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Abstract 

There is a lack of research into the impact of road roughness on ride quality and route 

choice. The scarcity of ride roughness data for local and urban roads is likely one reason 

for the lack of such studies. Existing methods of obtaining ride roughness data are 

expensive and require expert practitioners and laborious data processing by trained 

personnel. Sensors in most current vehicles provide an alternative source for road 

roughness data. This study emulated the data needed from vehicle sensors by using the 

accelerometer and gyroscope of a smartphone. The authors used data collected from two 

different bus routes to classify segments of roads into objectively distinct roughness 

clusters. The output enables map service applications to suggest better routing options 

based on expected ride quality and also quantifies road roughness consistently to enable 

optimized maintenance planning and decision-making for roadway assets. 

 

1 Introduction 

Seasonal changes in weather and temperature cycles cause potholes to form when moisture in small 

holes and cracks expand and contract. According to a recent study by the American Automobile 

Association, potholes in the United States caused 15 billion dollars in vehicle repairs between 2011 and 

2015 [1]. The damages range from tire punctures and bent wheels to more expensive suspension 

damage. The problem is not just limited to the United States. Studies in 2017 suggested that there has 

been an increase in pothole-related breakdowns in the U.K. as well [2]. 

Researchers developed several pothole detection systems during the past decade. The detection 

methods vary in either their data collection or computational approach. The primary method of detecting 

potholes relies on reports from road users. However, this method is inefficient because of the small 

portion of potholes reported, and the biased estimation of their size and severity [3]. Traditional 

approaches to pothole detection are time-consuming, inefficient with heavy traffic flow, and subjective 

[4], [5]. 
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2 Related Works 

Jaguar Land Rover developed a model to detect, predict and share data on potholes with other 

vehicles and road authorities. The technology will allow vehicles to gather data about the location and 

severity of potholes, broken drains, and manhole covers. Sharing the data will enable speed advisories 

for individual drivers and alert road authorities so that they can prioritize repairs [6]. Google patented 

a technology to assess road quality conditions using GPS and vehicle sensors, enabling the company to 

form a database of roads in need of repair [7]. Pavement condition assessment primarily has three tasks: 

1) raw data collection; 2) distress detection; and, 3) distress assessment [8]. Li et al. proposed a method 

based on two-dimensional images and Ground-Penetrating Radar (GPR) data to automate efficient 

pothole detection. The model took advantage of data fusion by retrieving data from multiple sensors 

[9]. Several other authors applied a similar approach by using various sensors such as two-dimensional 

(2D) video and thermal imaging, three-dimensional (3D) laser scanning, global position system (GPS), 

and GPR [10]–[12]. Detection techniques fall into three main categories: 2D video/image-based 

method, 3D video/image-based methods, and hybrid approaches. Among two-dimensional (2D) 

methods, the fuzzy logic-based algorithm analyzes the brightness membership function of the gray 

image level to quantify pavement cracking [13]. Grid cell analysis divides the images into several cells 

and use several image processing algorithms to locate the cracks [4]. Other methods include crack 

geometrical or morphological features [14], multi-scale analysis functions such as wavelet transforms 

[15]–[17], beamlet transform-based approach [18], and artificial intelligence methods such as neural 

network [19] and genetic programming [20]. One of the prominent issues with 2D pavement crack 

detection is that it cannot distinguish dark areas from tire marks, oil spills, shadows or repairs from real 

pavement cracks [21]–[23]. 

Many authors proposed three-dimensional (3D) techniques to address the disadvantages of 2D gray-

level image analysis methods [24]. They use stereo vision and image registration to acquire 3D 

characteristics of the pavement [25], [26]. This method exhibits the lowest cost/performance ratio. 

However, such robustness comes with the challenge of achieving real-time processing capability. 3D 

laser scanning methods have been widely used because they are simple to implement and are able to 

discriminate real cracks from image interferences [27], [28]. Unfortunately, the 3D laser scanning 

approach could not reflect measurement details when the cracks have no noticeable depth changes, for 

example, when cracks are filled with sand. Despite their strong performance, the laser-based methods 

are costly, sensitive to natural or artificial lighting and weather conditions, the shape of the object, 

distance and other anomalies. The stereovision-based techniques are very computationally complex. 

Additionally, such sensors must have low power requirements and have limited buffer and storage 

capabilities. Fox et al. developed a crowd-sourcing platform to overcome these challenges. They 

aggregated sensor data from multiple vehicles to detect potholes. They designed and evaluated three 

crowd-sourcing schemes that involved vehicles and the Cloud to implement the detection system [29]–

[31]. Cekmis used the fuzzy logic method to evaluate ride quality of bicycling given three factors: 

bicycle facility, slope, and vehicle flow [32]. Astarita et al. developed an application to monitor road 

surface quality and to detect road bumps and potholes using sensor signals. Their study focused on 

providing real-time information to road users similar to vision-based methods [33]. 

One of the challenges encountered with the methods described above is the absence of a reliable, 

cost-effective, and proactive method of detecting potholes. The contribution of this research is a 

proactive model for detecting the locations of roadway anomalies and their relative severity based on 

the roughness intensity they generate. The proposed solution is to gather sensor data from multiple 

vehicle traversals and to cluster the roughness of road segments into some number of classes. In general, 
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subjective opinions about the relative level of ride quality across individual segments of a route are not 

available. To fill this gap, the model developed provides an objective classification to rank the ride 

quality anticipated from traveling a given route. A goal of the modeling is to develop an objective 

method of ranking the relative roughness among road segments. The model quantifies the roughness of 

each cluster by using the road impact factor (RIF) transform [34]. The RIF transform produces RIF 

indices, which are spatial and statistical characterizations of road surface unevenness due to anomalies 

such as potholes, cracks, joints, and utility covers. Connected vehicles can upload inertial and GPS data 

to a cloud-based system that computes the RIF to identify and classify anomalies. The cloud service 

can subsequently deliver the output of the roughness classification model to onboard route planning 

systems that can help a driver choose routes with the best road quality. The benefit would be improved 

ride quality, lower vehicle operating costs, and the elimination of possible unsafe driver reactions to 

avoid anomalies such as potholes [35]. 

3 Methodology 

Clustering algorithms identify similar objects in a spatial database. To support non-flat geometry 

clustering and uneven cluster size, this research used density-based spatial clustering of applications 

with noise (DBSCAN). DBSCAN address three primary issues in clustering methods: minimal 

requirements of domain knowledge to determine input parameters, the discovery of clusters with 

arbitrary shape, and good efficiency on large databases [36], [37]. Moreover, DBSCAN is a 

deterministic algorithm, meaning that it always generates the same clusters when given the same data 

in the same order. Unlike many other clustering methods, DBSCAN does not require a predetermined 

number of clusters. The algorithm needs three parameters: 1) the neighbor list size, 2) the radius that 

deliminates the neighborhood area of a point (eps), and 3) the minimum number of points that must 

exist in the eps-neighborhood. 

The RIF transform takes the product of any acceleration signal component or a composite of 

acceleration signals combined from any number of accelerometer directions 𝑔(𝑡), and the longitudinal 

velocity 𝑣(𝑡) from a speed sensor as follows: 

 
Figure 1: Sensor signal collection points along a segment of Route 14. 
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The RIF-index, 𝑅𝑣
𝐿, is interpreted as the average g-force magnitude experienced per unit of distance 

𝐿 traversed [34]. The transform then accumulates the square of that product across the segment length 

analyzed. Dividing the accumulated square-of-products by the segment length and then taking the 

square root yields the RIF-index. The RIF-transform computes a RIF-index for road segments of pre-

determined fixed lengths by windowing the raw accelerometer signal. For every window size, the 

classifiers will check the number of clusters as well as a silhouette coefficient to evaluate the 

consistency within clusters. 

Cluster Analysis. The silhouette is an interpretation and validation method for evaluating the 

consistency within clusters of data. This method compares the average distance to elements in the same 

cluster with the average distance to elements in other clusters. In other words, the silhouette measures 

how similar an element is to its cluster (cohesion) relative to other clusters (separation). The coefficient 

ranges from 1 to +1. A high silhouette value indicates that the object is appropriately matched to its 

assigned cluster, and not well matched to the neighboring clusters. Values near 0 indicate that the object 

is on the border of two clusters. Negative values indicate that an object may be an outlier for the assigned 

cluster, or that the number of clusters for the data is inappropriate. 

Data. The case study used the dataset from previous research [38]. A data collection application 

called PAVVET installed on an iPhone® 4S collected several sensor signals for two transit routes of 

distinctly different levels of roughness in Fargo, ND. The signals logged were from the device 

accelerometer, GPS, and velocity sensors. The accelerometer produced the 𝐺𝑥 , 𝐺𝑦 , and 𝐺𝑧  inertial 

signals, which are the acceleration levels sensed in the vertical, lateral, and longitudinal directions, 

respectively, all normalized to 9.81 𝑚

𝑠2 to produce the units in g-force. The GPS receiver produced the 

latitude and longitude in decimal format. The GPS receiver also produced the estimated ground speed 

in 𝑚

𝑠
. The sample rate for the inertial and gyroscopic signals were the temporal rate that each row of the 

data repeated. It varied between 64 Hz and 150 Hz, depending on the user setting on the application at 

the time that the data was collected. 

Since the iOS® constrained the rate of the GPS output (latitude, longitude, speed) to approximately 

1 Hz, it took some time for the GPS to lock and produce valid coordinates for some portions of the data 

sets. Therefore, data cleaning was necessary to remove those observations. The GPS positions registered 

for each traversal of a segment varied due to the asynchronous nature of the GPS updates, as well as 

the errors in position registration. To minimize errors, the authors used ArcGIS® 5.0 to snap GPS 

positions of each signal to the nearest corresponding road segment (1). To simplify the illustration, the 

Figure 1 shows data from five traversals, and the final snapped data points used in this study. For 

consistency, the method used the coordinates of snapped data points for clustering, and then later for 

ground truth validation. The traversal data were of different lengths, based on when the device triggered 

data logging. Hence, a GIS platform helped to approximately equalize the length of each traversal by 

truncating samples outside of the minimum distance traversal. 

Feature Extraction. The feature extraction window of the RIF transform should ideally begin at 

the same spatial position of each signal. This is because the method involves a machine learning 

technique to extract roughness features that characterize spatial properties of the road independent of 

the temporal movements (speed changes) of the vehicle. Therefore, to find the approximate same 

position of each signal, the algorithm must find a common starting and ending position where all the 

signals overlap maximally. All data outside of these areas are truncated. A new column called distance 

is added and then the first sample of the truncated signals is marked as distance zero. The distance from 

the first sample to the last sample is interpolated based on the speed and sample period such that, 
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𝐷𝑛 = 𝐷𝑛−1 + 𝑉𝑛−1 × (𝑡𝑛 − 𝑡𝑛−1) ×
1

1000
 

where 𝑛 is a data point in the dataset and 𝑡 is time in milliseconds. The formula shows that the 

change in distance is the product of the speed and the change in time (sample period). The division by 

1000 changes the time units to seconds. The attribute used to express roughness in three linear 

dimensions is: 

𝐺𝑇 = √𝐺𝑥
2 + 𝐺𝑦

2 + 𝐺𝑧
2 

The offsets from each of the component signals 𝐺𝑥, 𝐺𝑦, and 𝐺𝑧 is removed before applying the RIF 

transform. Finally, several features are extracted from GT including mean (Gt_Mean), median absolute 

deviation (Gt_MAD), first quantile (Gt_Quantile25), third quantile (Gt_Qunatile75), energy 

(Gt_Energy), spectral entropy (Gt_SpectEntr), average RIF (RIF_Mean), and RIF variance (RIFST D) 

across all windows. For example, the Gt_Mean is the mean of all 𝐺𝑇 signals within a window of size 

25 cm. After extracting the features for each traversal, the model computed their ensemble average 

across traversals, within the same window. Using a log transform to remove the data skewness and 

rescaling all features using the Min-Max method normalized the data before applying the clustering 

algorithm. 

The Scikit-learn [39] library package provided the algorithms to perform all of the clustering. The 

DBSCAN method applied to different combinations of features extracted from four different window 

sizes (25 cm, 50 cm, 100 cm, 150 cm) identified features that provided the highest silhouette coefficient. 

The rest of the paper is organized as follows: The next section gives an overview of the methodology 

for clustering the RIF indices. Section 3 presents the data and describes the data preprocessing. Section 

4 presents the results and findings. The final section provides concluding comments. 

4 Experimental Results 

Given all features, Table 1 and summarizes the clusters and their proportion of data points for each 

window size. The noise is interpreted as algorithm error where it could not classify the data points into 

any clusters. They are very small and can be ignored in the analysis. Given the model with all-features, 

for almost all window size, there is only one dominant cluster for both routes. Hence, given all features, 

the model could not distinguish segment roughness into more than one cluster for any of the window 

sizes. In other words, by using all extracted features, the model could not sufficiently distinguish smooth 

roadway segments from those that contain anomalies. Furthermore, using all of the extracted features 

did not generate the highest silhouette values (Figure 2). 

 

Window Route 14 Route 15 

Noise Class 0 Class 1 Remaining Noise Class 0 Class 1 Remaining 

25 cm 0.81% 6.68% 92.45% 0.06% 2.52% 17.67% 79.30% 0.51% 

50 cm 1.71% 28.47% 69.76% 0.06% 6.16% 31.58% 47.44% 14.83% 

75 cm 3.32% 36.67% 58.01% 0.00% 10.59% 8.32% 75.70% 5.39% 

100 cm 4.71% 13.73% 81.18% 0.38% 12.77% 0.59% 86.43% 0.21% 

125 cm 4.92% 0.52% 94.47% 0.10% 12.76% 0.42% 86.08% 0.74% 

150 cm 5.06% 0.12% 94.58% 0.24% 14.00% 0.95% 84.68% 0.38% 
Table 1:  Share of each cluster of route 14 and 15 (all features). 
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Figure 2 reveals a critical fact about the model: the silhouette coefficient generally decreases as 

window size increases. In general, most window sizes result in only two clusters. Another overall 

pattern observed is that, as the window size increases, the method produces less balanced clusters. 

Further investigation identified two features that produced the highest silhouette coefficient: 1) 𝐺𝑇 

Spectral Entropy; 2) Variance of RIF-indices, as shown in Figure 2. Hence, further analysis used only 

these two features. The entropy is the measure of the amount of disorder in a system. The spectral 

entropy shows differences in the energy distribution of a signal. 

 

In particular, a high entropy value indicates the existence of a constant similarity of energy (small 

variations) and a low entropy value indicates the presence of information such as road irregularities. 

The RIF is a statistical characterization of the quality of the ride. It is proportional to the average energy 

of the overall accelerations experienced per unit of longitudinal distance when traveling a road segment 

at a specified speed. Hence, the RIF-index of the 𝐺𝑇 signal is proportional to the overall ride roughness 

experienced. In particular, relatively high values of RIF-indices, such as above 0.2, indicates that 

pavement unevenness is contributing to poor ride quality. Considering the window size and silhouette 

coefficient, as shown in Table 2, the window size of 50 cm contributes the highest average silhouette 

coefficient and the lowest standard deviation among other window sizes. The class membership is more 

balanced for a 50-cm window size. Table 3 summarizes the clusters and their proportion of data points 

for each window size for a model with two feature. 

 

Given the difference between two classes, as shown in Table 4 the mean of RIF-indices for Class 1 

are higher for Route 14. Moreover, the variation between two classes for Route 15 is less than Route 

14. The fact that the mean RIF index of Class 1 segments is consistently higher than that of Class 0, 

and that the Class 1 membership proportion is much higher for Route 14 than for Route 15 suggests 

that Route 14 produces lower ride quality than Route 15. The deduction that Route 14 is rougher than 

Route 15 is consistent with the finding that Class 1 has lower spectral entropy.  

 
Figure 2: Silhouette coefficient for route 14 and 15. 

 

Window Size Mean Standard Deviation 

25 cm 0.478 0.18 

50 cm 0.487 0.16 

75 cm 0.393 0.17 

100 cm 0.317 0.29 

125 cm 0.238 0.25 

150 cm 0.294 0.31 
Table 2: Average and standard deviation of silhouette coefficient for route 14 and 15 across window 

sizes. 
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Figure 4 and Figure 3 illustrate the 25 cm and 50 cm window size cluster for Routes 14 and 15, 

respectively. As shown in these figures, the two output clusters are easily distinguishable by the entropy 

of the signal and the variance of the RIF-indices. The figures also graphically illustrate that the RIF 

indices for Class 1 segments distribute with both higher mean and higher variance than those of Class 

0 segments. This explanation is consistent with the findings that Class 1 has lower spectral entropy.  

Google Street Views from 2015 provided ground-truth validation. Figure 6 and Figure 5 show top 

and side views of Class 1 segments on Routes 14 and 15, respectively. These segments exhibit crocodile  

Window Size Route 14 Route 15 

Noise Class 0 Class 1 Noise Class 0 Class 1 

25 cm n/a 0.0183 0.3733 0.00 0.0527 0.3331 

50 cm 0.0001 0.1163 0.3752 n/a 0.2078 0.2890 
Table 4: The weighted average for RIF-Mean for each cluster (two features). 

 

 

Figure 4: Pairwise comparison of feature of route 14 win size = 25 cm (left) 50 cm (right). 

 

Figure 3: Pairwise comparison of feature of route 15 win size = 25 cm (left) 50 cm (right). 

 

 

Window Size Route 14 Route 15 

Noise Class 0 Class 1 Noise Class 0 Class 1 

25 cm 0.00% 6.96% 93.04% 0.01% 19.24% 80.75% 

50 cm 0.01% 29.34% 70.65% n/a 50.57% 49.43% 
Table 3: Number of clusters and share of each cluster of route 14 and 15 (two features). 
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cracking which leads to higher values of RIF-indices, and hence low ride quality. In general, the 

specific contributions of the model are: 1) it could objectively cluster the ride quality if different routes 

and 2) given a specific route, it could differentiate the quality of road segments (lanes) to find the best 

possible ride quality. 

5 Conclusion 

This work contributed a new paradigm for ranking the relative ride quality of road segments based 

only on objective measures. The findings provide new inputs for route selection based on the expected 

ride quality during trip planning. Mapping service companies such as Google LLC, HERE 

Technologies, and TomTom NV could incorporate this model to include ride quality as another factor 

in trip advisories, and to guide future autonomous and connected vehicles. The benefit would be lower 

maintenance costs because of improved ride quality by consistently selecting routes with the greatest 

proportion of Class 0 segments. The roughness classification problem identified the spectral entropy of 

the composite accelerometer signal and the variance of RIF-indices as features to objectively classify 

road segments into distinct levels of roughness, obviating the need to rely on subjective roughness 

opinion surveys. The model identified the best window size for objective roughness classification. The 

general result was a classification of road segments into two roughness classes 1) among different 

routes, and 2) within a specific route. Agencies can use the model with any mapping application to 

reduce road maintenance costs by optimizing the timing and location of remediation measures based on 

the relative percentages of anomalies found in the roughest class. Future research will examine the 

potential impacts of expected ride quality on optimization models for route selection that also involve 

travel distance and travel time. 

 

 
Figure 6: Google street view route 14. 

 
Figure 5: Google street view route 15. 
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