau width 

PA Modified tunnel 

view* 

No in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 29 Tibia Lateral tibial 

plateau width 

PA Modified tunnel 

view* 

No in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 30 Tibia Interspinous 

distance 

PA Modified tunnel 

view* 

No in vivo 

(n.a./53) 

n.a.  n.a.  n.a.  (Mensch and 

Amstutz 1975) 

 31 Tibia Coronal tibial 

slope (reference = 

anatomical axis) 

AP n.a. No in vivo 

(157/157) 

ICC ~0.79 ~0.89 (Zhang et al. 

2018) 

 Tibia Plateau angle 

(reference = 

anatomical axis) 

AP n.a. Yes in vivo 

(390/n.a.) 

ICC 0.93 0.89 (Higano et al. 

2016) 

 Tibia Tibial plateau - 

tibial shaft angle  

(reference = 

anatomical axis) 

AP n.a. n.a. n.a. n.a. n.a. n.a. (Luo 2004) 

 32 Tibia Medial proximal 

tibial angle 

(reference = 

mechanical axis) 

AP Standard Yes in vivo 

(n.a./20) 

ICC 0.979 

(95% CI 

0.948 – 

0.992) 

0.980 (95% 

CI 0.950 – 

0.992) 

(Springer et al. 

2020) 
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Table 2: Accuracy of 2D-3D reconstruction from a small number of X-ray images compared to 3D 

models from CT. Various different error metrics were used and often no specification regarding 

directionality and type of measurement (P2P/P2S) is given, which complicates the assessment and 

comparison of the studies’ results. (DRR = digitally reconstructed radiographs, CI = confidence 

interval, P2P = Point to Point, P2S = Point to Surface. * Evaluated at specific landmarks ** Evaluated 

normal to plane.) 

 Source Image type, 

number 

In vivo, in 

vitro, in silico 

(number of 

subjects/ 

bones) 

Bone(s) Accuracy (mm) Error metric 

specifics 

 MAE ± 

SD (CI 

95%) 

Max. 

Absolute 

Error 

RMSE ± 

SD 

Max. 

RMSE 

Hausdorff 

distance 

Uni-/ bi-

directional 

P2P / 

P2S 

 (Chaibi et 

al. 2012) 

EOS, 4 in vitro 

(n.a./11) 

Tibia& Femur 1.0 (CI 

95%:  2.4) 

6.6  / / / uni P2S 

 (Mahfouz 

et al. 2006) 

DRRs, 2 in vivo/ in 

silico (1/1) 

Femur n.a. 0.46 / / / / P2S 

 (Zheng et 

al. 2018) 

EOS (+ 

fixation 

device), 2 

in vivo 

(23/n.a.) 

Femur 1.4 ± 0.3  / / / 6.6 ± 1.6 

(One-Sided) 

uni P2S 

 Tibia 1.2 ± 0.3  / / / 5.6 ± 1.7 

(One-Sided) 

uni P2S 

 (ElHak et 

al. 2007) 

X-rays 

biplanar 2 

n.a. Femur 1.9  / / / / / P2P 

 Tibia 1.82  / / / / / P2P 

 (Gamage et 

al. 2009) 

X-rays, 2 in vitro (3/6) Femur 0.86 / / / / / P2P 

 (Quijano et 

al. 2013) 

DRRs, 2 in vitro/ in 

silico (n.a./9) 

Femur 1.3 (CI 

95%: 3.5) 

8.2 / / / / P2S 

 Tibia 1.3 (CI 

95%: 3.2) 

8.1 / / / / P2S 

 Distal Femur 1.2 (CI 

95%: 3.1) 

6.5 / / / / P2S 

 Proximal Tibia 1.3 (CI 

95%: 3.2) 

8.1 / / / / P2S 

 (Schmutz et 

al. 2008) 

X-rays 

Calibrated, 2 

in vitro (7/7) Distal Femur 1.21 5.81 / / / / P2P 

 (Laporte et 

al. 2003) 

X-rays 

Calibrated,  

2 

in vitro 

(n.a./8) 

Distal Femur 1.0  / 1.4  / / uni P2S 

 (Baka et al. 

2011) 

X-rays 

Calibrated, 5 

in vivo 

(30/30) 

Distal Femur / / 1.68 ± 0.35 

* 

/ / uni P2S 

 (Cerveri et 

al. 2017) 

DRRs, 3 in vivo/ in 

silico (20/n.a.) 

Distal Femur / / 0.75  / 1.5  / / 

 (Tchinde 

Fotsin et al. 

2019) 

DRRs 

(orthogonal), 

2 

in vivo/ in 

silico 

(n.a./109) 

Distal Femur / / 0.72  1.38 / / / 

 Proximal Tibia / / 0.99  1.81 / / / 

 (Messmer 

et al. 2001) 

X-rays (+ 

fixation 

device)  2 

in vitro (1/1) Tibia 

(condyles) 

2.4 ± 0.82  4.5  / / / / / 

 (Shetty et 

al. 2021) 

Xrays 

Calibrated, 2 

in vivo 

(25/45) 

Distal Femur 1.0 ± 0.9 1.7 / / / uni P2S** 

 Proximal Tibia 1.1 ± 1.0 1.7 / / / uni P2S** 

 (Wu and 

Mahfouz 

2021) 

Fluoroscopy, 

1 

in vivo (5/5) Distal Femur / / 1.19 ± 0.36 / / / / 

 Proximal Tibia / / 1.15 ± 0.17 / / / / 

 Fluoroscopy 

and standard 

Xray, 2 

in vivo (5/5) Distal Femur / / 1.04 ± 0.33 / / / / 

 Proximal Tibia / / 1.03 ± 0.19 / / / / 
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4 Discussion 

Various parameter definitions to describe knee morphology using AP and Lateral X-rays are 

present in the literature, of which some correspond to the few established implant measures (7207-

1:2007(E), 2007). In order to achieve adequate measurements, requirements are listed, such as true 

lateral images or a scaling object. However, these are similar to requirements for digital implant 

planning software. If given, the reported interrater- and intraobserver reliability can be interpreted as 

good to excellent (Cicchetti 1994) or moderate to excellent (Koo and Li 2016). 

The functional relevance of the morphological parameters identified differs. In previous 

morpho-functional analyses, parameters with highest functional relevance are reported to be the 

femoral sagittal radii, the tibial slopes and the lateral trochlear elevation (Asseln et al. 2021; 

Fitzpatrick et al. 2012). Other studies have reported the significance of individual parameters for 

postoperative outcome, such as of the PCO for postoperative flexion range of motion (Bellemans et 

al. 2002). Parameters with high relevance for function or other outcome measures should be focused 

on in a mismatch analysis. However, an accurate assessment of e.g. implant overhang, which is 

associated with decreased flexion ROM and worse pain scores (Bonnin et al. 2013), is only possible 

with 3D surface data. 

Several authors reported on methods for 2D-3D reconstruction and the accuracy achieved. 

However, differences in error measurements or missing specifications complicate the assessment and 

comparison of the reported accuracies. The characteristics of the different error metrics (MAE/ RMSE 

/Hausdorff) and calculation methods used (P2P/P2S, uni/bidirectional) have to be considered when 

comparing the reported accuracies, thus they are discussed in the following. 

Unidirectional errors measure distances either from the reconstructed mesh to the ground truth or 

vice versa. Hence the focus of the former is to quantify offsets and of the latter to evaluate for missing 

surface areas. Bidirectional errors are the combined unidirectional errors, both from and to the 

reconstructed mesh. A unidirectional P2P error is defined as the distance between a mesh point and its 

nearest neighbor in the respective other mesh (reconstruction/ ground truth). In contrast, a 

unidirectional P2S error is defined as the minimal distance between a mesh point to the surface of the 

respective other mesh (Dumic et al. 2018). Hence, a P2S is lower compared to a P2P error for the 

same reconstruction. Furthermore, one has to differentiate normal absolute errors or projected errors. 

Those quantify the length of a projection of the error along the normal direction, hence resulting again 

in lower errors. The Hausdorff distance measures the overall highest distance between two point sets 

bidirectional, and is therefore equivalent to the maximum bidirectional absolute error. Consequently, 

the One-Sided Hausdorff distance is equivalent to the maximum unidirectional absolute error.  

Few methods for 2D-3D reconstruction showed MAE or RMSE in the submillimeter range and 

maximum absolute errors below two millimeters. However, those were solely in silico analyses as 

they were based on DRRs. One in vivo study reported a normal maximum absolute error of 1.7 mm 

(Shetty et al. 2021). The projection of the error vectors may be the reason for the comparably low 

maximum absolute error. Other in vitro studies showed maximum absolute (P2S/ P2P) errors of 

~5-6 mm, and hence do not reach the required accuracy, defined in the introduction. In addition, most 

studies required image calibration or EOS images, limiting their availability. The small study 

populations constitute a further limitation. Therefore, the accuracy for in vivo reconstruction of knees 

e.g. of different morphotypes, ethnities etc. may be significantly lower than reported in literature. 

5 Conclusions 

A basic preoperative risk assessment from radiographs is possible. The associated identification of 

landmarks is potentially time consuming. 2D-3D reconstruction is a promising option for enabling 
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more comprehensive analyses, solely based on X-ray images. However, maximum errors reported are 

still too high for a risk assessment in TKA. Hence, future steps should include the automation of the 

parameter derivation and an enhancement of 2D-3D reconstruction for enabling a more 

comprehensive assessment.  

Overall, comprehensive and automated evaluation of adequate radiographs could assist in 

identifying cases at risk for poor patient satisfaction without requiring additional resources. Else 3D 

imaging based on CT, MRI or 3D Ultrasound would be recommended 
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