
EPiC Series in Computing
Volume 80, 2021, Pages 133–152

8th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH21)

ARCH-COMP 2021 Category Report:
Falsification with Validation of Results∗

Gidon Ernst1, Paolo Arcaini2, Ismail Bennani3, Aniruddh Chandratre4,
Alexandre Donze5, Georgios Fainekos4, Goran Frehse6, Khouloud Gaaloul7,

Jun Inoue8, Tanmay Khandait4, Logan Mathesen4, Claudio Menghi9,
Giulia Pedrielli4, Marc Pouzet3, Masaki Waga10, Shakiba Yaghoubi4,

Yoriyuki Yamagata8, and Zhenya Zhang11

1 Ludwig-Maximilians-University (LMU), Munich, Germany gidon.ernst@lmu.de
2 National Institute of Informatics (NII), Tokyo, Japan arcaini@nii.ac.jp

3 École normale supérieure (ENS), Paris, France {ismail.lahkim.bennani,marc.pouzet}@ens.fr
4 Arizona State University (ASU), Tempe, USA

{achand75,fainekos,tkhandai,lmathese,gpedriel,syaghoub}@asu.edu
5 Decyphir SAS, Moirans, France alex@decyphir.com

6 ENSTA Paris, Palaiseau, France goran.frehse@ensta-paris.fr
7 University of Luxembourg, Luxembourg khouloud.gaaloul@uni.lu

8 National Institute of Advanced Industrial Science and Technology (AIST), Osaka, Japan
{jun.inoue,yoriyuki.yamagata}@aist.go.jp

9 McMaster University, Canada menghic@mcmaster.ca
10 Kyoto University, Japan mwaga@fos.kuis.kyoto-u.ac.jp

11 Nanyang Technological University, Singapore zhenya.zhang@ntu.edu.sg

Abstract
This report presents the results from the 2021 friendly competition in the ARCH work-

shop for the falsification of temporal logic specifications over Cyber-Physical Systems.
We briefly describe the competition settings, which have been inherited from the previ-
ous years, give background on the participating teams and tools and discuss the selected
benchmarks. Apart from new requirements and participants, the major novelty in this
instalment is that falsifying inputs have been validated independently. During this pro-
cess, we uncovered several issues like configuration errors and computational discrepancies,
stressing the importance of this kind of validation.
Data: https://gitlab.com/goranf/ARCH-COMP, https://dx.doi.org/10.5281/zenodo.5651631

1 Introduction
We report on the friendly competition associated with the ARCH workshop of the year 2021.
The goal of the competition is to compare the state-of-the-art of tools for testing and verification

∗The falsification category was coordinated by the first author. The remaining authors represent all partici-
pants who have contributed results and/or text to this report and they are listed alphabetically.

G. Frehse and M. Althoff (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 133–152

https://gitlab.com/goranf/ARCH-COMP
https://dx.doi.org/10.5281/zenodo.5651631

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

of hybrid systems. The competition is organized in several categories, with different specifica-
tions (computing reachable regions, checking temporal properties) and varying dynamics in the
system models (such as linear/non-linear and hybrid).

This report concerns the falsification category, which targets the black-/greybox analysis of
executable models with respect to requirements expressed in temporal logic with time bounds,
encoded in MTL [28] or STL [29]. The task is to find initial conditions and time-varying
inputs subject to given constraints that steer the system into a violation of the respective
requirement. Typical approaches are simulation-based and employ quantitative metrics [20, 21]
of how close a given input is to violating a requirement (“robustness semantics”). Research
in this area has produced a variety of techniques, mature tools, and practical applications;
these are described in overview survey articles [4, 9]. For past instalments of this competition
2017–2020 see [13, 11, 18, 17].

The competition of 2021 followed the structure of previous years, with three notable changes:
• We have included some new conjunctive requirements (section 2), which intend to test

whether the approaches can deal with multiple—possibly competing—ways in which a
particular requirement can be falsified.

• There are two new participating tools (section 3), FalCAuN [38] and ForeSee [41]., which
means that now we have results of an overall of eight competitors resp. approaches
(section 4)

• For the first time, we do not only collect statictics on the success rate, but the actual
falsifying inputs as produced by the tools, and we validate them independently (section 5).

The benchmark set developed by this competition series can be seen as a baseline for research
in the area (cf. [15]), and we encourage authors to compare to the results presented here.
To that end, the models and validation results produced by this competition are available
through the shared GitLab repository at https://gitlab.com/goranf/ARCH-COMP, notably in the
subfolders models/FALS and 2021/FALS. An archive containing the traces submitted for validation
is available at https://dx.doi.org/10.5281/zenodo.5651631.

2 Benchmark Definitions

2.1 Input Parameterization

Arbitrary piece-wise continuous input signals (Instance 1). This option leaves the
input specification up to the participants. The search space is, in principle, the entire set of
piece-wise continuous input signals (i.e., which permit discontinuities), where the values for each
individual dimensions are from a given range. Additional constraints that were suggested are
finite-number of discontinuity and finite variability for all continuous parts of inputs. Further,
each benchmark may impose further constraints. Participants may instruct their tools to search
a subset of the entire search space, notably to achieve finite parametrization, and then to apply
an interpolation scheme to synthesize the input signal.

However, the participants agreed that such a choice must be “reasonable” and should be
justified from the problem’s specification without introducing external knowledge about poten-
tial solutions. Moreover, more general parametrizations that are shared across requirements
and benchmark models were preferable. Due to the diversity of benchmarks, it was decided to
evaluate the proposed solutions using common sense.

134

https://gitlab.com/goranf/ARCH-COMP
https://dx.doi.org/10.5281/zenodo.5651631

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

Constrained input signals (Instance 2). This option precisely fixes the format of the
input signal, potentially allowing discontinuities. An example input signal would be piecewise
constant with k equally spaced control points, with ranges for each dimension of the input, dis-
abling interpolation at Simulink input ports so that tools don’t need to up-sample their inputs.
The arguments in favor of that are increased comparability of results. As possible downside
was mentioned that optimization-based tools (S-TaLiRo and Breach) are just compared with
respect to their optimization algorithm. Nevertheless such a comparison is still meaningful, in
particular, as FalStar and falsify implement other approaches to falsification.

2.2 Models and Requirements
A brief description of the benchmark models follows, the formal requirements are shown in
Table 1 as STL/MTL formulas. The conjunctive requirements introduced in this year are
AT6abc, NNx, and CCx, as marked in the table.

Automatic Transmission (AT). This model of an automatic transmission encompasses a
controller that selects a gear 1 to 4 depending on two inputs (throttle, brake) and the current
engine load, rotations per minute ω, and car speed v. It is a standard falsification benchmark
derived from a model by Mathworks and has been proposed for falsification in [25].

Input specification: 0 ≤ throttle ≤ 100 and 0 ≤ brake ≤ 325 (both can be active at the same
time). Constrained input signals (instance 2) permit discontinuities at most every 5 time units.
Requirements are specific versions of those in [25] where the parameters have been chosen to
be somewhat difficult.

Fuel Control of an Automotive Powertrain (AFC). The model is described in [27] and
has been used in two previous instalments of this competition [10, 12]. The specific limits used
in the requirements are chosen such that falsification is possible but reasonably hard.

The constrained input signal (instance 2) fixes the throttle θ to be piecewise constant with 10
uniform segments over a time horizon of 50 with two modes (normal and power corresponding to
feedback and feedforward control), and the engine speed ω to be constant with 900 ≤ ω < 1100
to capture the input profile outlined in [27] and to match the previous competitions. For
this reason, we do not consider the unconstrained (instance 1) input specification. Faults are
disabled (e.g. by setting fault_time > 50).

Neural-network Controller (NN). This benchmark is based on MathWork’s neural net-
work controller for a system that levitates a magnet above an electromagnet at a reference
position.1 It has been used previously as a falsification demonstration in the distribution of
Breach. The model has one input, a reference value Ref for the position, where 1 ≤ Ref and
Ref ≤ 3. It outputs the current position of the levitating magnet Pos. The input specification
for instance 1 requires discontinuities to be at least 3 time units apart, whereas instance 2
specifies an input signal with exactly three constant segments. The time horizon for the prob-
lem is 40. The requirement ensures that after changes to the reference, the actual position
eventually stabilizes around that value with small error.

1https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html

135

https://au.mathworks.com/help/deeplearning/ug/design-narma-l2-neural-controller-in-simulink.html

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

Table 1: Requirement formulas for the benchmarks
Key STL formula Remarks/Constraints

AT1 2[0,20]v < 120
AT2 2[0,10]ω < 4750
AT51 2[0,30]((¬g1 ∧ ◦ g1)→ ◦ 2[0,2.5]g1) where ◦ φ ≡ 3[0.001,0.1] φ
AT52 2[0,30]((¬g2 ∧ ◦ g2)→ ◦ 2[0,2.5]g2)
AT53 2[0,30]((¬g3 ∧ ◦ g3)→ ◦ 2[0,2.5]g3)
AT54 2[0,30]((¬g4 ∧ ◦ g4)→ ◦ 2[0,2.5]g4)
AT6a (2[0,30]ω < 3000)→ (2[0,4]v < 35)
AT6b (2[0,30]ω < 3000)→ (2[0,8]v < 50)
AT6c (2[0,30]ω < 3000)→ (2[0,20]v < 65)

AT6abc AT6a ∧AT6b ∧AT6c cojunctive requirement

AFC27 2[11,50]((rise ∨ fall)→ (2[1,5]|µ| < β)) 0 ≤ θ < 61.2 (normal mode)
AFC29 2[11,50]|µ| < γ 0 ≤ θ < 61.2 (normal mode)
AFC33 2[11,50]|µ| < γ 61.2 ≤ θ ≤ 81.2 (power mode)

where β = 0.008, γ = 0.007

rise = (θ < 8.8) ∧ (3[0,0.05](θ > 40.0))
fall = (θ > 40.0) ∧ (3[0,0.05](θ < 8.8))

NN 2[1,37]

(
|Pos − Ref | > α+ β|Ref | → 3[0,2]2[0,1]¬(α+ β|Ref | ≤ |Pos − Ref |)

)
where α = 0.005 and β = 0.03

NNx 3[0,1](Pos > 3.2) ∧3[1,1.5](2[0,0.5](1.75 < Pos < 2.25)) ∧2[2,3](1.825 < Pos < 2.175)
conjunctive requiremet
1.95 ≤ Ref ≤ 2.05

WT1 2[30,630]θ ≤ 14.2
WT2 2[30,630]21000 ≤Mg,d ≤ 47500
WT3 2[30,630]Ω ≤ 14.3
WT4 2[30,630]3[0,5]|θ − θd| ≤ 1.6

CC1 2[0,100]y5 − y4 ≤ 40
CC2 2[0,70]3[0,30]y5 − y4 ≥ 15
CC3 2[0,80]((2[0,20]y2 − y1 ≤ 20) ∨ (3[0,20]y5 − y4 ≥ 40))
CC4 2[0,65]3[0,30]2[0,20]y5 − y4 ≥ 8
CC5 2[0,72]3[0,8]((2[0,5]y2 − y1 ≥ 9)→ (2[5,20]y5 − y4 ≥ 9))
CCx

∧
i=1..4 2[0,50](yi+1 − yi > 7.5) conjunctive requirement

F16 2[0,15]altitude > 0

SC 2[30,35](87 ≤ pressure ∧ pressure ≤ 87.5)

136

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

Wind Turbine (WT). The model is a simplified wind turbine model proposed in [37]. The
input2 of the system is wind speed v and the outputs are blade pitch angle θ, generator torque
Mg,d, rotor speed Ω and demanded blade pitch angle θd. The wind speed is constrained by
8.0 ≤ v ≤ 16.0. Instance 1 allows any piece-wise continuous inputs, while instance 2 constrains
inputs to piece-wise constant signals whose control points which are evenly spaced each 5
seconds. The model is relatively large. Further, the time horizon is long (630) compared to
other benchmarks.

Chasing cars (CC). The model is derived from Hu et al. [26] which presents a simple model
of an automatic chasing car. Chasing cars (CC) model consists of five cars, in which the first
car is driven by inputs (throttle and brake), and other four are driven by Hu et al.’s algorithm.
The output of the system is the location of five cars y1, y2, y3, y4, y5. The properties to be
falsified are constructed artificially, to investigate the impact of complexity of the formulas to
falsification. The input specifications for instance 1 allows any piecewise continuous signals
while the input specification for instance 2 constraints inputs to piecewise constant signals with
control points for each 5 seconds, i.e., 20 segments.

Aircraft Ground Collision Avoidance System (F16). The model has been derived from
the one presented in [24]. The F16 aircraft and its inner-loop controller for Ground Collision
avoidance have been modeled using 16 continuous variables with piece-wise nonlinear differential
equations. Autonomous maneuvers are performed in an outer-loop controller that uses a finite-
state machine with guards involving the continuous variables. The system is required to always
avoid hitting the ground during its maneuver starting from all the initial conditions for roll,
pitch, and yaw in the range [0.2π, 0.2833π]× [−0.4π,−0.35π]× [−0.375π,−0.125π].3 Since the
benchmark has no time-varying input, there is no distinction between instance 1 and instance 2.
The requirement is checked for a time horizon equal to 15.

Steam condenser with Recurrent Neural Network Controller (SC). The model is
presented in [39]. It is a dynamic model of an steam condenser based on energy balance and
cooling water mass balance controlled with a Recurrent Neural network in feedback. The time
horizon for the problem is 35 seconds. The input to the system can vary in the range [3.99, 4.01].
For instance 2, the input signal should be piecewise constant with 20 evenly spaced segments.

3 Participants
We briefly describe in alphabetical order all participating tools, the respective main ideas of
the underlying approaches, followed by details on how each tool was set up for the competition.

3.1 ARIsTEO
Description. ARIsTEO [33] is a Matlab toolbox for test case generation against system
specifications presented in STL and it is developed on the top of S-TaLiRo. ARIsTEO is

2Organizer’s comment: The status of the wind turbine benchmark is currently unresolved. The model
contains an alternative setup, where the wind speed is not a time-varying input provided by the falsification
tool, but taken from one of 13 preset inputs. It remains unclear how this mechanism interacts with the input
port for v of the Simulink model. Until this issue is resolved, the model is exempt from validation.

3The report from 2019 [18] erroneously specifies: [0.2π, 0.2833π]× [−0.5π,−0.54π]× [0.25π, 0.375π], however,
previous results were in fact obtained with the correct range.

137

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

designed to targeting a large and practically-important category of CPS models, known as
compute-intensive CPS (CI-CPS) models, where a single simulation of the model may take hours
to complete. ARIsTEO embeds black-box testing into an iterative approximation-refinement
loop. At the start, some sampled inputs and outputs of the model under test are used to
generate a surrogate model that is faster to execute and can be subjected to black-box testing.
Any failure-revealing test identified for the surrogate model is checked on the original model. If
spurious, the test results are used to refine the surrogate model to be tested again. Otherwise,
the test reveals a valid failure. ARIsTEO is publicly available under the General Public License
(GPL).4

Setup. ARIsTEO provides the same interface and parameters as S-TaLiRo, while providing
additional configuration options. We had used an arx model (arx-2) with order na = 2,
nb = 2, and nk = 25 as structure for the surrogate model used in the approximation-refinement
loop of ARIsTEO. For models with multiple inputs and outputs the dimension of the matrix
na, nb and nk is changed depending on the number of inputs and outputs. We used the
default configuration of S-TaLiRo for searching failure-revealing revealing tests on the surrogate
model. We considered the same parametrization of S-TaLiRo for the input signals. The original
Simulink model was executed once to learn the initial surrogate model. The cut-off values for
the number of simulations of the original model and for the number of simulations of the
surrogate model (per trial) were set to 300. The results of ARIsTEO can further improve by
(i) using configurations for the surrogate model that provide more accurate approximations of
the original models and more effectively guide the search toward faulty inputs; and (ii) using
the SOAR option of S-TaLiRo that significantly improved the results of S-TaLiRo compared
with the last edition of this competition.

3.2 Breach
Description. Breach [14] is a Matlab toolbox for test case generation, formal specification
monitoring and optimization-based falsification and mining of requirements for hybrid dynam-
ical systems. A particular emphasis is put on modularity and flexibility of inputs generation,
requirement evaluation and optimization strategy. For this work, the approach has been to
ensure that each benchmark was properly implemented and a default, relatively basic falsifica-
tion strategy has been applied. The idea was to perform a first systematic investigation of the
proposed problems, and then to provide a base to work on for future editions of the competition
to test a larger variety on approaches on the most challenging instances. Breach is available
under BSD license6.

Setup. For most benchmarks (exceptions detailed below), a piecewise constant signal gen-
eration was used with fixed step size. For all instances, the optimization strategy used is the
default global Nelder Mead (GNM) approach with a custom configuration for the competition,
resulting in the following three phases behavior:

• Phase 1.: at most ncorners = 64 corner samples are tested, i.e., inputs for which control
points take only extreme values;

• Phase 2.: nquasi-rand = 100 − ncorners quasi-random samples from the Halton sequence
with varying start points determined by a random seed are tested;

4https://github.com/SNTSVV/ARIsTEO
5https://nl.mathworks.com/help/ident/ref/arx.html
6https://github.com/decyphir/breach

138

https://github.com/SNTSVV/ARIsTEO
https://nl.mathworks.com/help/ident/ref/arx.html
https://github.com/decyphir/breach

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

• Phase 3.: the robustness results from phase 1 and 2 are sorted and Nelder Mead opti-
mization is run from the most promising samples.

Note that as a result of this approach, whenever a falsifying input is consistently found with
less than 100 simulations, it indicates that the problem is likely falsifiable with extreme inputs
or a quick stochastic exploration of the search space.

For instance 2 in several problems, the pulse generation approach investigated in [36] was
used this year. This made it possible to obtain slightly better results than previous editions of
the competitions. Specifically, CC4 could be falsified 3 times out of 50 using two independent
saturated pulse generators for the 2 inputs with varying periods, delays and width, and SCa
could be falsified 48 out of 50 times using a pulse generator with varying period and delay.

3.3 FalCAuN

Description. FalCAuN [38] is an experimental tool for testing a Simulink model using black-
box checking [35], an automated testing method based on active automata learning and model
checking. In FalCAuN, the input and the output signals of the Simulink model are discretized in
time and values, and the model is abstracted into a black-box Mealy machine. FalCAuN learns
the Mealy machine and conducts model checking to find a counterexample. FalCAuN is designed
to efficiently falsify a Simulink model against multiple specifications by reusing the learned
Mealy machine. FalCAuN is publicly available under General Public License (GPL) v37.

We utilize the discrete-time semantics of STL, which is essentially the same as the semantics
of LTL. Because of such discretization, the control points must be fine enough to capture the
timing constraints in the STL formula. For example, in order to capture the timing constraint
3[0,0.05], the duration between the control points must be at most 0.05. We note that due to
the use of the discrete-time semantics, the signal reported as a counterexample by FalCAuN may
not falsify the model in terms of the continuous-time semantics.

Setup. For the signal discretization, we have the following hyperparameters: the (constant)
duration of the intervals between samples, the input signal values at the control points, and
the thresholds of the output signal values for the discretization. We used the shortest duration
between the control points such that the LTL encoding of the STL formula is small enough for
the back-end model checker LTSMin. The duration ranges from 1.0 to 10.0 time units. In most
benchmarks, we let the input signal values be the maximum and the minimum of the range.
The exceptions are as follows.

• In AT6a, AT6b, and AT6c, the throttle can be 50 in addition to 0 and 100.
• In AT2 instance 2, the throttle and the brake can be 5 and 6 evenly spaced values,

respectively, i.e., the value of the throttle can be one of 0, 25, 50, 75, and 100.
• In SCa, the input can be 4.00 in addition to 3.99 and 4.01.

In most benchmarks, we let the threshold of the output signal values be the thresholds in the
STL formula. The exceptions are as follows.

• In AT1 and AT2 instance 2, we have the common thresholds: 120 for the speed and 4750
for the RPM.

• In AT6a, AT6b, and AT6c, we have the common thresholds: 35, 50, and 65 for the speed
and 3000 for the RPM.

• In CC1, CC2, and CC3, we have the common thresholds: 15 and 40 for y5 − y4 and 20
for y2 − y1.

7https://github.com/MasWag/FalCAuN

139

https://github.com/MasWag/FalCAuN

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

3.4 falsify
Description. falsify is an experimental program which solves falsification problems of safety
properties by reinforcement learning [40]. falsify uses a grey-box method, that is, it learns system
behavior by observing system outputs during simulation. falsify is currently implemented by a
deep reinforcement learning algorithm Asynchronous Advantage Actor-Critic (A3C) [34].

Setup. The input specification uses piecewise constant function with discontinuities spaced
in even intervals ∆T . ∆T = 1 for all models except for SC in which ∆T = 0.1 is used. The
choice for the SC model was ∆T = 0.1 model because Instance 2 uses ∆T = 1.75, which is near
to ∆T = 1.

3.5 FalStar
Description. FalStar [19] is an a falsification tool that explores the idea to construct fal-
sifying inputs incrementally in time, thereby exploiting potential time-causal dependencies in
the problem. The algorithm used in this competition is called adaptive Las-Vegas tree search
(aLVTS). The main idea is to try “simple” inputs first, i.e., to scale gracefully with the intuitive
combinatorial hardness of the benchmark problem [16]. This is achieved by sampling from input
domains with gradually finer temporal and spatial resolution, starting with extreme values. The
approach can be regarded as a more reasonable baseline over random sampling, which takes the
structure of the problem into account, but which neither relies on sophisticated optimization
methods nor insight into the models themselves. The code is publicly available under the BSD
license.8

Setup. The search space for instance 1 included piecewise constant inputs (the only param-
eterization currently supported), ranging from 2 upto 4 control points at which discontinuities
are allowed (resp. upto 3 for NN). In this configuration FalStar benefits from a low number of
control points and is more likely to try inputs with fewer control points first. For the AT bench-
marks it was clear beforehand that this choice suffices to falsify all benchmarks, and the setting
was then kept for the remaining experiments. Instance 2 input signals are parameterized with
the number of control points as specified by the respective benchmarks. The F16 benchmark
does not have a time-varying input and therefore the strategy proposed in [19] is not applicable.
Instead, global optimization with Nelder/Mead is used on this benchmark, which is effective.

3.6 ForeSee
Description. In falsification, the scale problem can occur when the signals used in the spec-
ification have different scales (e.g., rpm and speed): namely, the contribution of a signal could
be masked by another one when computing robustness. ForeSee [41] (FORmula Exploitation
by Sequence trEE) tackles this problem by introducing a new robustness definition, called QB-
Robustness, which combines quantitative robustness and classical Boolean satisfaction. QB-
Robustness does not require comparing (i.e., by minimum or maximum) robustness values of
different sub-formulas, so possibly avoiding the scale problem. However, in order to be com-
puted, QB-Robustness requires the selection of a sequence of sub-formulas along the syntax tree
of the specification for which to compute the quantitative robustness. Different sub-formulas
sequences can be more or less effective in mitigating the scale problem.

8https://github.com/ERATOMMSD/falstar

140

https://github.com/ERATOMMSD/falstar

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

ForeSee implements a falsification strategy based on a Monte Carlo Tree Search over
the structure of the formal specification: first, by tree traversal, it identifies the sub-formulas
sequence; then, on the leaves, it performs numerical hill-climbing optimization, with the aim
of falsifying the selected sub-formulas. ForeSee is the spiritual successor of FalStar/MCTS
from [18, 17]. It is publicly available under GNU General Public License (GPL) v3.9

Setup. Since ForeSee is implemented on the basis of Breach, it provides the same interface
of Breach, namely, users can characterize the shape of input signals with a number of options,
including piecewise constant, piecewise linear, pulse, etc. In this report, we regulate the shape
of input signals with piecewise constant, parametrized by the number of control points.

In the current implementation of ForeSee, only CMA-ES [2] is provided as the optimizer;
this is due to our insight in the performances of different optimizers, in which CMA-ES outper-
forms other optimizers. However, involving other optimizers is not difficult for ForeSee, and
will be considered in the future releases.

Since ForeSee technically relies on Monte Carlo Tree Search (MCTS), the hyperparameters
in MCTS need to be properly selected. As a default setting, we use 0.2 as the scalar in the
UCB1 algorithm, that takes a balance of exploration and exploitation; and we set 10 generations
as the budget for the playout phase of MCTS.

3.7 S-TaLiRo
Description. S-TaLiRo [1] is a Matlab toolbox for monitoring and test case generation against
system specifications presented in STL (or MTL). The test cases are automatically generated
using optimization techniques guided by formal requirements in STL in order to find falsifying
systems behaviors. The tool supports different optimization algorithms. In past competitions,
the Stochastic Optimization with Adaptive Restarts (SOAR) [32] framework was used for all
the benchmarks except for choosing instance 1 type inputs in Steam Condenser model. In
that benchmark, Simulated annealing global search was combined with a local optimal control
based search [39]. For the 2021 competition, we have used the minSOAR framework [31, 30]
for the newly proposed conjunctive benchmarks. The minSOAR framework can be thought
of as an extension to SOAR which can handle multiple conjunctive requirements by modeling
information from each resulting robustness component. S-TaLiRo is publicly available on-line
under General Public License (GPL) 10.

Setup. In S-TaLiRo, input signals are parameterized in two ways: the number of control
points for the input signal, and the time location of those control points during simulation.
The number of control points for each input signal is given by the user forming an optimization
problem with search space dimension the same as the number of control points. An option is
provided to the user to add to the search space the timing of the control points, but this option
is not used in the competition. For this competition, the control point time locations are evenly
spaced over the duration of the simulation for all the benchmarks except for the SC problem
instance 1.

For the transmission model the [throttle, brake] control points are interpolated with the pchip
function, with [7, 3] as the number of control points in specifications 1-6 and [4, 2] for 7-9 to
reduce the dimensionality of the search space. For the Neural model, we use 13 control points
to yield piecewise constant signals of 3.33 seconds apart. The Wind Turbine used the default

9https://github.com/choshina/ForeSee
10https://sites.google.com/a/asu.edu/s-taliro

141

https://github.com/choshina/ForeSee
 https://sites.google.com/a/asu.edu/s-taliro

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

model input of 126 control points interpolated linearly. For the SC model, Simulated Annealing
(SA) global search was utilized in combination with an optimal control based local search on
the infinite dimensional input space. The SA global search utilizes piecewise constant inputs
with 12 possibly uneven time durations.

3.8 zlscheck

Description. zlscheck is a tool for test case generation of programs written in Zélus11 [7], a
language reminiscent of the synchronous languages Lustre [22] and Scade [8] extended in order
to express ODEs. For now zlscheck applies to the discrete-time subset of Zélus.
Properties are expressed as synchronous observers [23] with a quantitative semantics to solve
the falsification problem as an optimization problem. zlscheck uses automatic differentiation
to compute gradients of the robustness of a model w.r.t. some input parameters and uses
gradient-based techniques to find a falsifying input. Additionally, it uses FADBADml12, a tool
for automatic differentiation which we ported from C++ to OCaml.
All the models of this competition have been rewritten manually in Zélus and are available
along with the tool on github13. The Simulink’s Integrator block is programmed in Zélus as a
fixed-step forward euler scheme.
The counter-examples found by zlscheck were systematically validated on their corresponding
Simulink models, the ones that did not pass validation were discarded from the final results.

Setup. The inputs of the systems are bounded piecewise constant streams. A bounded piece-
wise constant stream x of size N and period k is such that ∀n ∈ [0, N], x(n) = x(bnk c · k). It is
totally defined by (bNk c+ 1) values (parameters).
Two different strategies were used in these benchmarks:

• classic: the optimization is done offline: the parameters are generated at the beginning
of the simulation, then the corresponding robustness is computed. The optimization
algorithm then uses the robustness and its gradient w.r.t. the parameters to compute the
next parameters.
This strategy has been used for properties AT1, AT2, AT6, AFC29, AFC33, NN, WT,
F16 and SC.

• mode switch: the optimization is performed online: for each input, the parameter number
bnk c is generated at step bnk c · k of the simulation.
In order to achieve coverage of the different modes of the system (a mode is a state in a
hierarchical automaton), zlscheck chooses randomly an available transition and drives the
system towards triggering it: it computes a quantitative interpretation of the complement
of its guard (transition robustness) and the gradients of that robustness w.r.t. the current
values of the inputs of the system (at step n this would be the parameters number bnk c).
The value of the next parameter is then computed by the optimization algorithm using
its precedent value and the gradient.
Once the transition has been triggered, the tool chooses a new one randomly and so on,
until the simulation ends. In this mode, the inputs are generated independently of the
property being falsified.
This strategy has been used for properties AT5, AFC27 and CC.

11http://zelus.di.ens.fr/
12https://fadbadml-dev.github.io/FADBADml/
13https://github.com/ismailbennani/zlscheck

142

http://zelus.di.ens.fr/
https://fadbadml-dev.github.io/FADBADml/
https://github.com/ismailbennani/zlscheck

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

The gradient-based algorithm used by zlscheck is a simple gradient descent with decreasing
step-size: at step l of the optimization, the step-size is a(l) = a(0)/

√
l where a(0) is a meta-

parameter. The first input is sampled uniformly in the input space, and if the same input is
generated twice in a row, the algorithm restarts. Other gradient descent algorithms (ADAM,
ADAGRAD, AMSGRAD) are implemented in zlscheck and have been tested but did not give
significantly better results.
Additionally, given that the integration scheme is fixed-step, we can express the period k of
the inputs as times instead of number of simulation steps. For instance 1, those periods are
(in seconds): ∆TAT = 0.5 except ∆TAT2 = 2.5, ∆TAT6a = 5, ∆TAT6b = 10, ∆TAT6c = 15 and
∆TAFC = 5 and ∆TNN = 3 and ∆TWT = 5 and ∆TCC = 5 and ∆TF16 = +∞, ∆TSC = 0.2.

4 Evaluation

Falsification tools were instructed to run each individual requirement 50 times, to account for
the stochastic nature of most algorithms. We report the falsification rate, i.e., the number of
trials where a falsifying input was found, as well as the median and mean of the number of
simulations required to find such input (not including the unsuccessful runs in the aggregate).
The cut-off for the number of simulations per trial was 300.

The results were provided by the participants, and reflect experiments from multiple years,
on multiple platforms with varying resources, and different MATLAB/Simulink versions. The
results of ForeSee and FalCAuN (new participants), as well as those of falsify and ARIsTEO
(tool changes), have been updated from last year; similarly for the results of the new conjunctive
benchmarks where given.

The results for unconstrained piecewise-continuous input signals (instance 1) are shown in
table 2. For a better comparison of the performance of the tools, a common ground is piecewise
constant input signals (instance 2) with a concrete specification of the number of discontinuities
allowed. The corresponding results are shown in table 3. Empty cells indicate lack of data for
various reasons, such as missing tool support for a particular benchmark feature, or simply that
the respective participants did not take the time to set up and/or run these experiments.

The results depend on the choices for the search space, which we briefly discuss for each
participating tool as described in section 3.

We do not report falsification times, as this information is not meaningful and incomparable
due to the way the results were produced. Instead, the comparison is based on how often the
simulation engine is queried, which typically dominates falsification time by a large factor.

For a more detailed discussion of the outcomes, see [18, 17].

5 Validation.

The 2021 competition took the first steps towards validating the results produced by the tools.
The overarching goal was to ensure that the comparison reported here is meaningful, and the
approach taken accounts for several potential sources of error, both for technical reasons or
because of human error. The hypothetical case of cheating participants was not regarded likely,
and we emphasize upfront that no indication whatsoever for dishonest behavior was found.
Rather, the goal is to establish a higher standard of quality of evaluation results, that can
ultimately benefit any future work in simulation-based falsification: Just like the benchmark
set established by this community gets adopted by experiments in the literature, validation of
results using an independent reference checker should become standard, too.

143

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

Table 2: Results for piecewise continuous input signals (instance 1). FR: falsification rate
wrt. number of 50 trials, S and S̃: mean resp. median (rounded down) number of simulations
over successful trials (“–” if FR is zero).
Tool: ARIsTEO Breach FalCAuN falsify FalStar ForeSee S-TaLiRo zlscheck

Approach: arx-2 GNM A3C aLVTS SOAR GD

Benchmark FR S S̃ FR S S̃ FR S FR? FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃

AT1 0 - - 50 11.0 11 0 – 48 17 224.5 223 50 33.0 30 29 252.3 270 50 118.8 116 50 3.4 2
AT2 50 4.1 3 50 2.0 2 5 180 29 50 22.1 10 50 4.3 3 48 31.9 16 50 23.9 19 50 15.5 2
AT51 0 – – 41 74.6 67 50 69.5 56 50 16.4 11 50 26.7 22 50 3.5 5
AT52 50 3.2 2 49 72.0 67 26 125.4 137 50 46.2 29 50 4.1 3 50 1.6 1
AT53 50 2.6 2 49 74.5 73 50 70.8 68 50 2.6 2 50 3.4 3 50 1.3 1
AT54 3 295.1 300 21 84.9 85 50 71.1 52 49 65.2 43 50 10.5 2 50 3.5 2
AT6a 50 39.0 23 50 97.9 97 1 290 50 50 76.1 70 49 117.0 108 49 78.4 40 50 48.3 29
AT6b 49 101.7 83 49 112.9 118 0 – 50 50 82.4 75 39 180.2 175 33 132.6 128 35 77.7 102
AT6c 50 48.2 34 50 94.1 89 0 – 50 8 221.4 234 47 124.6 122 47 61.3 38 32 18.9 23
AT6abc 50 27.2 16 10 140.9 134 48 73.0 42

NN 50 62.8 46 48 96.3 101 50 1.0 1 36 122.8 106 50 96.8 64 50 26.7 22 50 1.0 1
NNβ = 0.04 4 193.0 222 50 1.1 1
NNx 35 131.6 112 0 – – 37 153.9 143

WT1 50 13.0 10 50 3.0 3 37 47.7 7 50 91.0 91 50 1.4 1
WT2 50 1.3 1 50 3.0 3 46 8.0 2 50 32.6 30 48 1.0 1
WT3 50 2.4 2 50 3.0 3 50 2.5 1 50 44.1 60 50 1.1 1
WT4 50 1.0 1 50 30.0 30 50 4.9 4 50 3.3 2 0 – –

CC1 50 27.0 15 50 3.0 3 48 161 50 47 51.3 17 50 4.1 2 50 26.8 23 50 9.5 7 50 8.8 12
CC2 50 9.2 6 50 1.0 1 50 43 50 37 24.2 4 50 4.0 2 14 25.4 20 50 6.0 4 50 4.7 3
CC3 50 56.3 46 50 3.0 3 48 155.5 50 46 35.4 8 50 6.9 5 50 28.6 9 50 19.9 5 50 23.4 16
CC4 0 – – 3 287 287 1 26.0 26 2 52.0 60 13 311.1 315 20 188.0 179 32 124.6 164
CC5 50 25.9 17 49 26.1 19 31 29.7 26 46 91.2 79 50 63.7 22 50 42.9 36 50 2.0 3
CCx 15 250.0 300 12 123.5 106 45 137.5 122 45 232.5 227

F16 0 – – 1 297.0 297 (no support) † 69.0 69 (no support) 7 127.6 94 0 - -

SC 0 – – 48 128.8 109.5 0 – 0 0 – – 0 – – – – – ‡50 62.2 55 50 2.1 2

F16 †: FalStar uses Nelder/Mead optimization initialized by extreme values; since the approach is
deterministic it was executed once only, with successfully finding a violation after 69 simulations.
SC ‡: The S-TaLiRo results for this benchmark are yielded by Simulated Annealing assisted with
gradient based search (see [39]).
FalCAuN ?: Column FR? are results obtained when the simulations required for automata learning are
not counted, only the simulations required for equivalence testing are capped at 300 (see [38]).

One obvious source of error are mistakes in the translation of formal requirements into the
format of the respective tool, and similar problems with the experimental setup, like wrong
input parameterization.

More subtly, there might be mismatches in the numeric computations underpinning the
simulations, due different versions of the models as well as MATLAB, or due to different model
configurations, such as the ODE solver/integrator settings, and the interpolation setting on the
input ports. Rounding errors introduced during pretty printing and parsing of the result format
are expected, too, and MATLAB seems to implement some effort to work around limitations
of the underlying floating point data-type, which mismatches the way such values are handled
inside the Java virtual machine on which the validator runs.

Similarly, there may be differences between computation of the robustness score, from which
falsification success is typically derived: Four implementations are used in the competition—
from S-TaLiRo (also used by ARIsTEO), Breach (also used by ForeSee), FalStar, and

144

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

Table 3: Results for constrained input signals/instance 2. FR: falsification rate (of 50), S: mean
number of simulations, S̃: median (rounded down) number of simulations.
Tool: ARIsTEO Breach FalCAuN falsify FalStar ForeSee S-TaLiRo zlscheck

Approach: arx-2 GNM A3C aLVTS SOAR GD

Benchmark FR S S̃ FR S S̃ FR S FR? FR S S̃ FR S S̃ FR S S̃ FR S S̃ FR S S̃

AT1 0 – – 0 – – 46 171.2 50 39 125.8 110 50 33.0 30 29 252.3 270 50 170.3 171 50 2.3 2
AT2 50 5.1 4 50 2.0 2 0 – 20 48 19.0 7 50 4.3 3 48 31.9 16 50 16.8 9 50 9.2 2
AT51 50 8.4 6 50 7.0 7 50 69.5 56 50 16.4 11 50 12.6 11 50 8.7 12
AT52 50 3.5 3 50 3.0 3 26 125.4 137 50 46.2 29 49 17.6 4 50 35.1 31
AT53 50 2.6 2 50 3.0 3 50 70.8 68 50 2.6 2 50 3.4 3 50 22.7 26
AT54 50 29.4 17 50 3.0 3 50 71.1 52 49 65.2 43 50 24.2 16 47 56.3 43
AT6a 47 103.1 80 0 – – 50 76.1 70 49 117.0 108 44 130.4 149 50 42.7 26
AT6b 45 164.7 174 0 – – 50 82.4 75 39 180.2 175 39 207.2 236 5 129.5 102
AT6c 49 89.1 60 0 – – 43 50 214.1 0 – – 47 124.6 122 42 197.5 208 2 261.7 288
AT6abc 50 79.1 70 50 105.2 88

AFC27 50 2.3 1 50 3.0 3 50 1.6 1 50 3.9 3 50 2.8 2 50 70.3 78 50 1.0 1
AFC29 50 1.0 1 50 3.0 3 50 1.0 1 50 1.2 1 50 1.0 1 50 13.0 10 0 – –
AFC33 50 1.0 1 0 – – 50 1.0 1 0 – – 50 1.0 1 0 – – 24 2.1 2

NN 50 62.8 46 50 6.0 6 50 1.0 1 26 177.0 197 50 44.2 34 49 68.0 48 50 1.3 1
NNβ = 0.04 3 127.0 74 50 1.4 1
NNx 50 1.0 1 23 175.7 166 0 – –

WT1 50 1.4 1 50 3.0 3 49 8.6 2 50 7.1 5 50 1.4 1
WT2 50 1.0 1 50 3.0 3 50 2.8 2 50 1.0 1 48 1.0 1
WT3 50 1.1 1 50 3.0 3 50 2.0 1 50 1.0 1 50 1.1 1
WT4 50 1.0 1 50 30.0 30 50 3.7 3 50 12.0 9 0 – –

CC1 50 9.1 6 50 5.0 5 50 23.5 7 50 7.3 6 50 26.8 23 50 67.8 91 50 8.8 12
CC2 50 6.7 4 50 1.0 1 46 14.4 4 50 15.9 9 14 25.4 20 48 114.5 105 50 4.7 3
CC3 50 18.9 15 50 28.6 9 44 13.5 2 4 207.5 229 50 14.4 17 50 22.4 13 50 23.4 16
CC4 0 – – 0 – – 9 120.4 168 0 – – 13 311.1 315 0 – – 32 124.6 164
CC5 50 29.1 12 16 84.7 79 32 37.2 8 39 117.9 103 50 63.7 22 50 74.9 48 50 2.0 3
CCx 20 229.4 300 45 137.5 122

SC 0 – – 0 – – 0 – – 0 – – 0 – – 0 – – 0 – –

zlscheck—whereas FalCAuN uses boolean semantics of formulas.
To that end, for each (successful) of the 50 respective trials per requirement, we collected

the following information, from which the above questions can be answered satisfactorily:

• information about which benchmark (model + requirement identifier)
• the initial conditions and time-series input signal resulting from that trial
• whether the signal is expected to falsify the requirement
• if available, a robustness value derived from running the input through the model
• optionally, the corresponding output signal, and further information such as time stamps

or wall-clock times

In the following, we will refer to the this information as the “reported” result. Multiple questions
were identified as concerns for validation, albeit not all points were achieved or fully taken into
account:

1. does the reported input signal adhere to the valid ranges of input for that particular
model, as described in section 2?

2. does the reported input signal adhere to the constraints of the respective instance?
3. is the reported verdict correct, i.e., whether running this signal through the model pro-

duces a falsifying trace?

145

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

4. is the reported robustness value consistent with the verdict (values strictly < 0 indicate
a falsification), and how accurately can the robustness be reproduced?

5. how accurately can the reported output be reproduced, if given?
6. are the values reported in tables 2 and 3 correct?

In the end, we checked for 1., 3., and 4. Regarding 2., it is not quite straight-forward to check
the shape of the signal, so we did not attempt it. Regarding 5., not all participants did report
output signals, so we omitted this aspect from further investigation. For 6., there was simply not
sufficient consistent data, as many participants chose to run a fraction only of the experiments
represent in the tables.

Technical Details. A simple CSV-based format was established,14 which includes one row for
each result, and one column per result for the individual entries. Compound data, specifically
initial conditions and time-series signals, are formatted as Matlab matrices that are included
as quoted atomic table entries. Reference to benchmarks was done via mnemonic keys for the
models (like AT), as well as for the requirements (like AT1), which avoids tight coupling with a
particular model file or requirement syntax.

Validation is implemented inside FalStar. It is based on the reference models in the folder
models/FALS in the shared Git repository, in conjunction with a configuration file that sets
up the parameter and input ranges, and which defines the STL formulas associated with the
requirements in FalStar’s internal syntax. The configuration file as well as the scripts used to
interface with the simulation engine are public and transparent.

The process to converge to a reasonable set of results was iterative, where the validator, the
format, and the data reported was refined multiple times, uncovering a number of problems
that were fixed one by one, with some remaining ones left open.

Once it became clear that numeric inaccuracies are prevalent, it is likewise not reasonable
to require that the robustness value as computed during the validation run is strictly negative,
and for the results presented here, we granted a small, benchmark-dependent tolerance, such
that positive values below this tolerance are recognized as falsifications proper, but only if the
tool reported a falsification in the first place. The numeric tolerances have been chosen by the
organizer as follows, and likely need to be refined for the next competition: AT1: 1.2 (1% of
max speed); AT2: 10.0 (ok wrt. the large RPM scale); AT6*: 1.0; AFC27: 0.0008 (10% of
β); AFC29, AFC33: 0.0007 (10% of γ); NN, NNx: 0.1 (somewhat loose in comparison to the
precision of the magnet) CC1: 1.0; SC: 0.05 (1% of valid range).

Results. The results of the validation runs are reported in Table 4. Entries where the fal-
sification rate FR as reported by the participants coincides with the number of validated ex-
periments (column X), could be confirmed within the above stated tolerance. Mismatches
are highlighted in bold. The raw data underlying this evaluation can be downloaded at
https://dx.doi.org/10.5281/zenodo.5651631, the validator and its configuration is available
on GitLab as mentioned.

As explained in Sec. 3, FalCAuN evaluates requirements over learned discrete abstractions of
the actual system. While this permits for efficient simulations, it also introduces an error such
that a falsifying trace for the discrete system is close to a falsifying one on the original model, but
misses the mark by a small margin. On the experiments for AT6, the overall mean robustness is
approximately 18, which is double the tolerance imposed above, expressing that FalCAuN works

14https://gitlab.com/gernst/ARCH-COMP/-/blob/FALS/2021/FALS/Validation.md

146

https://dx.doi.org/10.5281/zenodo.5651631
https://gitlab.com/gernst/ARCH-COMP/-/blob/FALS/2021/FALS/Validation.md

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

Table 4: Results of validation, falsification rate: FR(as reported by participants), X (success-
fully validated by FalStar), wrt. a given # number of trials (sometimes not 50). Results
except for AFC are with instance 1, for instance 2 the falsification rates are different but the
validation rates are very similar (not shown since the latter are available for few tools only).

Tool: ARIsTEO Breach FalCAuN falsify FalStar ForeSee S-TaLiRo

Approach: arx-2 GNM A3C aLVTS

Benchmark FR X # FR X # FR X # FR X # FR X # FR X # FR X #

AT1 2 2 2 4 4 50 31 31 50 50 50 50 31 14 50
AT2 50 50 50 2 2 2 8 8 50 50 50 50 50 50 50 46 46 50
AT51 0 0 50 2 2 2 50 50 50 50 50 50 50 50 50
AT52 50 50 50 2 2 2 50 50 50 26 26 50 50 50 50
AT53 50 50 50 2 2 2 50 50 50 50 50 50 50 50 50
AT54 3 3 50 2 2 2 50 50 50 50 50 50 50 50 50
AT6a 50 50 50 1 1 2 46 12 50 50 50 50 50 50 50 49 47 50
AT6b 49 49 50 1 1 2 49 0 50 11 11 50 50 50 50 47 35 50
AT6c 50 50 50 1 1 2 77 0 100 0 0 22 8 8 50 50 48 50
AT6abc 50 50 50 1 1 2 50 10 10 50 48 47 50

†47 47 50

AFC27 50 33 50 50 50 50 50 50 50
AFC29 50 50 50 50 22 50 50 50 50 50 50 50
AFC33 50 50 50 50 0 50 50 0 50 50 50 50

NN 2 2 2 91 91 100 23 23 45 50 50 50
NNβ = 0.04 21 21 100
NNx 50 50 50 2 2 2 50 50 50 37 37 50

†20 20 50

CC1 50 50 50 2 2 2 7 7 50 46 46 50 50 50 50 50 50 50
CC2 50 50 50 2 2 2 1 1 50 29 29 50 50 50 50 10 10 50
CC3 50 50 50 2 2 2 4 4 50 50 50 50 50 50 50 50 47 50
CC4 0 0 50 1 1 2 0 0 50 2 2 50 17 0 50
CC5 50 50 50 2 2 2 28 28 50 48 48 50 50 34 50
CCx 50 50 50 2 0 2 40 40 50 50 50 50 45 45 50

†49 49 50

SC 0 0 50 1 1 1 0 0 50 0 0 50

The S-TaLiRo results marked with † were obtained with minSOAR [31, 30], whereas the unmarked
ones were obtained using SOAR like in the tables from Sec. 4.

147

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

well in principle. We remark that often such near-misses are of interest in practice, since they
reflect insufficient error margin in the design.

falsify shows some discrepancy for AFC, with a mean of roughly 0.015, significantly exceep-
ding the accepted tolerance accepted as well as the error margin of the requirements, for unclear
reasons that we were not able to analyze in time. We remark that the AFC model’s dynamics
are difficult to integrate numerically with high accuracy (stiff differential equations), such that
even small initial perturbations or minor model variations could cause such discrepancies.

The results of FalStar are self-validated very accurately, which is still a meaningful result,
because it confirms that no errors are introduced by serializing and re-evaluating the exper-
imental data. We report for most experiments, the error is exactly zero, however, a switch
from generating the data with MATLAB 2021a to validating it version 2021b introduced some
measurable inaccuracies in the order of 10−10 to 10−14, confirming our suspicion that indeed
the Matlab version might have an effect, or perhaps inadvertently some model parameters had
been changed. For benchmark AFC33 the input signal is somehow considered invalid, the error
was found too late during preparation of this report to be investigated and corrected.

According to the participants, the unvalidated results ForeSee for AT1 are due to a re-
porting error, where the data indicates an excessive number of simulations above the limit of
300 being reported, but the actual number of simulations used could not be determined during
validation hence we chose to highlight this result. The other discrepancies should be attributed
to a mismatch between the QB-robustness used by ForeSee [41], which balances the magni-
tudes of input signals against each other. Nevertheless, this requires further investigation as in
principle the approach should be sound and therefore should not report wrong results.

S-TaLiRo and Breach both achieve very accurate validation results, with a single defect in
the experimental data of S-TaLiRo due to a manual copy & paste error (the actual result is
probably correct). The invalid result for Breach is due to a transcription error of the STL
requirement.

Other Issues and Findings. A number of other issues was uncovered during validation:
The maximum value of the brake input of the AT model was stated correctly as 325 in

previous reports, but incorrectly as 350 in a file requirements.txt in the GitLab repository,
which was uncovered by checking the input ranges of reported experimental data. This finding
is in line with some feedback of participants that more documentation on how to get started
would be useful.

Another aspect was the interpretation of the robustness score for the gear value of the AT
model, which is supposed to be discrete. Hence, the robustness value of atomic propositions
g1, . . . , g4 of AT5* must reflect this discrete nature, such that ρ(gi) < 0 if the ith gear is
currently selected but ρ(gi) > otherwise, with strict inequalities in both cases. Indeed, some
preliminary results were wrong due to an issue related to this interpretation. Moreover, some
tools return ±∞ while others ±1 for AT5*, which needs to be accounted for by the validator
(FalStar’s robustness is based on the former).

There were several instances of properties being specified wrong. For instance, FalStar’s
result for AT6c from previous years employed different bounds on the temporal operator and
the input signals, which led to unsuccessful validation attempts for the (correct) results of other
tools, as the validator inherited this misconfiguration.

Finally, the time-series input signals reported by the participants came with different sam-
pling schemes (e.g. finely-sampled with values each <0.1 time-points, coarsely-sampled at each
control point), which requires that interpolation settings inside the validator correctly match
those of the tools. The conventions are now documented, alternatively participants resorted to

148

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

reporting finely sampled inputs, which solved numerous issues in one tool.

6 Conclusion and Outlook
The benchmark set established by this competition appears to gain traction in the falsification
literature, underpinning the results and experiments that are being published. Publishing such
results as part of the competition report sets a reference and gold-standard against which such
efforts can compare. It is therefore great to again have new participants this year.

Clearly, the approaches implemented in the participating tools have become even more
diverse, and a comparison on even footing and for a full set of results becomes more difficult.
Nevertheless, the results reported in tables 2 and 3 already give a good overview of the strengths
and weaknesses of the respective approaches. It has become apparent that no “best” approach
can be singled out.

The effort to validate the falsifying inputs generated by the tools proved to be more involved
than initially thought. A non-negligible part of that effort was to establish the technical basis
in terms of exchange formats and a validator tool. There are plenty of sources of error—by
the human and computational—which each of its own warrants dedicated investigation. While
many big and systematic issues could be resolved, some more subtle ones remain.

Overall, our findings stress the importance of validating experimental data, especially in
a well-defined comparative setting. This experience is shared with other competitions like
SV-COMP (which has validation since 2016 [5]), Test-Comp (which had independent coverage
evaluation from the start in 2019 [6]), and many other competitions (for an overview, see [3]).

For the future, we want to address two issues. From previous years, we inherit the goal of
a larger benchmark set with more complex and higher-dimensional models. Moreover, many
steps in the evaluation that are now manual should be automated, including running the tools,
taking measurements, producing the validation witness files, checking them, and formatting a
summary of the experimental data. With this kind of automation, it will be much easier to
obtain a consistent and complete set of results in a repeatable way.

Acknowledgments Many thanks to the organizers of the ARCH workshop 2021 for hosting
this competition and for providing a supportive and friendly environment. The organizer thanks
all participants for their time and patience during investigation of the discrepancies found
during validation. P. Arcaini is supported by ERATO HASUO Metamathematics for Systems
Design Project (No. JPMJER1603), JST. Funding Reference number: 10.13039/501100009024
ERATO. The ASU team (S-TaLiRo + SOAR) was partially supported by DARPA FA8750-20-
C-0507, NSF CNS 1932068, NSF CMMI 2046588, NSF CNS 2000792, NSF CMMI 1829238,
NSF IIP-1361926 and the NSF I/UCRC Center for Embedded Systems. Z. Zhang is supported
by JSPS KAKENHI Grant No. 20H04168, 19K24348, 19H04086, JST-Mirai Program Grant
No. JPMJMI20B8, Japan. K. Gaaloul and C. Menghi are supported by the European Research
Council under the European Union’s Horizon 2020 research and innovation programme (grant
No 694277). M. Waga is partially supported by JST ACT-X Grant Number JPMJAX200U and
JST CREST Grant Number JPMJCR2012, Japan. zlscheck was funded by the ModeliScale
Inria Project Lab.

149

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

References

[1] Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankaranarayanan. S-taliro: A
tool for temporal logic falsification for hybrid systems. In International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, pages 254–257. Springer, 2011.

[2] Anne Auger and Nikolaus Hansen. A restart CMA evolution strategy with increasing population
size. In Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2005, pages 1769–
1776, 2005.

[3] Ezio Bartocci, Dirk Beyer, Paul E Black, Grigory Fedyukovich, Hubert Garavel, Arnd Hartmanns,
Marieke Huisman, Fabrice Kordon, Julian Nagele, Mihaela Sighireanu, et al. Toolympics 2019: An
overview of competitions in formal methods. In International Conference on Tools and Algorithms
for the Construction and Analysis of Systems, pages 3–24. Springer, 2019.

[4] Ezio Bartocci, Jyotirmoy Deshmukh, Alexandre Donzé, Georgios Fainekos, Oded Maler, Dejan
Ničković, and Sriram Sankaranarayanan. Specification-based monitoring of cyber-physical systems:
a survey on theory, tools and applications. In Lectures on Runtime Verification, pages 135–175.
Springer, 2018.

[5] Dirk Beyer. Reliable and reproducible competition results with benchexec and witnesses (report
on sv-comp 2016). In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 887–904. Springer, 2016.

[6] Dirk Beyer. International competition on software testing (test-comp). In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems, pages 167–175. Springer,
2019.

[7] Timothy Bourke and Marc Pouzet. Zélus: A synchronous language with ODEs. In 16th Inter-
national Conference on Hybrid Systems: Computation and Control (HSCC’13), pages 113–118,
Philadelphia, USA, March 2013.

[8] Jean-Louis Colaço, Bruno Pagano, and Marc Pouzet. Scade 6: A Formal Language for Embedded
Critical Software Development. In TASE 2017 - 11th International Symposium on Theoretical
Aspects of Software Engineering, pages 1–10, Nice, France, September 2017.

[9] Anthony Corso, Robert J Moss, Mark Koren, Ritchie Lee, and Mykel J Kochenderfer. A survey
of algorithms for black-box safety validation. arXiv preprint arXiv:2005.02979, 2020.

[10] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, and Georgios Fainekos. ARCH-COMP17 cat-
egory report: Preliminary results on the falsification benchmarks. In Goran Frehse and Matthias
Althoff, editors, ARCH17. 4th International Workshop on Applied Verification of Continuous and
Hybrid Systems, volume 48 of EPiC Series in Computing, pages 170–174. EasyChair, 2017.

[11] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, Georgios Fainekos, Gidon Ernst, Zhenya Zhang,
Paolo Arcaini, Ichiro Hasuo, and Sean Sedwards. Arch-comp18 category report: Results on the
falsification benchmarks. In ARCH@ ADHS, pages 104–109, 2018.

[12] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, Georgios Fainekos, Gidon Ernst, Zhenya Zhang,
Paolo Arcaini, Ichiro Hasuo, and Sean Sedwards. ARCH-COMP18 category report: Results on
the falsification benchmarks. In Goran Frehse, editor, ARCH18. 5th International Workshop on
Applied Verification of Continuous and Hybrid Systems, volume 54 of EPiC Series in Computing,
pages 104–109. EasyChair, 2018.

[13] Adel Dokhanchi, Shakiba Yaghoubi, Bardh Hoxha, and Georgios E Fainekos. Arch-comp17 cat-
egory report: Preliminary results on the falsification benchmarks. In ARCH@ CPSWeek, pages
170–174, 2017.

[14] Alexandre Donzé. Breach, A toolbox for verification and parameter synthesis of hybrid systems.
In International Conference on Computer Aided Verification (CAV 2010), LNCS, pages 167–170.
Springer, 2010.

[15] Johan Liden Eddeland, Alexandre Donze, Sajed Miremadi, and Knut Akesson. Industrial temporal
logic specifications for falsification of cyber-physical systems. In ARCH@CPSIoTWeek, 2020.

150

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

[16] G. Ernst, S. Sedwards, Z. Zhang, and I. Hasuo. Falsification of hybrid systems using adaptive
probabilistic search. Transactions on Modeling and Computer Simulations (TOMACS), 2021.
Accepted.

[17] Gidon Ernst, Paolo Arcaini, Ismail Bennani, Alexandre Donze, Georgios Fainekos, Goran Frehse,
Logan Mathesen, Claudio Menghi, Giulia Pedrinelli, Marc Pouzet, et al. Arch-comp 2020 category
report: Falsification. EPiC Series in Computing, 2020.

[18] Gidon Ernst, Paolo Arcaini, Alexandre Donze, Georgios Fainekos, Logan Mathesen, Giulia
Pedrielli, Shakiba Yaghoubi, Yoriyuki Yamagata, and Zhenya Zhang. Arch-comp 2019 category
report: Falsification. In ARCH@CPSIoTWeek, pages 129–140, 2019.

[19] Gidon Ernst, Sean Sedwards, Zhenya Zhang, and Ichiro Hasuo. Fast falsification of hybrid systems
using probabilistically adaptive input. arXiv preprint arXiv:1812.04159, 2018.

[20] Georgios E. Fainekos and George J. Pappas. Robustness of temporal logic specifications. In
Klaus Havelund, Manuel Núñez, Grigore Roşu, and Burkhart Wolff, editors, Formal Approaches
to Software Testing and Runtime Verification, LNCS, pages 178–192. Springer, 2006.

[21] Martin Fränzle and Michael R Hansen. A robust interpretation of duration calculus. In Interna-
tional Colloquium on Theoretical Aspects of Computing, pages 257–271. Springer, 2005.

[22] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous data flow programming
language lustre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[23] Nicolas Halbwachs, Fabienne Lagnier, and Pascal Raymond. Synchronous observers and the veri-
fication of reactive systems. In Proceedings of the Third International Conference on Methodology
and Software Technology: Algebraic Methodology and Software Technology, AMAST ’93, pages
83–96, Berlin, Heidelberg, 1994. Springer-Verlag.

[24] Peter Heidlauf, Alexander Collins, Michael Bolender, and Stanley Bak. Verification challenges in f-
16 ground collision avoidance and other automated maneuvers. In Goran Frehse, editor, ARCH18.
5th International Workshop on Applied Verification of Continuous and Hybrid Systems, volume 54
of EPiC Series in Computing, pages 208–217. EasyChair, 2018.

[25] Bardh Hoxha, Houssam Abbas, and Georgios Fainekos. Benchmarks for temporal logic require-
ments for automotive systems. In Goran Frehse and Matthias Althoff, editors, ARCH14-15. 1st
and 2nd International Workshop on Applied veRification for Continuous and Hybrid Systems, vol-
ume 34 of EPiC Series in Computing, pages 25–30. EasyChair, 2015.

[26] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic hybrid systems. In
International Workshop on Hybrid Systems: Computation and Control, pages 160–173. Springer,
2000.

[27] Xiaoqing Jin, Jyotirmoy V. Deshmukh, James Kapinski, Koichi Ueda, and Ken Butts. Powertrain
control verification benchmark. In Proceedings of the 17th International Conference on Hybrid
Systems: Computation and Control, HSCC ’14, pages 253–262, New York, NY, USA, 2014. ACM.

[28] Ron Koymans. Specifying real-time properties with metric temporal logic. Real-Time Systems,
2(4):255–299, Nov 1990.

[29] Oded Maler and Dejan Nickovic. Monitoring temporal properties of continuous signals. In Yassine
Lakhnech and Sergio Yovine, editors, Formal Techniques, Modelling and Analysis of Timed and
Fault-Tolerant Systems, pages 152–166, Berlin, Heidelberg, 2004. Springer Berlin Heidelberg.

[30] Logan Mathesen. Making Bayesian Optimization Practical in the Context of High Dimensional,
Highly Expensive, Black-Box Functions. PhD thesis, Arizona State University, 2021.

[31] Logan Mathesen, Giulia Pedrielli, and Georgios Fainekos. Efficient optimization-based falsifica-
tion of cyber-physical systems with multiple conjunctive requirements. In IEEE International
Conference on Automation Science and Engineering (CASE), 2021.

[32] Logan Mathesen, Giulia Pedrielli, Szu Hui Ng, and Zelda B Zabinsky. Stochastic optimization
with adaptive restart: A framework for integrated local and global learning. Journal of Global
Optimization, 79(1):87–110, 2021.

[33] Claudio Menghi, Shiva Nejati, Lionel Briand, and Yago Isasi Parache. Approximation-refinement

151

ARCH-COMP 2021: Falsification with Validation of Results Ernst et al.

testing of compute-intensive cyber-physical models: An approach based on system identification.
In International Conference on Software Engineering (ICSE). IEEE / ACM, 2020.

[34] Volodymyr Mnih, Adrià Puigdomènech Badia, Mehdi Mirza, Alex Graves, Timothy P. Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforcement
learning. In Proceedings of the 33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, pages 1928–1937, 2016.

[35] Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. In Jianping Wu,
Samuel T. Chanson, and Qiang Gao, editors, Formal Methods for Protocol Engineering and Dis-
tributed Systems, FORTE XII / PSTV XIX’99, IFIP TC6 WG6.1 Joint International Conference
on Formal Description Techniques for Distributed Systems and Communication Protocols (FORTE
XII) and Protocol Specification, Testing and Verification (PSTV XIX), October 5-8, 1999, Beijing,
China, volume 156 of IFIP Conference Proceedings, pages 225–240. Kluwer, 1999.

[36] Zahra Ramezani, Alexandre Donzé, Martin Fabian, and Knut Åkesson. Temporal logic falsification
of cyber-physical systems using input pulse generators. In ARCH21@IFAC, 2021.

[37] Simone Schuler, Fabiano Daher Adegas, and Adolfo Anta. Hybrid modelling of a wind turbine.
In Goran Frehse and Matthias Althoff, editors, ARCH16. 3rd International Workshop on Applied
Verification for Continuous and Hybrid Systems, volume 43 of EPiC Series in Computing, pages
18–26. EasyChair, 2017.

[38] Masaki Waga. Falsification of cyber-physical systems with robustness-guided black-box checking.
In Aaron D. Ames, Sanjit A. Seshia, and Jyotirmoy Deshmukh, editors, HSCC ’20: 23rd ACM In-
ternational Conference on Hybrid Systems: Computation and Control, Sydney, New South Wales,
Australia, April 21-24, 2020, pages 11:1–11:13. ACM, 2020.

[39] Shakiba Yaghoubi and Georgios Fainekos. Gray-box adversarial testing for control systems with
machine learning components. In International Conference on Hybrid Systems: Computation and
Control (HSCC), 2019.

[40] Yoriyuki Yamagata, Shuang Liu, Takumi Akazaki, Yihai Duan, and Jianye Hao. Falsification
of cyber-physical systems using deep reinforcement learning. IEEE Transactions on Software
Engineering, 2020.

[41] Zhenya Zhang, Deyun Lyu, Paolo Arcaini, Lei Ma, Ichiro Hasuo, and Jianjun Zhao. Effective
hybrid system falsification using monte carlo tree search guided by QB-robustness. In Alexandra
Silva and K. Rustan M. Leino, editors, Computer Aided Verification, pages 595–618, Cham, 2021.
Springer International Publishing.

152

	Introduction
	Benchmark Definitions
	Input Parameterization
	Models and Requirements

	Participants
	ARIsTEO
	Breach
	FalCAuN
	falsify
	FalStar
	ForeSee
	S-TaLiRo
	zlscheck

	Evaluation
	Validation.
	Conclusion and Outlook

