
Towards an amortized type system for JavaScript

Daniel Franzen and David Aspinall

University of Edinburgh, Edinburgh, UK
{D.Franzen,David.Aspinall}@ed.ac.uk

Abstract

JavaScript programs have access to a wide range of resources and many of those have security im-
plications. Tight bounds on the consumption of those resources can give indication of the functionality
provided by the program and minimize the security risks of mobile applications. Resource consumption
is typically dependent on the input of the user.
In this paper we introduce an amortized type system for a core of JavaScript. The resulting types cer-
tify bounds for the resource usage dependent on the input parameters. We define the amortized types
and the corresponding typing rules. Furthermore we discuss how to fully automatically infer those
resource bounds for arbitrary applications. In addition to the usual example of amortized resource,
heap-space, our type system can be applied to many phone specific resources, which we demonstrate
using the example of the GPS sensor and others.
The main result of this paper is the soundness of the core type system, proving that a valid type for a
program corresponds to a bound on the units used of the specified resource.

1 Introduction

JavaScript plays an important role in our digital lives. Almost all web sites use JavaScript,
often as third party code over which the main web site developer has no control. JavaScript
code has access to a range of desktop resources, which are limited by the browser’s sandbox and
origin policy controls. And JavaScript is advancing beyond the browser, for example, together
with HTML5, it is the native way of writing mobile applications in the newest generation of
mobile phone operating systems, such as Tizen [4] and Firefox OS [1]. Several popular in
cross-platform cross-platform programming frameworks, such as PhoneGap [3], are also built
around HTML5 and JavaScript. These new environments are of concern because JavaScript
code can be granted access to a much wider range of resources than on the desktop, for example,
including APIs to access the plethora of phone sensors that may cost the user money, battery
life, or privacy.
To access sensors, an application needs a privilege to do so at a certain moment. Take for
example a function logbook, which tracks the users location. As a parameter it is provided
with a list of timestamps. The application saves the current GPS location and the location
at each of the timestamps. This application needs access to the GPS sensor. Most operating
systems guard the GPS sensor by an access control mechanism to grant GPS access privilege,
most often using a permission style privilege which works in advance. This means that the user
grants the app access to the GPS sensor freely; after that, it can be difficult to tell where and
how often the location is being accessed.
Providing extra information about resource usage is complicated, since the typical JavaScript
application is a mash-up of different libraries. We propose automatic inference of resource
bounds to provide a basis on which users can judge the intentions and detailed attack potential
of a program. In this paper, we present a type system to statically analyse a fragment of

12 T. Kutsia, A. Voronkov (eds.), SCSS 2014 (EPiC Series, vol. 30), pp. 12–26

Towards an amortized type system for JavaScript Franzen and Aspinall

JavaScript code with a focus on resource consumption. The type system incorporates amortized
annotations in all datastructures and functions of the application. The analysis generates
constraints between those annotations to describe all execution traces and by solving those
constraints we get an upper bound on the resource usage. The amortized annotations inside
the datastructures allow us to track reserved resource units dependent on the size of related
data structures without dependent type systems. This enables us to prove powerful bounds on
the resource usage of mobile applications. Type systems for amortized data structures were
introduced by Hofmann et al. in [23] and were extended to object oriented languages in [24].
We apply the idea to JavaScript and consider further resources like phone sensors.
A possible amortized type for the function logbook would be:

O,List((Int , 1)), 5→ List((Int , 0)), 4

: the basic type is a function that takes a receiver object O and an integer list as arguments
and returns another integer list. The added numeric annotations show that the function needs
5 free unit of the GPS resource to be executed and that 4 of the provided resources are available
after the execution. This fifth unit has been used to “pay” for the query for the start location.
The annotation in the parameter type List((Int , 1)) described that each element in the list
contains an integer value and one free resource unit associated with it. This one unit is used to
get the user location at the time represented in the integer value. The return value is of type
List((Int , 0)), which shows that the returned list does not contain any free resource units. If we
call the function logbook(x) with the variable x of type List(Int , 4), then the data structure
x is intuitively split into one list of type List(Int , 3) which stays stored in the variable x and
one list of type (Int , 1) which gets consumed by the function.
The application of amortized types to JavaScript exposes new challenges: in class-based lan-
guages the only resource consuming operation is the instantiation of a class. In JavaScript
the structure of objects can change dynamically, simply by assignment to previously absent
fields. This object extension might consume further resources and therefore each assignment to
a field has the potential to consume resources. A type system has an advantage here, since it
already infers the shape of the values on which the consumption might depend. Furthermore
JavaScript allows the programmer to store references to the API functions in custom variables
and object fields. This feature is often used in portable code to minimize the size of the source
code. Therefore the analysis needs to handle functions as normal values.
Rather than specialising on one resource, we formulated a general resource model: the typing
and semantic rules are parametrised by the resource consumption of the different constructs
of the language and APIs. To instantiate the model one has to define the consumption of the
language operators and the API functions.
As an example for resources we show the definition for heap space consumption, as well as the
phone oriented and API based GPS sensor resource. Heap space is a resource that needs to be
analysed on the level of the language operations, since each construct might allocate new heap
space. Furthermore heap cells can be reserved in chunks (i.e. more than one unit at once) and
freed after use. The GPS sensor is only accessed through API functions. Additionally it can
only be accessed once at a time and a call to the API function can not be reverted.
The execution of a mobile application often heavily depends on user interaction, i.e. on the
input the user provides during runtime. This might be keyed-in numbers and text as well as
mouse movements and button presses. The amortized resource model is especially advantageous
for those dependencies, since the resource units are associated directly with the data structures
and we can represent limits such as (size(input) · 5) units.

13

Towards an amortized type system for JavaScript Franzen and Aspinall

Contributions. We have developed a sound amortized type system for a core of JavaScript:

• We present the types and typing rules depending on the definition of the resource.
• We discuss a type inference algorithm and its main steps.
• We present the corresponding resource annotated semantics.
• We formulate the soundness property that whenever a program is typed, it can be executed
with the resources asserted in the type.

This paper is structured as follows: in Section 1 we discussed the importance of resource
analysis for JavaScript and general idea of amortized types; in Section 2 we formally introduce
our resource model and discuss different kinds of resources for mobile application; Section 3
presents the type system. That includes the definition of the types itself, the typing rules and
the outline for the type inference algorithm. Section 4 then defines the corresponding semantic
rules and Section 5 shows the soundness result. Finally we discuss related work in Section 6
and conclude in Section 7.

2 Resource modelling

2.1 Amortized annotations

Our system analyses resources in units: examples for a unit are a memory cell, a bigger memory
regions or one access to a sensor. Throughout the execution of the program we consider the
number n of resource units available to the program and call this collection freelist. For memory
cells, n is decreased whenever memory is allocated. The resource for sensor accesses is usually
only consumed, but sometimes the user might grant more accesses dynamically or accesses
might get earned by some protocol. One example of the later would be: the application has to
beep every time before the GPS sensor is used.
To be able to perform actions on a data structure of unknown size, we use an amortized
approach presented in [23]. Consider for example the logbook-function from above. The GPS
usage clearly depends on the size of the list. For this purpose, our analysis can store parts of
the freelist in data structures. We represent this internal freelists as integer included in the
type. For example a value could be typed (Int, 1) to show that the value owns a freelist of size
1. These units can then be used to perform resource consuming operations with this value.
In more complex data structures those annotations let us describe resource usages linearly
dependent on the size of the structure: For example a list could be implemented as a recursive
object, containing one element as field head and another object with a shorter list in the field
tail. We type this object as T = µα.[(head : (Int , 1)), (tail : (µ, 0))]. It asserts, that the head
of each element in the list contains one reserved resource unit, which can be used to access the
GPS sensor once for each element in the list.
Our analysis aims to find minimal values for the different freelists, such that the program can
just perform its operations. That includes values for the global freelist and the amortized
freelists. A bound on the resource units can then be computed as the sum of all amortized
freelists in the initial parameters and the initial global freelist.

2.2 Resource kinds

Our analysis can cover a wide range of resources. Bounds on the resources can defend against
various attacks, as discussed in [11]. As examples we consider the PhoneGap framework, which

14

Towards an amortized type system for JavaScript Franzen and Aspinall

Parameter Operation
CvarR read/write variable
CvarW

CmemR read/write object field (member)
CmemW(t, f)

CfunX execute function
Cseq concatenation of statements
Cnew executing constructor

(a) Resource parameters

Cnew = 1

CmemW(ψ) =

{
1 if ψ = ◦
0 if ψ = •

Cx = 0 for any other x

(b) Heap resource model

Figure 1: Language level resources

executes JavaScript application on phones and provides an API to access phone functionalities.

• heap space: our system infers bounds on the used heap space. On mobile devices with
smaller memory this is particularly important and hackers could attack all phone features.

• GPS sensor: For the location services on mobile devices it is hard to differentiate between
the intended use case (for example in a routing application) and a malicious use (tracking
the users position).

• notifications (pop-ups and in the top bar) are, always used to confirm a critical operation
with the user. Social engineering attacks display multiple notifications to decrease the
attention users pay on the important notifications (s. [12]).

• text messages: a common attack on mobile phones is to send multiple premium SMS,
charging the user to the advantage of the attacker.

• pictures taken without the knowledge of the user pose a thread to the privacy of the user.

For each of the resource kinds comparing the inferred resource bound with the resources needed
for the expected functionality helps the user to decide whether the application can be trusted.

2.3 Resource Model

Some resources types, e.g. heap space, are consumed and returned directly by the language
operators. Every assignment might allocate further heap resources. To represent those resource
types we use the resource consumption parameters Cx. Figure 1(a) shows the parameters and
which operation they describe the consumption of and Figure 1(b) shows the values to analyse
the heap space.
Assignments to a member field in JavaScript can be either overwriting an existing field or extend
the object with a new field. We split CmemW into CmemW(•) for overwriting assignment and
CmemW(◦) for extending assignment. Later we are going to use true as an alias of • and false
as ◦ for CmemW.
The second part of the resource model API is the resource type of the API functions: We
notate the resource need of an API function as [n, n′], where n describes the units needed to
call the API function and n′ describes how many of those are usable again after the execution
of the function. Examples for different consumption values are shown in Figure 2.
The API geolocation.watchPosition accesses the GPS sensor periodically. In order to still
infer bounds on this we type it as [1, 0], but additionally require that the callback function,
given as parameter, is of type [1, 0]. This way we can still infer a resource bound of (1 per time
event). The resource consumption can also be weighted as we have done in the notification

15

Towards an amortized type system for JavaScript Franzen and Aspinall

Resource PhoneGap APIs, f API (f)

GPS geolocation.getCurrentPosition [1,0]
geolocation.watchPosition [1,0] *

SMS plugins.sms.send [1,0]
plugins.socialsharing.shareViaSMS [1,0]

camera camera.getPicture [1,0]

notifications

notification.alert [3,0]
notification.confirm [3,0]
notification.beep [1,0]
notification.vibrate [1,0]

Figure 2: Resource APIs in PhoneGap

example. The annotation n′ can, for example, be used to restrict the number of files opened
at the same time. The API function to open a file would have consumption [1, 0], whereas the
function to close a file would get the values [0, 1].
In the remainder of this paper we will always assume we are given a resource model (API , C).

3 Types

Figure 3(a) shows the types of JST+
0 . A type in JST0 (see [7]) is either Integer (Int), Object (O),

Function (G) or a type variable (α). Objects are represented as a list of fields and their types.
Each field can be either definite (•), which indicates that this field has been allocated already,
or potential (◦) which indicates this field might be allocated in the future. Function types
consist of the receiver, which will be available in the body of the function as this, the type
of the parameter and the return type. Note that all function use the variable x as parameter,
which simplifies the environment.
The amortized annotations appear in two places: First of all, each full type has an amortized
annotation n. A value with type (Int , 5) describes a value with the basic type Int and 5 resource
units reserved for it. This means the program could access a sensor 5 times, resulting in a new
type (Int , 0) for the given value.
Additionally we annotate the function types: we add one annotation n to the parameter side and
n′ to the return side of the type. This describes that the function needs n units of the resource
as input to be executed and n′ of those units will be freed after the execution has finished.
Thus a function that consumes 2 resource unit and needs an additional unit temporarily has
the type O, T, 3→ T ′, 1.
To extend results about JST0 to JST+

0 we define the erasure 〚 · 〛− (Figure 3(b)) of an annotated
type. The erased type is a type with the same structure, but no annotations. This intuition
can be proven by induction on the definition of the erasure operation.

3.1 Subtypes

For an annotated type to be a subtype of another t ≤ t′ we require the erased types to be in the
same relation: 〚t〛− ≤ 〚t′〛−. Furthermore we have two cases: for assignments x=e we have the
subtyping ≤−: the type of the variable x has already resource units reserved for its annotations.
Thus we get no constraints on the annotations of the value e. In function calls f(e) the function
assumes that the argument e has reserved resource. In this case all annotations in the actual

16

Towards an amortized type system for JavaScript Franzen and Aspinall

t ::= O | G | Int | α (basic type)

t
+

::= (t, n) (full type)
O ::= µα.M |M (object)

M ::= [(m : tm)
∗
] (memberlist)

tm ::= (t
+
, ψ) (membertype)

G ::= µα.(O × t, n→ t, n) (function)
ψ ::= • | ◦ (field state)

where n ∈ N and m ranges over strings

(a) Types in JST+
0

〚Int〛− = Int (integer)

〚(t, n)〛− = 〚t〛− (annotated)

〚µα.M〛− = µα.〚M〛− (obj)

〚[(m : tm)
∗
]〛− = [(m : 〚tm〛−)

∗
]

(memberlist)

〚(t+, ψ)〛− = (〚t+〛−, ψ) (member)

〚µα.(O × t, n→ t
′
, n
′
)〛− = (function)

µα.(〚O〛− × 〚t〛− → 〚t′〛−)

〚α〛− = α (recursion)

(b) Erasure

Figure 3

• ≤δ ◦ (ST-pot)

t ≡ t′ ψ ≤δ ψ′

(t, ψ) ≤δ (t′, ψ′)
(ST-mem)

t ≡ t′

t ≤δ t′
(ST-equiv)

n ≤ N n− n′ ≤ N −N ′

(O × t, n→ t′, n′) ≤δ (O × t, N → t′, N ′)
(ST-fun)

∀m : O′(m) = (t′, ψ′)

⇒ (O(m) = (t, ψ) ∧ (t, ψ) ≤δ (t′ψ′))

O ≤δ O′
(ST-obj)

n ≥ n′

(t, n) ≤+ (t′, n′) (t, n) ≤− (t′, n′) (ST-amort)

(a) Subtypes

ψ t ψ′ =

{
• if ψ = • and ψ′ = •
◦ otherwise

(M-pot)

n t n′ = min(n, n′) (M-amort)

(t′, ψ′) t (t′′, ψ′′) = (t′ t t′′, ψ′ t ψ′′) (M-mem)

t t t = t (M-equal)

Dom(O1) = Dom(O2) = Dom(O3)∧
i=1,2,3 Oi(m) = (ti, ni, ψi)

⇒ (t = t′ t t′′ ∧ n = n′ t n′′ ∧ ψ = ψ′ t ψ′′)
O2 tO3 = O1

(M-obj)

(b) Minimum

M ≡M ′ t1 ≡ t′1 t2 ≡ t′2
f = µα.(M × t1, n→ t2, n

′)
f ′ = µα.(M ′ × t′1, n→ t′2, n

′)

f ≡ f ′
(EQ-func)

t ≡+ t′

(t, n) ≡+ (t′, n)

t ≡− t′

(t, n) ≡− (t′, n′)
(EQ-annot)

(c) Equality

Figure 4: Type Relations

parameter need to be as least as great as in the type of the formal parameter x. This subtyping
relation is notated ≤+. The notation ≤δ is used for either relation. The rules for subtyping are
in Figure 4(a).

The relation ≡ is defined for JST0 in [8] to reflect equality on types modulo unfolding of recursive
types. We split the relation into ≡+ and ≡− and add equality for the annotations in ≡+. The
changed rules EQ-func and EQ-annot can be found in Figure 4(c).

17

Towards an amortized type system for JavaScript Franzen and Aspinall

3.2 Type checking

The type judgement we check has the form:

P,Γ, n ` e : t||Γ′, n′

The environments Γ and Γ′ are mappings from variable names {this, x} to annotated types t+
and assert the current type of the variables. The numbers n and n′ are the resource annotations
for this evaluation of the expression e and t is its type. The program P is a mapping from
function names to typed function definitions, so

P (f) = function f(x) : G{e}

where f is the function name, G is the function type and e is the body of the function. P needs
to respect the function API (f). That means for API (f) = [n, n′] we require

P (f) = function f(x) : (O × t, n→ t′, n′){}

Intuitively the type judgement asserts that given P and Γ the expression e evaluates to a value
of type t and after the evaluation Γ has been updated to Γ′. The evaluation needs no more
then n resource units and n′ of those will be reusable after the evaluation.
The typing rules in Figure 5(a) describe the type checking procedure for the annotated types.
The relation t (shown in Figure 4(b)) expresses the minimum of two types or environments.
From the construction we get that (t t t′) ≤+ t and (t t t′) ≤+ t′.
As an example let us consider the rule T-memR. It describes a read operation of an object
member: The first precondition uses the type judgement recursively to assign the type of the
object e and the second precondition reads the type of the member m from this type. The
remaining resource units are n′ left after the evaluation of e together with the units that were
stored in the member m. From that we have to subtract the CmemR resources for the read
operation.
Typing rule T-varR uses a splitting constraint t1 ⊕ t2 = t3. Intuitively this constraint asserts
that the three types t1, t2 and t3 describe objects with the same structure, but t1 and t2 share
the freelists previously hold by t3. The definition is presented in Figure 6.

Proposition 1. The splitting relation preserves the structure of the type: t1 ⊕ t2 = t3 ⇒
〚t1〛

−
= 〚t2〛

−
= 〚t3〛

−

Proof. by structural induction on the derivation of the splitting relation.

In order to transfer properties of the original type system to our annotated system, we need to
prove the correspondence between the type and its erasure. For that we extend the erasure to
the environment Γ and the program P :

〚Γ〛− = {this : 〚Γ(this)〛−, x : 〚Γ(x)〛−}
〚P 〛− : m 7→ function f : 〚G〛−{...},

for P (m) = function f : G[n, n′]{...}

Proposition 2. (Annotation erasure) If given Γ, P an expression E has type t, then E has
type 〚t〛− in 〚Γ〛− and 〚P 〛−

P,Γ, n ` E : t||Γ′, n′ ⇒ 〚P 〛−, 〚Γ〛− ` E : 〚t〛−||〚Γ′〛−

Proof. by structural induction on the derivation of the type in JST+
0 .

18

Towards an amortized type system for JavaScript Franzen and Aspinall

P,Γ, n ` null : O||Γ, n
(T-null)

P,Γ, n ` i : Int||Γ, n
(T-Int)

Γ(V) = (t, n1) t′ ⊕ t′′ ≤ t
Γ′ = Γ[V 7→ (t′, n2)] V ∈ {this, x}
P,Γ, n+ CvarR ` V : t′′||Γ′, n+ n1 − n2

(T-varR)

P,Γ, n ` e : t1||Γ′, n′1
Γ′(x) = (t2, n2)

Γ′′ = Γ′[x→ (t2, n3)]

t1 ≤− t2
P,Γ, n+ CvarW ` x = e : t1||Γ′′, n′1 + n2 − n3

(T-xW)

P,Γ, n ` e : O||Γ′, n′1
O(m) = ((t, n2), •)

P,Γ, n+ CmemR ` e.m : t||Γ′, n′1 + n2
(T-memR)

P,Γ, n ` e : t1||Γ′, n′1
Γ′(var) = (O,n2)
O(m) = ((t3, n3), ψ)

O′ = O[m 7→ ((t1, n5), •)]
Γ′′ = Γ′[var 7→ (O′, n6)]

n′ = n′1 + n2 + n3 − n5 − n6 − CmemW(ψ)

P,Γ, n ` var.m = e : t1||Γ′′, n′
(T-memW1)

P,Γ, n ` e1 : O||Γ′, n′1
P,Γ′, n′1 ` e2 : t2||Γ′′, n′2
O(m) = ((t3, n3), •)

t2 ≤− t3
n′ = n′2 + n3 − CmemW(•)

P,Γ, n ` e1.m = e2 : t2||Γ′′, n′
(T-memW2)

P,Γ, n ` e1 : O1||Γ′, n′1
O1(m) = ((G,n2), •)

P,Γ′, n′1 + n2 ` e2 : t3||Γ′′, n′3
G = µα.(O4 × t4, n4 → t′4, n

′
4)

O1 ≤+ O4, t3 ≤+ t4 n′3 ≥ n4

n′ = n′3 − n4 + n′4 − CmemR − CfunX

P,Γ, n ` e1.m(e2) : t′4||Γ
′′, n′

(T-memX)

P (f) = function f(x) : G{...}
P,Γ, n ` f : G||Γ, n

(T-funR)

P,Γ, n ` e : t1||Γ′, n′1
P (f) = function f(x) : G{...}
G = µα.(O × t3, n3 → t′3, n

′
3)

{m | O(m) = (t′, •)} = ∅
t1 ≤+ t3 n′1 ≥ n3

n′ = n′1 − n3 + n′3 − CfunX[−Cnew]

P,Γ, n ` [new] f(e) : t′3||Γ
′, n′

(T-funX)

P,Γ, n ` e1 : t1||Γ′, n′1
P,Γ′, n′1 ` e2 : t2||Γ′′, n′2

P,Γ, n ` e1; e2 : t2||Γ′′, n′2 − Cseq
(T-Seq)

Γ, n ` e1 : Int||Γ′, n′1
Γ′, n′1 ` e2 : t2||Γ2, n

′
2

Γ′, n′1 ` e3 : t3||Γ3, n
′
3

Γ, n ` e1? e2 : e3 : t2 t t3||Γ2 t Γ3,min(n′2, n
′
3)

(T-cond)

(a) Typing rules

var, H, S
n+CvarR−−−−−−−−→

n
S(var), H, S var ∈ {x, this} (S-varR)

e,H, S
n−−→
n′

v,H′, S′′

S′ = {this 7→ S′′(this), x 7→ v}

x = e,H, S
n+CvarW−−−−−−−−→

n′
v,H′, S′

(S-xW)

e,H, S
n−−→
n′

ι, H′, S′

e.m,H, S
n+CmemR−−−−−−−−−→

n′
H′(ι)(m), H′, S′

(S-memR)

e1, H, S
n1−−→
n′1

ι, H1, S1 e2, H1, S1
n2−−→
n′2

v,H2, S
′

H′ = H2{ι.m / v}
ϕ = (m ∈ Dom(H2(ι)))

(n, n′) = con((n1, n
′
1), (CmemW(ϕ), 0), (n2, n

′
2))

e1.m = e2, H, S
n−−→
n′

v,H′, S′
(S-memW)

e1, H, S
n1−−→
n′1

ι, H1, S1

H2(ι)(m) = f

f(e2), H1, S1
n2−−→
n′2

v,H′, S′

(n, n′) = con((n1, n
′
1), (CmemR, 0), (n2, n

′
2))

e1.m(e2), H, S
n−−→
n′

v,H′, S′
(S-memX)

e,H, S
n1−−→
n′1

v′, H1, S
′

[nf , n
′f] =

{
API(f) f ∈ API

[0, 0] otherwise
P (f) = function f(x){e′}

e′, H1, {this 7→ Udf, x 7→ v′}
n2−−→
n′2

v,H′, S′′

(n, n′) = con((n1, n
′
1), (CfunX, 0), (nf , n

′
f), (n2, n

′
2))

f(e), H, S
n−−→
n′

v,H′, S′
(S-funX)

e,H, S
n1−−→
n′1

v′, H1, S
′

P (f) = function f(x){e′}
ι is new in H1 and H2 = {ι 7→ []}

e′, H2, {this 7→ ι, x 7→ v′}
n2−−→
n′2

v,H′, S′′

(n, n′) = con((n1, n
′
1), (CfunX + Cnew, 0), (nf , n

′
f), (n2, n

′
2))

new f(e), H, S
n−−→
n′

ι, H′, S′

(S-new)

e1, H, S
n1−−→
n′1

v′, H1, S1 e2, H1, S1
n2−−→
n′2

v,H′, S′

(n, n′) = con((n1, n
′
1), (Cseq, 0), (n2, n

′
2))

e1; e2, H, S
n−−→
n′

v,H′, S′
(S-seq)

e1, H, S
n1−−→
n′1

v′, H′′, S′′ e2, H
′′, S′′

n2−−→
n′2

v,H′, S′

v′ > 0

(n, n′) = con((n1, n
′
1), (n2, n

′
2))

e1? e2 : e3, H, S
n−−→
n′

v,H′, S′
(S-true)

(b) Semantics

Figure 5: Inference Rules

19

Towards an amortized type system for JavaScript Franzen and Aspinall

ti = (Int, ni) n1 + n2 = n3

t1 ⊕ t2 = t3
(SP-Int)

ti = (G,ni) n1 + n2 = n3

t1 ⊕ t2 = t3
(SP-Fun)

ti = (t′i, ψ) t′1 ⊕ t
′
2 = t′3

t1 ⊕ t2 = t3
(SP-Field)

O1 ⊕O2 = O3

ti = (Oi, ni) n1 + n2 = n3

t1 ⊕ t2 = t3
(SP-Obj)

m ∈M1 ⇔ m ∈M2 ⇔ m ∈M3

∀m ∈M1 : M1(m)⊕M2(m) = M3(m)

M1 ⊕M2 = M3
(SP-Mem)

Figure 6: Splitting Relation

3.3 Type inference

Proposition 2 shows that a type derivation in JST+
0 can be reduced to a derivation in JST0 .

The other way around, if we derive the type in JST0 , we annotate the derivation tree with fresh
variables and obtain a set of linear constraints on those variables. With this idea we get a type
inference algorithm with the following steps.
Infer basic types:
The type inference for JST0 is given in [7].
Annotation Constraints generation:
As the next step we go through the derivation tree and replace each rule in JST0 with the
corresponding rule in JST+

0 . Doing this we just add fresh annotation variables to all types
and constraints on those variables to the preconditions. As we know the structure of all types
already, we can replace each type variable by the appropriate final type. This way we can
convert splitting and subtyping constraints into linear constraints on the annotations, too. All
occurring annotation constraints define a minimisation linear programming problem (LPP).

Minimize cT~n

with A~n ≤ b
and ~n ≥ 0

As all constraints are taken from the typing rules, we see that the constraints have at most
6 variables, so the constraint matrix A will be sparse. All coefficients are 0,1 or -1, whereas
the constant term might take arbitrary values depending on the resource model. The variables
are all positive, since we do allow negative resource units. As a consequence we can avoid one
step in the rewriting process into standard form. In each constraint the number of positive
and negative coefficients only differs by at most one. Most typing rule will be translated by
the system into at most two constraints. The exception is the the rule T-varR as it uses the
splitting relation ⊕. This is translated into as many linear constraints as the given datastructure
has nodes, thus it is linear in the size of the datastructure.
Annotation Constraint solving:
The LPP can be solved by standard techniques. With the solution we can replace the annotation
variables by values and obtain a full type for the analysed expressions. If the LPP solver does
not find a finite solution, the analysis outputs an infinite bound. That might be, because the

20

Towards an amortized type system for JavaScript Franzen and Aspinall

application uses unbounded many resources or the worst case estimate used in our analysis was
not precise enough.

So far we have always spoken about the annotations n to be integers. As it should not be
possible to consume fractions of a resources this is reasonable for usages in the resource model.
On the other hand a used resource unit can be composed of different parts tracked through
different data structures. For example a function calculating the sum of two lists, element by
element, might take the needed heap units for the resulting list half from either of the input lists,
such that we get a function type of O,List((Int, 0.5)) × List((Int, 0.5)), 0 → List((Int, 0)), 0.
Therefore we can allow the annotations to have decimal values, too. Due to this modification
the final resource consumption might be fractional as well for example 7.43 units. Since all
resource consuming operations consume only whole units this means, that at least 0.43 units
are always stored in amortized annotations and the program in fact is executable with 7 units.
As a side-effect we solve general LPPs in polynomial time instead of integer LPPs.

We have implemented those steps in Haskell using the package hjs[2] to parse JavaScript and
the GNU Linear Programming Kit to solve the LPP.

3.4 Inferred bounds

With our analysis we can infer different kinds of bounds. To illustrate them we show small
examples with their typing and their meaning. We use the PhoneGap function
getCurrentPosition(callback) as the resource consuming function. On success the function
callback is executed with the current location as argument. We use some syntax simplifications
to make the examples easier to read including the function wait_till(timestamp), which waits
till the given timestamp is in the past.

function wait_and_locate(timestamp) {
wait_till(timestamp);
getCurrentPosition(callback);
1;

}

function logbook(list) {
wait_and_locate(list.head);
if (list.tail) {

logbook(list.tail);
}
1;

}

The function wait_and_locate will simply wait for a specific time and then send the current
location to the function callback. We infer the function type null × Int, 1 → Int, 0. This
function type describes a constant bounds of 1 resource unit.

Function logbook can be typed as null × µα{head : (Int, 1), tail : (α, 0)}, 0 → Int, 0. We see
that each element of the recursive list carries one resource unit with it. So the overall resource
consumption of this function is input dependent, namely size(list).

JavaScript has no direct way for programming with concurrency. It is however often used in an
event-driven way. Programs initialise themselves and then wait for events as for example time
and user input to execute the functionality associated with this event. For example the function
setInterval(callme,milisec) executes a given function repeatedly with the given rate. As
we know the function type of the event handler, we can describe bounds dependent on the
number of occurred events: if we find setInterval with the handler function wait_and_locate
as parameter callme we get an event dependent bound of 1 unit per time event. This works
equally with user interaction event registered using the addEventListener.

21

Towards an amortized type system for JavaScript Franzen and Aspinall

con((n1, n
′
1), (n2, n

′
2)) =(n, n

′
)

with n =

{
n1 if n′1 ≥ n2

n2 + (n1 − n′1) otherwise

and n′ = n− (n1 − n′1)− (n2 − n′2)

con(p1, ..., pn) =con(con(p1, ..., pn−1), pn)

(a) Concatenation operator

Σ(Γ) = Σ(Γ(x)) + Σ(Γ(this))

Σ((t, n)) = n+ Σ(t)

Σ([(m : tm)
∗
] = Σ

m
(Σ(tm))

Σ((tp, ψ)) = Σ(tp)

Σ(G) = 0

Σ((α, n)) = n

(b) Bound extraction

Figure 7: Notations

4 Semantics

To relate our typing system to real resource usage, we annotate the JST0 semantics with resource
usage. The annotated evaluation judgement looks like this:

e,H, S
n−→
n′

e′, H ′, S′

It asserts that the expression e in the heap H and the Stack S will evaluate to e′ and change
the heap to H ′ and the stack to S′. The heap H is a map from addresses to objects, which are
themselves maps from field names to values. The stack S maps the variables to values. Values
in this context consist of Integers, Functions, Addresses, null and Udf . Further details can be
found in [9]. The evaluation judgement further states that during the evaluation of e a freelist
with n elements is necessary and n′ of those resource units will be available afterwards. In the
semantics we use the same map P , that maps function names to function definitions and types.
The rules to infer the evaluation of member expressions can be found in Figure 5(b). Some rules
combine the resource usage of multiple expressions. For those cases we define the concatenation
operator in Figure 7(a).
This operator computes how many units are needed for the concatenated operation, depending
on the relationship between the two operations’ resource consumption. The extension of con
to multiple pairs makes sense, since the operation is associative.
The annotations to a given evaluation are not unique:

Definition 3. We call an evaluation e,H, S
n−→
n′

e′, H ′, S′ of an expression e minimal if for

every other evaluation can be expressed as e,H, S n+c−−−→
n′+c

e′, H ′, S′

5 Soundness

We are now going to relate the type system and the semantics. Ultimately we want to prove that
the amortized annotations can be used as an upper bound for the resource units the program
is going to consume. We extract this upper bound as the sum of all resource annotations in the
initial typing context as defined as the Σ operator in Figure 7(b).

22

Towards an amortized type system for JavaScript Franzen and Aspinall

Furthermore we need to relate the typing context with in the typing relation with the heap
and the stack in the evaluation relation. For that we define, what it means for a value to be
compatible with a type. The definitions of compatible do not depend on the annotations and
are equivalent to [7].

Definition 4. Given a heap H and a program P , we say that A ⊂ (V al×Type) is an agreement
relation if the following conditions are satisfied:

• if (null, t) ∈ A, then t = O for some object type O.
• if (n, t) ∈ A, then t = Int

• if (f, t) ∈ A, then P (f) = function f(x) : G with G = t

• if (ι, t) ∈ A, then t = O for some well-formed O, H(ι) = {m1 : v1, ...,mp : vp} and
– O(m) = ((t′, n′), •)⇒
m ∈ Dom(H(ι)) and (H(ι)(m), t′) ∈ A

– O(m) = ((t′, n′), ◦) and m ∈ Dom(H(ι))⇒ (H(ι)(m), t′) ∈ A
Definition 5. Value v is compatible with type t in H

P,H ` v J t

if there exists an agreement relation A on H and P with (v, t) ∈ A.
We furthermore relax the notation to annotated types:

P,H ` v J (t, n) ⇔ P,H ` v J t

Definition 6. A program P , the type environment Γ, the Heap H and the stack S are com-
patible

P,Γ ` H,S♦
if P,H ` S(this) J Γ(this) and P,H ` S(x) J Γ(x)

Finally we need to relate the annotations in the function types with the actual behaviour:

Definition 7. We call a program P consistent with a compatible stack S, heap H and typing
environment Γ, if for each function f with the definition P (f) = function f(x) : G{e},
G = (O × t, n→ t′, n′) and the minimal evaluation e,H, S ns−→

n′s
v,H, S holds that

Σt+ n ≥ ns

Σt+ n− (Σt′ + n′) ≥ ns + n′s

Theorem 8. (Soundness) Let an expressions with the type judgement

P,Γ, n ` e : t||Γ′, n′

with N = ΣΓ + n and N ′ = ΣΓ′ + n′ + Σt and a compatible stack and heap

P,Γ ` H,S♦

and the consistent program P be given.
If there exists an evaluation then for the minimal evaluation

e,H, S
ns−→
n′s

v,H ′, S′

we have ns ≤ N and ns − n′s ≤ N −N ′

Proof. This proof is a structural induction on the evaluation derivation.

23

Towards an amortized type system for JavaScript Franzen and Aspinall

6 Related work

6.1 Resource Analysis

To the best of our knowledge this is the first attempt to fit amortized annotations to JavaScript.
The amortized annotations used here are inspired by the work by Hofmann et al. starting
with [22]. They developed similar annotations as we used to type functional programs in [23].
Later in [24] this work was also extended to handle object-oriented languages on the example of
Resource Aware Java (RAJA), which is able to automatically infer amortized types for object-
oriented programs. To do this the authors introduce views, which assign different annotations
to the class-types in different contexts. Although Hofmann et al. mention that the analysis is
not specialized on heap usage, they do not make any suggenstions how to extend the analysis
to other resources as treated in this paper by the API function. In other work [21, 20] the
amortized annotations are extended to infer polynomial resource bounds, which could improve
our analysis as well.
Another approach to infer similar resource bounds is used by Albert et al. [6, 5]. They present
a system to infer and solve cost relations, describing the amount of resources required to run the
application. The cost relations are more complicated than the typing and integer constraints
we use in this work and the solution algorithm is not complete.
Aspinall et al. develop a logic for resources in [10]. This logic treats the resource kind general
as we do in this paper. The logic is intended to reason about resource usage in a fragment of
the Java VML and is expressed in Isabelle. Since the challenges in JavaScript are quite different
from those in Java, those results are not directly portable.

6.2 JavaScript Formalisations

The type system JST0 was introduced by Anderson in [8]. All details about the constraint solving
algorithm to infer the types can be found in [7].
Other type systems for JavaScript include [13, 25, 28]. The first presents a dependent type
system for JavaScript. The nested refinements within the types make the type checking more
complicated and the paper does not aim for inference. The type systems presented in the second
and third one cover e.g. arbitrary field extensions of objects rather then the potential/definite
notation we used in this paper. We chose JST0 , because it is a good compromise between
handling the dynamic features, while still providing type inference.
Hedin and Sabelfeld [19] also employed a type system for JavaScript to track information flow
by assigning either a high or a low confidentiality type to each value and each output. Type
errors then show highly confidential values transmitted to a low confidential output. Their type
system is much easier and thus not expressive enough to make assertions about the resources
we analyse.
Gardner et al. propose a program logic for JavaScript in [17]. With this logic they are able
to assert and reason about complex properties of JavaScript programs potentially including
resource consumptions. The expressiveness of the logic comes with the requirement of highly
detailed and complicated preconditions. In [16] they present the tool JuS, which can infer
properties automatically. However recursive functions are not handled and loops require anno-
tations of invariants. This restriction makes it harder to infer properties dependent on the size
of recursive data-structures as we do.

24

Towards an amortized type system for JavaScript Franzen and Aspinall

In [18] Guha et al. present a subset λJS and a method to desugar JavaScript applications into
this subset. As an use-case they present a type system to exclude certain API methods. The
correctness of the desugaring process is only shown with examples and not formally proven.
Another subset of JavaScript, which can be analysed for resource consumption is introduced in
[27] by Miller et al. This framework consists of a static checker, which infuses additional runtime
enforcements. They handle the eval operation by only allowing an even further restricted
subset of JavaScript, which gets parsed and validated before execution. The goal is to provide
an object capability language to prevent certain attacks mostly focused on privacy and privilege
escalation. In some use-cases JavaScript applications are signed by the developer or a trusted
party and runtime enforcements would invalidate those signatures. Thus our systems does not
incorporate code manipulation.
In [26] Maffeis et al. show an operational semantics for the whole JavaScript standard. Since
JavaScript provides multiple challenges for analysis, we did not work on the whole of JavaScript,
but restricted our work to JST0 .
The tool ADsafe, using JSLint [14], also checks JavaScript code. The objective here is to
restrict the application to a saver subset of JavaScript code. JSLint is the analysis tool, which
checks preconditions and ADsafe then adds dynamic checks that ensure the wanted security
properties. Eliopoulos et al. have verified ADsafe’s properties formally in [15] using a type
system. Our analysis aims to infer the bound directly, whereas ADsave uses the analysis to
verify the preconditions for the dynamic restrictions.

7 Conclusion and Future Work

We have shown a system to automatically infer bounds on the resource consumption for a core
of JavaScript. The system infers the types for the used values first and then solves a set of
linear constraints describing the needed resource units. The resulting bounds are input size
dependent and interaction dependent. The type system has been proven correct in relation to
the annotated operational semantics we provided and is expressive enough to cover the basic
constructs of JavaScript. For future work we will focus on closing the gap between JST+

0 and
JavaScript, which includes handling the JavaScript scope chain and aliasing, loops and strings.
The result of our system we aim to provide confidence about resource consumption of third
party JavaScript programs by providing bounds on various resource consumptions for JavaScript
application. Since the typing serves a certificate of the bound and can be checked much easier
than generated, our analysis is suitable for Proof Carrying Code scenarios, in web pages and
mobile phone applications.

References

[1] Firefox OS. https://www.mozilla.org/en-US/firefox/os/, Apr. 2014.
[2] Haskell JavaScript Parser and Interpreter. http://www.haskell.org/ haskellwiki/Li-

braries_and_tools/HJS, June 2014.
[3] PhoneGap. http://phonegap.com/, Feb. 2014.
[4] Tizen. https://www.tizen.org/, Apr. 2014.
[5] E. Albert, P. Arenas, S. Genaim, and G. Puebla. Closed-form upper bounds in static cost analysis.

Journal of Automated Reasoning, pages 161–203, 2011.

25

https://www.mozilla.org/en-US/firefox/os/
http://phonegap.com/
https://www.tizen.org/

Towards an amortized type system for JavaScript Franzen and Aspinall

[6] E. Albert, S. Genaim, and A. N. Masud. More precise yet widely applicable cost analysis. In
Verification, Model Checking, and Abstract Interpretation, pages 38–53, 2011.

[7] C. Anderson and S. Drossopoulou. Type inference for JavaScript. PhD thesis, University of
London, 2006.

[8] C. Anderson and P. Giannini. Type checking for JavaScript. In In WOOD ’04, volume WOOD of
ENTCS. Elsevier, 2004., 2004.

[9] C. Anderson, P. Giannini, and S. Drossopoulou. Towards type inference for JavaScript. In ECOOP
2005 - Object-Oriented Programming, pages 428–452. Springer Berlin Heidelberg.

[10] D. Aspinall, L. Beringer, M. Hofmann, H.-W. Loidl, and A. Momigliano. A program logic for
resources. Theoretical Computer Science, pages 411–445, 2007.

[11] D. Aspinall, P. Maier, and I. Stark. Safety guarantees from explicit resource management. In
Formal Methods for Components and Objects, pages 52–71. Springer, 2008.

[12] R. Böhme and J. Grossklags. The security cost of cheap user interaction. In Proceedings of the
2011 Workshop on New Security Paradigms Workshop (NSPW, pages 67–82. ACM, 2011.

[13] R. Chugh, D. Herman, and R. Jhala. Dependent types for Java Script. In ACM SIGPLAN Notices,
pages 587–606, 2012.

[14] D. Crockford. Jslint: The javascript code quality tool. URL http://www. jslint. com, 2011.
[15] S. A. Eliopoulos, J. G. Politz, S. Krishnamurthi, and A. Guha. Type-based verification of

JavaScript sandboxing. USENIX Security Symposium, 2011, 2011.
[16] P. Gardner and G. Smith. JuS: Squeezing the sense out of javascript programs. JSTools@ ECOOP,

2013.
[17] P. A. Gardner, S. Maffeis, and G. D. Smith. Towards a program logic for JavaScript. In Proceedings

of the 39th annual ACM SIGPLAN-SIGACT symposium on Principles of programming languages
(POPL), pages 31–44, 2012.

[18] A. Guha, C. Saftoiu, and S. Krishnamurthi. The essence of JavaScript. In Proceedings of the 24th
European conference on Object-oriented programming (ECOOP), pages 126–150. Springer-Verlag,
2010.

[19] D. Hedin and A. Sabelfeld. Information-flow security for a core of JavaScript. 2012 IEEE 25th
Computer Security Foundations Symposium, pages 3–18.

[20] J. Hoffmann, K. Aehlig, and M. Hofmann. Multivariate amortized resource analysis. In ACM
SIGPLAN Notices, pages 357–370, 2011.

[21] J. Hoffmann and M. Hofmann. Amortized resource analysis with polymorphic recursion and partial
big-step operational semantics. In Programming Languages and Systems, pages 172–187. 2010.

[22] M. Hofmann. A Type System for Bounded Space and Functional In-Place Update–Extended Ab-
stract. 2000.

[23] M. Hofmann and S. Jost. Static prediction of heap space usage for first-order functional programs.
In Proceedings of the 30th ACM SIGPLAN-SIGACT symposium on Principles of programming
languages (POPL), pages 185–197, 2003.

[24] M. Hofmann and D. Rodriguez. Automatic type inference for amortised heap-space analysis. In
Programming Languages and Systems, page 593–613. Springer, 2013.

[25] S. H. Jensen, A. Møller, and P. Thiemann. Type analysis for JavaScript. In Static Analysis, pages
238–255. Springer, 2009.

[26] S. Maffeis, J. C. Mitchell, and A. Taly. An operational semantics for JavaScript. In Proceedings
of the 6th Asian Symposium on Programming Languages and Systems (APLAS), pages 307–325.
Springer-Verlag, 2008.

[27] M. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay. Caja: Safe active content in sanitized
JavaScript. 2008.

[28] P. Thiemann. Towards a type system for analyzing JavaScript programs. In Programming Lan-
guages and Systems, pages 408–422. Springer Berlin Heidelberg, 2005.

26

	Introduction
	Resource modelling
	Amortized annotations
	Resource kinds
	Resource Model

	Types
	Subtypes
	Type checking
	Type inference
	Inferred bounds

	Semantics
	Soundness
	Related work
	Resource Analysis
	JavaScript Formalisations

	Conclusion and Future Work

