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Abstract

This paper reports on the Hybrid Systems Theorem Proving (HSTP) category in the
ARCH-COMP Friendly Competition 2021. The characteristic features of the HSTP cate-
gory remain as in the previous editions [MST+18, MST+19, MMJ+20], it focuses on flexi-
bility of programming languages as structuring principles for hybrid systems, unambiguity
and precision of program semantics, and mathematical rigor of logical reasoning principles.
The benchmark set includes nonlinear and parametric continuous and hybrid systems and
hybrid games, each in three modes: fully automatic verification, semi-automatic verifica-
tion from proof hints, proof checking from scripted tactics. This instance of the competition
introduces extensions to the scripting language, a comparison of the influence of arithmetic
backend versions on verification performance in KeYmaera X, as well as improvements in
the HHL Prover.

1 Introduction
This report summarizes the experimental results of the Hybrid Systems Theorem Proving
(HSTP) category in the ARCH-COMP21 friendly competition, focusing on extensions to the
scripting language used in the proof checking evaluation mode, a comparison of the influence
of arithmetic backend versions on verification performance in KeYmaera X, as well as improve-
ments in the HHL Prover. Details on the benchmark sets and the evaluation modes can be
found in previous editions of the HSTP category [MST+18, MST+19, MMJ+20]. The 214
examples in the benchmark competition are grouped into the following categories:

• Hybrid systems design shapes: small-scale examples over a large variety of model shapes
to test for prover flexibility.

• Nonlinear continuous models: test for prover flexibility in terms of generating and proving
properties about continuous dynamics, based on [SMT+19, SMT+20].

• Hybrid games: small-scale examples with adversary dynamics in differential dynamic
game logic.
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• Hybrid systems case studies: hybrid systems models and specifications at scale to test
for application scalability and efficiency, based on [PQ09, PC09, ZLW+13, ZYZ+14,
MGVP17, BLCP18].

In each of these categories, tools can select the degree of automation depending on their
focus in the spectrum from fast proof checking to full proof automation:
(A) Automated: hybrid systems models and specifications are the only input, proofs and

counterexamples are produced fully automatically.
(H) Hints: select proof hints (e.g., loop invariants) are provided as part of the specifications.
(S) Scripted: significant parts of the verification is done with dedicated problem-specific scripts

or tactics.
All benchmark examples are available at https://github.com/LS-Lab/KeYmaeraX-projects/
tree/master/benchmarks and specified in differential dynamic logic (dL) [Pla08, Pla17]. The
participating tools are presented in Section 3. An overview of the examples together with the
findings from the competition is given in Section 4.

2 Problem Format
All benchmarks in the Hybrid Systems Theorem Proving (HSTP) category are written in dif-
ferential dynamic logic (dL) [Pla08, Pla17] which has axioms and an unambiguous semantics
available [BRV+17] in KeYmaera 3, KeYmaera X, Isabelle/HOL, and Coq. A tutorial on
the modeling principles in dL can be found in [QML+16], details on the ASCII syntax are
in [MMJ+20]. Here, we list the extensions over [FMBP17] to the scripting language that are
introduced in this instance of the competition.

Scripting Language ASCII syntax. The KeYmaera X ASCII syntax is illustrated in the
example below, with tactics using position identifiers to refer to formulas and terms in a sequent.
The order of branches is important, e.g., after loop, the first branch operates on the initial case
of the induction proof, the second branch on the postcondition, and the third branch on the
induction step.

1 ArchiveEntry "Benchmark Example 1"
2
3 Definitions /∗ definitions cannot change their value ∗/
4 Real A = 5; /∗ real−valued maximum acceleration defined to be 5 ∗/
5 Real b; /∗ real−valued braking, undefined so unknown value ∗/
6 Bool geq(Real x, Real y) <−> x>=y; /∗ predicate geq defined to be formula x>=y ∗/
7 HP drive ::= { /∗ program drive defined to choose either ∗/
8 ?v<=5; a:=A; /∗ maximum acceleration if slow enough ∗/
9 ++ a:=−b; /∗ or braking, nondeterministically ∗/

10 };
11 End.
12
13 ProgramVariables /∗ program variables may change their value over time ∗/
14 Real x; /∗ real−valued position ∗/
15 Real v; /∗ real−valued velocity ∗/
16 Real a; /∗ current acceleration chosen by controller ∗/
17 End.
18
19 Problem /∗ conjecture in differential dynamic logic ∗/
20 v>=0 & b>0 /∗ initial condition ∗/
21 −> /∗ implies ∗/
22 [ /∗ all runs of this hybrid program ∗/
23 { /∗ braces {} group programs ∗/
24 drive; /∗ expand program drive here as defined above ∗/
25 { x’=v, v’=a & v>=0 } /∗ differential equation system ∗/
26 }∗ @invariant(v>=0) /∗ loop repeats, with @invariant contract ∗/
27 ] v>=0 /∗ safety/postcondition after hybrid program ∗/
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28 End.
29
30 Tactic "Automated proof in KeYmaera X"
31 auto
32 End.
33
34 Tactic "Scripted proof in Bellerophon tactic language"
35 implyR(1) ; loop("v>=0", 1) ; <( /∗ < splits into separate branches ∗/
36 id , /∗ initial case: shown with close by identity ∗/
37 QE, /∗ postcondition: prove by real arithmetic QE ∗/
38 /∗ induction step: decomposes hybrid program semi−explicitly ∗/
39 composeb(1) ; solve(1.1) ; choiceb(1) ; andR(1) ; <( /∗ controller branches ∗/
40 composeb(1) ; testb(1) ; auto, /∗ decompose some steps then ask auto ∗/
41 assignb(1) ; QE /∗ assignment, then real arithmetic ∗/
42 )
43 )
44 End.
45
46 End. /∗ end of ArchiveEntry ∗/

The extended proof script language introduces robustness to changes in the order of formulas
in sequents and to changes in the order of branches: For example, in the tactic script below,
the search locator implyR(’R==...) in line 2 refers to a formula in the alternatives to prove
(right-hand side of the sequent turnstile), as opposed to implyR(1) in the tactic above, which
refers to a fixed position in the sequent and is vulnerable to changes in formula ordering in case
automated tactics progress in proofs differently across prover versions. Tactics can use marker #
to refer to sub-formulas or terms: e.g., the locator simplify(’R=="x>=0 & #y+0#>=x") applies
tactic simplify to term y+0. Branch labels (e.g., "Init" in line 4) now unambiguously identify
on which of the branches to apply some tactic. The branch labels themselves are created by
tactics, e.g., tactic loop generate labels Init, Post, and Step in lines 4, 6, and 8, respectively,
while tactic andR generates labels according to the formula it was applied to.

1 Tactic " Sc r ip t ed proo f in extended Bel lerophon t a c t i c language "
2 implyR ( ’R=="v>=0&b ( )>0−>[{{?v<=5;a:=5;++a:=−b ( ) ;}{x’=v , v’=a&v>=0}}∗]v>=0" ) ;
3 loop ( "v>=0" , ’R=="[{{?v<=5;a:=5;++a:=−b ( ) ;}{x’=v , v’=a&v>=0}}∗]v>=0" ) ; <(
4 " I n i t " :
5 id ,
6 " Post " :
7 QE,
8 " Step " :
9 composeb ( ’R=="[{? v<=5;a:=5;++a:=−b ( ) ;}{x’=v , v’=a&v>=0}]v>=0" ) ;

10 s o l v e ( ’R=="[ ? v<=5;a:=5;++a:=−b ( ) ; ]#[{ x’=v , v’=a&v>=0}]v>=0#" ) ;
11 cho iceb ( ’R=="[ ? v<=5;a:=5;++a:=−b ( ) ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=

↪→ t_−>a∗s_+v>=0)−>a∗t_+v>=0)" ) ;
12 andR( ’R=="[ ? v<=5;a :=5 ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=t_−>a∗s_+v>=0)

↪→ −>a∗t_+v>=0)&[a:=−b ( ) ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=t_−>a∗
↪→ s_+v>=0)−>a∗t_+v>=0)" ) ; <(

13 " [ ? v<=5;a :=5 ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗t_+
↪→ v>=0)" :

14 composeb ( ’R=="[ ? v<=5;a :=5 ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=t_−>a∗
↪→ s_+v>=0)−>a∗t_+v>=0)" ) ;

15 t e s tb ( ’R=="[ ? v<=5;] [ a :=5 ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=t_−>a∗
↪→ s_+v>=0)−>a∗t_+v>=0)" ) ;

16 auto ,
17 " [ a:=−b ( ) ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗t_+v

↪→ >=0)" :
18 as s ignb ( ’R==" [ a:=−b ( ) ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=t_−>a∗s_+v

↪→ >=0)−>a∗t_+v>=0)" ) ;
19 QE
20 )
21 )
22 End .

Proof scripts expressed in the locator style ’R==... and ’L==... are more explicit about
how they operate on specific examples, but such scripts do not transfer well between different
examples. In order to generalize a script for applicability to other examples, or to increase
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robustness to changes in the input model, locators ’R∼=... and ’L∼=... use unification
to decide where to apply tactics. For example, the tactic below uses unification to become
applicable to a wider variety of examples, but further scripting language extensions are needed
to be truly generalizable to any example of the shape init(v)→ [((acc ∪ brake); plant)∗]p(v).

1 Tactic " Sc r ip t ed proo f with u n i f i c a t i o n in search l o c a t o r s "
2 implyR ( ’R~="p ( ) −> q ( ) " ) ;
3 loop ( "v>=0" , ’R~=" [{ dr ive ; p lant ; } ∗ ] p ( v ) " ) ; <(
4 " I n i t " :
5 id ,
6 " Post " :
7 QE,
8 " Step " :
9 composeb ( ’R~=" [ d r i ve ; p lant ; ] p (v ) " ) ;

10 s o l v e ( ’R~=" [ d r i ve ; ]#[ pl ant ; ] p( v )#" ) ;
11 cho iceb ( ’R~=" [ acc;++brake ; ] s o l u t i o n (a , v ) " ) ;
12 andR( ’R~=" [ acc ; ] s o l u t i o n (a , v ) & [ brake ; ] s o l u t i o n (a , v ) " ) ; <(
13 /∗ f u tu r e extens i on : u n i f i c a t i o n in branch l a b e l s ∗/
14 " [ ? v<=5;a :=5 ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗t_+

↪→ v>=0)" :
15 composeb ( ’R~=" [ ? v<=5;a :=5 ; ] s o l u t i o n (a , v ) " ) ;
16 t e s tb ( ’R~=" [ ? v<=5;] [ a :=5 ; ] s o l u t i o n (a , v ) " ) ;
17 auto ,
18 " [ a:=−b ( ) ; ] \ f o r a l l t_ (t_>=0−>\f o r a l l s_ (0<=s_&s_<=t_−>a∗s_+v>=0)−>a∗t_+v

↪→ >=0)" :
19 as s ignb ( ’R~=" [ a:=−b ( ) ; ] s o l u t i o n (a , v ) " ) ;
20 QE
21 )
22 )
23 End .

3 Participating Tools
KeYmaera X. KeYmaera X [FMQ+15] is a theorem prover for the hybrid systems logic
differential dynamic logic (dL). It implements the uniform substitution calculus of dL [Pla17].1
A comparison of the internal reasoning principles in the KeYmaera family of provers and a
discussion of their relative benefits and drawbacks is in [MP20]. KeYmaera X supports sys-
tems with nondeterministic discrete jumps, nonlinear differential equations, nondeterministic
input, and it provides invariant construction [SMT+19, SMT+20] and proving techniques for
differential equations [SGJP16, PT18, PT20]. Unlike numerical hybrid systems reachability
analysis tools, KeYmaera X also supports unbounded initial sets and unbounded time analy-
sis. KeYmaera X participates in v4.8.0 (2020) and v4.9.4 (2021), the specific commits of the
Github repository https://github.com/LS-Lab/KeYmaeraX-release used in the competition
are tagged arch2020 for KeYmaera X v4.8.0 and arch2021 for KeYmaera X v4.9.4.

Major improvements of this competition version over the 2020 edition include a simplified au-
tomation implementation, support for the scripting language extensions described above, proof
management on top of uniform substitution [Mit21], a parallel quantifier elimination tactic that
attempts to utilize all available Mathematica Kernels concurrently to find the fastest succeed-
ing among several variations of a formula (e.g., the tactic propositionally splits a large single
quantifier elimination attempt into several smaller ones and tries the large formula concurrently
with the several smaller ones), and numerous smaller stability and performance improvements.
Due to an incompatibility of JLink in the latest Wolfram Engine versions 12.2 and 12.3 with
the libraries in the repeatability operating system, the repeatability evaluation focuses purely
on performance with the Z3 arithmetic backend and compares verification performance over

1This dL uniform substitution calculus is also formally verified in Isabelle/HOL and Coq [BRV+17].
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several versions of Z3; results are reported in the Appendix. As a consequence, Pegasus invari-
ant generation is not available in the repeatability package and proof automation is severely
limited, especially in the nonlinear sub-category. The performance results reported here are
obtained on MacOS, for KeYmaera X v4.8.0 with Mathematica 12.1 and Pegasus invariant
generator [SMT+19] on Matlab 2019b with SOSTools 3.03, and for KeYmaera X v4.9.4 with
Mathematica 12.3 and extended Pegasus invariant generator [SMT+20] on Matlab 2021a with
SOSTools 3.04.

HHL Prover. HHL Prover [WZZ15] is an interactive theorem prover for verifying hybrid
systems modelled by Hybrid CSP (HCSP) [He94, ZWR96]. HCSP is an extension of CSP by
introducing differential equations for modeling continuous evolutions and interrupts for model-
ing interaction between continuous and discrete dynamics.

This year, we implemented a new trace-based hybrid Hoare logic for reasoning about HCSP
processes. This is an improvement and simplification over the trace-based logic presented last
year. Traces for both sequential and parallel HCSP processes are represented as lists of trace
blocks. There are two types of trace blocks: ODE blocks and communication blocks. ODE
blocks specify evolution of the process over an interval of time, consisting of duration of the
interval, the state of the process as a function of time, and a set of communications that are ready
during the interval. Communication blocks are of three types: input, output, and IO. Input and
output blocks specify an unmatched communication event, while IO blocks specify a matched
communication event. All three types of events also specify the value that is communicated.

We defined big-step and small-step semantics of HCSP processes, and proved a notion of
equivalence between these two semantics. The big-step semantics defines relation of the form
(c, s)⇒ (s′, tr), which means executing process c starting from state s results in final state s′,
and where tr is the list of trace blocks produced. The small-step semantics defines relation of
the form (c, s) e→ (c′, s′), which means executing process c for one step starting from state s
results in state s, with c′ being the program that remains to be executed, and e is the event
produced (either the empty event τ or a trace block).

An assertion is a predicate over pairs of state and trace. The Hoare triple (for partial
correctness) is defined as follows:

{P} c {Q} ⇐⇒ ∀s tr s′ tr′. P (s, tr) −→ (c, s)⇒ (s′, tr′) −→ Q(s′, tratr′),

where ·a · denotes the concatenation of two traces. We prove Hoare triples for basic commands,
as well as rules for reasoning about differential equations. Moreover, there are rules about
synchronization of two traces, enabling compositional reasoning about parallel HCSP processes.

The new system is tested on the basic benchmarks, as well as two control-plant models.

4 Benchmarks
One of the strengths of hybrid systems theorem proving as a verification technique is its support
for combined automated and interactive verification steps as well as its applicability to proof
search and proof checking. The benchmark examples were analyzed in three modes:

Automated The specification is the only input to the theorem prover. Proofs and counterex-
amples are obtained fully automated to highlight the capabilities of theorem provers in
terms of invariant generation, proof search, and proof checking.
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Hints Known design properties of the system, such as loop invariants and invariants of dif-
ferential equations, are annotated in the model and allowed to be exploited during an
otherwise fully automated proof to highlight the capabilities of theorem provers in terms
of proof search and proof checking.

Scripted User guidance with proof scripts is allowed to highlight the capabilities of theorem
provers in terms of proof checking.

The benchmark examples are structured into 4 categories: hybrid systems design shape
examples to test for system design variations at a small scale, nonlinear continuous models to
test for continuous invariant construction and proving capabilities, hybrid game examples to
test adversarial dynamics, and hybrid systems case studies to test for prover scalability.

Experimental setup. KeYmaera X (in automated (A), hints (H), and scripted (S) mode)
participated on all benchmark sets and was executed on a 2013 Mac Pro with 6-core Intel
Xeon E5 3.5GHz and 28GB memory. HHL Prover participated with the Chinese train control
system, lunar lander descent guidance, and roller-coaster safety case studies, as well as on a
subset of the hybrid systems design shapes and the nonlinear continuous models. The execution
time measurements were taken separately on a fresh prover instance for each example in the
benchmark set. Proof attempts were aborted after a category-specific timeout, which was kept
consistent with [MMJ+20] to make results comparable. In the repeatability package, proof
duration was shortened considerably over previous years in order to allow comparing several
backend tool versions. The competition results are presented with accumulated execution times
after examples are ranked according to their execution time.

4.1 Hybrid Systems Design Shapes

This category is unmodified from previous years, designed to test for basic verification features
on simple examples.

KeYmaera X In KeYmaera X, proof attempts were aborted after a timeout of 300s, the
performance results are summarized in Fig. 1. Owing to the simplistic nature of the examples
in the hybrid systems design shapes sub-category, parallel quantifier elimination does not result
in an overall performance gain compared to the previous results [MMJ+20]. Out of the 60
design shapes examples, KeYmaera X solves 54 fully automatic, 55 from proof hints, and 58
from proof scripts.

HHL Prover. The HHL Prover is tested on the 60 examples in the basic benchmark. We have
successfully proved 49 of the 60 examples in Isabelle/HOL using our proof system. Since the
benchmarks are originally formulated in terms of dynamic logic, some modifications are made
to adapt it to a Hoare-logic style system. In particular, we added specific time constraints for
evolution according to ODEs. Appearances of tests ?Q are replaced by equivalent conditional
statements. Non-deterministic assignments x := ∗ are changed to assignments of arbitrary
elements satisfying some property. We made these changes to stay as closed as possible to the
original intent of the example. In particular, the method and difficulty of the proof are largely
unchanged.
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Figure 1: Cumulative time to solve fastest n basic problems in KeYmaera X (flatter and more is
better); dedicated proof scripts gain some efficiency and solve more problems, full automation
is almost on par with proof hints.

4.2 Nonlinear Continuous Models

The examples in this category remained unchanged from [MMJ+20] for direct comparison of the
verification performance with previous results; the examples test for pure continuous verification
performance. Future competitions may additionally utilize the extended benchmark set of
[SMT+20].

Competition results. The participants in the Hybrid Systems Case Study category include
KeYmaera X. Proof attempts in the nonlinear category were aborted after a timeout of 300 s.

KeYmaera X In KeYmaera X, proof attempts were aborted after a timeout of 300s, the
performance results are summarized in Fig. 2. Out of the 141 nonlinear examples, KeYmaera X
solves 92 fully automatic, 95 from proof hints, and 108 from proof scripts. Improved proof
automation for nonlinear systems [SMT+20] further closed the gap to scripted proofs: proving
from hints in KeYmaera X 4.9.4 is now on par with scripting in KeYmaera X 4.8.0, while
improvements in differential equation automation and utilizing quantifier elimination backends
increased the number of examples solved from scripts within the 300 s timeout period.

4.3 Hybrid Games

Competition results. The participants in the Hybrid Games category include KeYmaera X.
Owing to the simple nature of the games examples, KeYmaera X 4.9.4 solved all three examples
in less than 4 s in scripted mode. The performance remained unchanged compared to the
previous results [MMJ+20]. The hybrid systems proof automation of KeYmaera X 4.9.4 is
capable of solving two of the examples, but more games automation is needed to truly search
for winning strategies in games.
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Figure 2: Cumulative time to solve fastest n nonlinear problems in KeYmaera X (flatter and
more problems solved is better).

4.4 Hybrid Systems Case Study Benchmarks
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Figure 3: Cumulative time to solve fastest n
case study problems in KeYmaera X (flatter and
more problems solved is better).

Category overview. The benchmark ex-
amples in this category are selected to test
theorem provers for scalability and efficiency
on examples of a significant size and interest
in applications and remained unchanged from
[MST+19]. The benchmark examples2 are in-
spired from prior case studies on train control
[PQ09, ZLW+13], flight collision avoidance
[PC09], robot collision avoidance [MGVP17],
a lunar lander descent guidance protocol
[ZYZ+14], and rollercoaster safety [BLCP18].

KeYmaera X. Proof attempts in the case
study benchmarks sub-category were aborted
after 1500 s. Out of 10 examples, KeY-
maera X solves 5 fully automatically, 7 from
hints, and 8 from scripts (2 not attempted);
the results are in Fig. 3. The overall per-
formance remained comparable, with paral-
lel quantifier elimination providing some per-
formance gains on complex arithmetic goals,
which results in an additional example solved
from proof hints compared to the previous results [MMJ+20]. Simplifying full automation
tactics for maintenance reasons, however, resulted in less examples being provable fully auto-
matically.

2https://github.com/LS-Lab/KeYmaeraX-projects/blob/master/benchmarks/advanced.kyx
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HHL Prover. We present two examples demonstrating verification of control-plant models
using hybrid Hoare logic. The first example is a simple velocity control. The HCSP process is
given as follows:

plant ::= (t := 0; (v̇ = a, ṫ = 1&t < 1); p2c!v; c2p?a)∗

control ::= (p2c?v; if v < 10 then c2p!1 else c2p!(−1))∗

system ::= plant ‖ control

The second example is adapted from the Chinese train control system (CTCS) exam-
ple [ZLW+13]. We mainly verify that the control law is able to keep the train from going
beyond the stop point.

5 Conclusion and Outlook
The hybrid systems theorem proving friendly competition focuses on the characteristic features
of hybrid systems theorem proving: flexibility of programming language principles for hybrid
systems, unambiguous program semantics, and mathematically rigorous logical reasoning prin-
ciples.

The automation tactic simplifications, nonlinear invariant generator improvements, and
concurrent arithmetic backend utilization make a difference on some examples and especially in
pure continuous systems verification performance, but their potential is not yet truly realized in
case study verification performance. Future competitions are planned to extend the case study
sub-category to provide better assessment of verification performance on realistic examples, and
to gain insight into potential proof automation to generalize the current specialized tactics and
proof scripts from single example applicability to general-purpose proof automation. A related
challenge for proof repeatability and transferability are timeouts used in proof automation to
decide how long to explore specific proof alternatives, and overall proof timeouts as used in this
competition.

Specific to KeYmaera X, the parallel quantifier elimination introduced in this year’s com-
petition opens up the possibility to explore alternatives in proof automation concurrently, as
opposed to the current sequential proof exploration that executes alternative attempts in a
heuristic order3.
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128



ARCH-COMP21 Hybrid Systems Theorem Proving S. Mitsch et al.

References

[BLCP18] Brandon Bohrer, Adriel Luo, Xue An Chuang, and André Platzer. CoasterX: A case
study in component-driven hybrid systems proof automation. IFAC-PapersOnLine, 2018.
Analysis and Design of Hybrid Systems ADHS.

[BRV+17] Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André Platzer. Formally
verified differential dynamic logic. In Yves Bertot and Viktor Vafeiadis, editors, Certified
Programs and Proofs - 6th ACM SIGPLAN Conference, CPP 2017, Paris, France, January
16-17, 2017, pages 208–221, New York, 2017. ACM.

[FMBP17] Nathan Fulton, Stefan Mitsch, Brandon Bohrer, and André Platzer. Bellerophon: Tactical
theorem proving for hybrid systems. In Mauricio Ayala-Rincón and César A. Muñoz,
editors, ITP, volume 10499 of LNCS, pages 207–224. Springer, 2017.

[FMQ+15] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems. In Amy Felty and Aart
Middeldorp, editors, CADE, volume 9195 of LNCS, pages 527–538, Berlin, 2015. Springer.

[He94] J. He. From CSP to hybrid systems. In A Classical Mind, Essays in Honour of C.A.R.
Hoare, pages 171–189. Prentice Hall International (UK) Ltd., 1994.

[MGVP17] Stefan Mitsch, Khalil Ghorbal, David Vogelbacher, and André Platzer. Formal verification
of obstacle avoidance and navigation of ground robots. I. J. Robotics Res., 36(12):1312–
1340, 2017.

[Mit21] Stefan Mitsch. Implicit and explicit proof management in keymaera x. In 6th Workshop
on Formal Integrated Development Environment, Proceedings, 2021.

[MMJ+20] Stefan Mitsch, Jonathan Juli\’an Huerta Y Munive, Xiangyu Jin, Bohua Zhan, Shuling
Wang, and Naijun Zhan. Arch-comp20 category report:hybrid systems theorem proving.
In Goran Frehse and Matthias Althoff, editors, ARCH20. 7th International Workshop on
Applied Verification of Continuous and Hybrid Systems (ARCH20), volume 74 of EPiC
Series in Computing, pages 153–174. EasyChair, 2020.

[MP20] Stefan Mitsch and André Platzer. A retrospective on developing hybrid system provers in
the keymaera family - A tale of three provers. In Wolfgang Ahrendt, Bernhard Beckert,
Richard Bubel, Reiner Hähnle, and Mattias Ulbrich, editors, Deductive Software Verifica-
tion: Future Perspectives - Reflections on the Occasion of 20 Years of KeY, volume 12345
of Lecture Notes in Computer Science, pages 21–64. Springer, 2020.

[MST+18] Stefan Mitsch, Andrew Sogokon, Yong Kiam Tan, André Platzer, Hengjun Zhao, Xiangyu
Jin, Shuling Wang, and Naijun Zhan. ARCH-COMP18 category report: Hybrid systems
theorem proving. In Goran Frehse, Matthias Althoff, Sergiy Bogomolov, and Taylor T.
Johnson, editors, ARCH18. 5th International Workshop on Applied Verification of Contin-
uous and Hybrid Systems, ARCH@ADHS 2018, Oxford, UK, July 13, 2018, volume 54 of
EPiC Series in Computing, pages 110–127. EasyChair, 2018.

[MST+19] Stefan Mitsch, Andrew Sogokon, Yong Kiam Tan, Xiangyu Jin, Bohua Zhan, Shuling
Wang, and Naijun Zhan. ARCH-COMP19 category report: Hybrid systems theorem prov-
ing. In Goran Frehse and Matthias Althoff, editors, ARCH19. 6th International Workshop
on Applied Verification of Continuous and Hybrid Systemsi, part of CPS-IoT Week 2019,
Montreal, QC, Canada, April 15, 2019, volume 61 of EPiC Series in Computing, pages
141–161. EasyChair, 2019.

[PC09] André Platzer and Edmund M. Clarke. Formal verification of curved flight collision avoid-
ance maneuvers: A case study. In Ana Cavalcanti and Dennis Dams, editors, FM, volume
5850 of LNCS, pages 547–562, Berlin, 2009. Springer.

[Pla08] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):143–
189, 2008.

[Pla17] André Platzer. A complete uniform substitution calculus for differential dynamic logic. J.

129



ARCH-COMP21 Hybrid Systems Theorem Proving S. Mitsch et al.

Autom. Reas., 59(2):219–265, 2017.
[PQ09] André Platzer and Jan-David Quesel. European Train Control System: A case study in

formal verification. In Karin Breitman and Ana Cavalcanti, editors, ICFEM, volume 5885
of LNCS, pages 246–265, Berlin, 2009. Springer.

[PT18] André Platzer and Yong Kiam Tan. Differential equation axiomatization: The impressive
power of differential ghosts. In Anuj Dawar and Erich Grädel, editors, LICS, New York,
2018. ACM.

[PT20] André Platzer and Yong Kiam Tan. Differential equation invariance axiomatization. J.
ACM, 67(1):6:1–6:66, 2020.

[QML+16] Jan-David Quesel, Stefan Mitsch, Sarah Loos, Nikos Aréchiga, and André Platzer. How to
model and prove hybrid systems with KeYmaera: A tutorial on safety. STTT, 18(1):67–91,
2016.

[SGJP16] Andrew Sogokon, Khalil Ghorbal, Paul B. Jackson, and André Platzer. A method for invari-
ant generation for polynomial continuous systems. In Barbara Jobstmann and K. Rustan M.
Leino, editors, VMCAI, volume 9583 of LNCS, pages 268–288. Springer, 2016.

[SMT+19] Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell, and André Platzer.
Pegasus: A framework for sound continuous invariant generation. In Maurice H. ter Beek,
Annabelle McIver, and José N. Oliveira, editors, Formal Methods - The Next 30 Years -
Third World Congress, FM 2019, Porto, Portugal, October 7-11, 2019, Proceedings, volume
11800 of LNCS, pages 138–157. Springer, 2019.

[SMT+20] Andrew Sogokon, Stefan Mitsch, Yong Kiam Tan, Katherine Cordwell, and André Platzer.
Pegasus: Sound continuous invariant generation. Form. Methods Syst. Des., 2020. Special
issue for selected papers from FM’19.

[WZZ15] S. Wang, N. Zhan, and L. Zou. An improved HHL prover: an interactive theorem prover
for hybrid systems. In ICFEM 2015, volume 9407 of LNCS, pages 382–399. Springer, 2015.

[ZLW+13] Liang Zou, Jidong Lv, Shuling Wang, Naijun Zhan, Tao Tang, Lei Yuan, and Yu Liu. Veri-
fying chinese train control system under a combined scenario by theorem proving. In Ernie
Cohen and Andrey Rybalchenko, editors, Verified Software: Theories, Tools, Experiments
- 5th International Conf., VSTTE 2013, Menlo Park, CA, USA, May 17-19, 2013, Revised
Selected Papers, volume 8164 of LNCS, pages 262–280. Springer, 2013.

[ZWR96] Chaochen Zhou, Ji Wang, and Anders P. Ravn. A formal description of hybrid systems. In
Rajeev Alur, Thomas A. Henzinger, and Eduardo D. Sontag, editors, Hybrid Systems III,
volume 1066 of LNCS, pages 511–530. Springer, 1996.

[ZYZ+14] Hengjun Zhao, Mengfei Yang, Naijun Zhan, Bin Gu, Liang Zou, and Yao Chen. Formal
verification of a descent guidance control program of a lunar lander. In Cliff B. Jones,
Pekka Pihlajasaari, and Jun Sun, editors, FM 2014: Formal Methods - 19th International
Symposium, Singapore, May 12-16, 2014. Proceedings, volume 8442 of LNCS, pages 733–
748. Springer, 2014.

A Repeatability Package: KeYmaera X 4.9.4 with Z3
Here, we compare the verification performance using different versions of Z3 as a backend for
real arithmetic solving:

• Z3 4.6.0 (late 2017)

• Z3 4.8.4 (late 2018)

• Z3 4.8.7 (late 2019)

• Z3 4.8.10 (latest, early 2021)
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The performance on the hybrid systems design shapes is summarized in Fig. 4, on nonlinear
continuous examples in Fig. 5, and on case study benchmarks in Fig. 6.
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Figure 4: Hybrid systems design shapes: cumulative time to solve fastest n problems
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Figure 5: Nonlinear continuous systems: cumulative time to solve fastest n problems
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132


	Introduction
	Problem Format
	Participating Tools
	Benchmarks
	Hybrid Systems Design Shapes
	Nonlinear Continuous Models
	Hybrid Games
	Hybrid Systems Case Study Benchmarks

	Conclusion and Outlook
	Repeatability Package: KeYmaera X 4.9.4 with Z3

