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Abstract

In clinical routine, the capture of three-dimensional (3D) bone geometry is crucial for
surgical planning, implant placement and postoperative evaluation. Nevertheless, accurate
3D reconstruction of the knee joint for the estimation of patient-specific features remains
a challenge, although it has been widely studied. In this context, statistical shape models
(SSM) have been used to reconstruct a global shape from partial observations, based on
their ability to capture the anatomical variation from different patients. However, these
studies incorporate single object SSMs which limit their application for analyzing local bone
morphology and thus they lack the capacity to analyze the human anatomy at the joint
level. In this paper, we present a multi-object based framework for the 3D reconstruction
of the knee joint using a dynamic multi-object Gaussian process model (DMO-GPM) and
an adapted Markov Chain Monte Carlo (MCMC) based model fitting algorithm.

The knees were reconstructed with an average mean square error of 1.81±0.37 mm and
maximum error of 3.31 mm corresponding to the surface-to-surface distance between the
predicted and original knees. The results show that the knee is accurately reconstructed,
especially around the joint contact surfaces. This is crucial because most of the patient-
specific features required for the implant design, use landmarks in this area. The results
suggest that the approach is robust and accurate to design personalized knee implants.

1 Introduction

Three-dimensional (3D) reconstructions of knee bones can be used for surgical planning, pre-
morbid shape estimation, and personalised implant design [1]. However, reconstruction of
partial bone structures resulting from fractures, image acquisition protocols, or disease remains
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challenging. In this context, statistical shape models (SSM) have been used to reconstruct a
global shape from partial observations [4], [5] based on their ability to capture the anatomical
variation from different patients. However, these studies incorporate single object SSMs which
limit their application for analyzing local bone morphology and thus they lack the capacity to
analyze the human anatomy at the joint level.

In this paper, we present a multi-object based framework for the 3D reconstruction of
the knee joint using a dynamic multi-object Gaussian process model (DMO-GPM) [3] and an
adapted Markov Chain Monte Carlo (MCMC) based model fitting algorithm. This reconstruc-
tion takes into account the shape correlation between the femur and tibia and requires the pose
initialisation of only one of them.

2 Method

2.1 Dataset and Knee model training

The data consisted of 3D mesh surfaces of femur and tibia manually segmented from computed
tomography (CT) angiography images of the bilateral knees of individuals acquired at the
University Hospital Center of Brest, France. Institutional ethics approval was granted for this
study (Approval No: 2018CE.49/1). A total of 48 non-pathological knee joints were used from
24 patients presenting variation in knee morphology and flexion.

In order to build the knee model, correspondence was established across the training data.
To establish such a correspondence across mesh surfaces, template meshes were used to register
all the samples across the datasets while preserving the pose of tibia relative to the femur
using a parametric registration algorithm [2, 4]. Once correspondence was established, the knee
DMO-GPM [3] was built using femur as a fixed object.

2.2 Fitting knee model onto partial data

Let us consider a target partial knee with arbitrary position of the tibia relative to the femur.
The goal of the MCMC fitting process is to find the best knee DMO-GPM parameter θ that
optimally represents the target example.

Let To = (T femur
o , T tibia

o ) be the partial knee with T femur
o and T tibia

o representing the partial
femur and tibia, respectively. The 3D reconstruction of knee joint is defined as the posterior
model estimated using the Bayes rule:

p(θ | To) =
p(To | θ)p(θ)

p(To)
(1)

where p(To) is intractable, p(θ) is the model and p(To | θ) the likelihood.
The normal distribution is used as a proposal in the Metropolis-Hastings algorithm. This

proposes new samples (parameters) of the model which are accepted or rejected according to
their associated probability. The accepted samples are used to build the chain and the sample
with highest probability is selected as the best reconstruction of the knee joint.

3 Results

First, we evaluated the model performance in providing a statistical analysis space for knee
shapes and their spatial orientations through generation of samples. Figure 1 shows variations
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Figure 1: Knee DMO-GPM sampling. The variation (+1 to −3 standard deviation from the
mean) along the first (left) and second PG (right ) of the DMO-GPM of the knee joint.

(+1 to −3 standard deviation from the mean) along the first and second principal geodesics
(PG) of the DMO-GPM of the knee joint. The first PG mainly explains the flexion motion
of the knee and the second PG, the change in length for femur and tibia. Flexion and length
changes account for the greatest variability captured by the model.

Second, we evaluate the full knee reconstruction from 7 unseen patients. The experiment
was designed to reflect what clinicians face when planning prosthetic implant surgery. For
patient-specific implant design, accurate measurements are required, for which preoperative
partial CT images are used to extract them. Finally, the full 7 knee joints were cut and only
distal and proximal femurs and tibias used (Fig. 2 on the left).

The reconstruction was done using the DMO-GPM knee and the MCMC fitting process
(Fig. 2 in the middle). The knees were reconstructed with an average mean square error of
1.81±0.37 mm and maximum error of 3.31 mm corresponding to the surface-to-surface distance
between the predicted and original knees represented by a colormap (Fig. 2 on the right).

4 Discussion

Three-dimensional reconstruction is a key step in patient-specific implant design and clinical
follow-up. While the interactions between bones and joints contribute to our daily physical
activities, combining them into a single representative and robust model has not been encoun-
tered in the literature [1]. Single object models are ubiquitous in the literature and have proven
successful in reconstruction tasks. However, reconstructing a 3D bone using multiple single
bone models can lead to significant errors. Figure 2 shows that the knee is adequately recon-
structed, especially around the joint contact surfaces. An accurate reconstruction around this
area is crucial because most of the patient-specific features required for the implant design use
landmarks in this area. This suggests indeed that a unified modelling approach is suitable for
such reconstruction scenarios. An advantage of the reconstruction using the DMO-GPM of
the knee is that the approach maintains the statistics of the variation of a single bone, so the
reconstruction of the model based on a single object [6, 5] can still be done using our framework.
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Figure 2: Reconstructed knee. From left to right: Partial knee joints, Incomplete knee joints
aligned with the model mean for the initialization of the pose and knee DMO-GPM used in
fitting process, reconstructed knees with associated errors. Maximum errors (red) are located
on the missing diaphyses.
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[4] Marcel Lüthi, Thomas Gerig, Christoph Jud, and Thomas Vetter. Gaussian process morphable
models. IEEE transactions on pattern analysis and machine intelligence, 40(8):1860–1873, 2018.

[5] Asma Salhi, Valerie Burdin, Arnaud Boutillon, Sylvain Brochard, Tinashe Mutsvangwa, and
Bhushan Borotikar. Statistical shape modeling approach to predict missing scapular bone. An-
nals of Biomedical Engineering, 48(1):367–379, 2020.

[6] Christophe Van Dijck, Roel Wirix-Speetjens, Ilse Jonkers, and Jos Vander Sloten. Statistical shape
model-based prediction of tibiofemoral cartilage. Computer methods in biomechanics and biomedical
engineering, 21(9):568–578, 2018.

72


	1 Introduction
	2 Method
	2.1 Dataset and Knee model training
	2.2 Fitting knee model onto partial data

	3 Results
	4 Discussion
	References

