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Abstract. The alarming rate of urbanization poses immediate problems to water resources 
management, mainly, but not limited to water supply, flood risk management, wastewater 
treatment and water quality control. Ideally, strategic planning of water systems should be 
fully aware of the prospects of future urban growth in order to maintain high reliability of 
services provided and satisfy customers in the long term. Typically, urban growth is handled 
in a static manner via the development of future scenarios based on previous urban planning 
studies. Generally, these scenarios focus solely on population increase and ignore the spatial 
allocation dynamics. Modern urban water strategic thinking needs to incorporate robust tools 
and methodologies in management practices, able to predict and quantify the outcome 
possibility of future urban growth. To cope with the aforementioned challenge, this study 
proposes a novel cellular automata urban growth model as well as, a supplementary remote 
sensing methodology to preprocess input data. 

Keywords: Urban growth, Cellular Automata, Monte Carlo calibration, Urban surfaces 
identification 

1 Introduction 
Urban growth is an inherently complex phenomenon. It can be considered as a 
system of physical expansion and functional transitions. It changes over time through 
interaction with many inter-related, mostly unknown, drivers and stimulant factors. 
These interactions create an open, non-linear, dynamic and emergent system. Thus, it 
is fundamentally difficult, if not entirely impossible, to accurately describe (i.e., 
model) and predict urban growth. The focus of modelling urban growth should be on 
creating plausible results and models with good explanatory power, able to simulate 
and explore the complex urban dynamics, rather than precisely pinpoint future urban 
locations. 
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A dominant family of such models is based on Cellular Automata (CA). CA’s divide 
the area of interest in discrete, self-organized cells and operate by applying simple 
rules defining local interactions among neighbouring cells in each simulation step. 
The vast number of local interactions can result in a complex and dynamic global 
behaviour, especially when stochastic rules and disturbances are introduced to the 
model. Their simple in defining, yet complex in terms of its outcomes, nature makes 
CA-based models suitable for urban growth simulation and prediction. The literature 
[1, 2] contains many model sub-types and hybrid interdisciplinary approaches that 
have been tested extensively in various and diverse cases.  
In this work, we have developed a robust, flexible, yet parsimonious (in data 
requirements) CA model as part of a general methodological framework aimed to 
assist urban water strategic planning. Briefly, the proposed two-state (urban and non-
urban land uses) CA model is conditioned (i.e., constrained) on external drivers and 
accounts for the allocation dynamics variability via stochastic internal mechanisms. 
Furthermore, special attention has been given in the modularity of the model in order 
to provide the means for its straightforward extension and reproducibility. Finally, 
emphasis has been given on optimizing the simulation speed (i.e., computational 
effort), a common weakness of most CA models. 

2 Introducing DESTICA: An Exogenously Constrained STochastic Cellular 
Automata model with Descriptive Internal mechanisms 

DESTICA is a model comprised of two main modules, an external subsystem that 
generates the number of new urban cells in the next simulation step, making the 
model constrained to exogenous drivers, and an internal subsystem that allocates 
these cells spatially using stochastic mechanisms with descriptive properties. Each 
subsystem is calibrated to real data before issuing an urban growth prediction. The 
simulation timestep of DESTICA is annual, as typically new housing estate needs a 
substantial period of time to develop.  

2.1 External subsystem: constraints to exogenous drivers 
The external subsystem requires two timeseries as inputs, which are handled as 
exogenous drivers for urban growth. For the subsystem’s calibration, historical 
timeseries are required in order to replicate as output historical urban growth patterns 
(i.e. annual timeseries of new urban cells). After calibration, the subsystem can 
generate future number of urban cells with scenario-based driver predictions. We 
propose the use of two typical drivers of urban growth as indicated in literature (e.g. 
[5]): annual GDP and population timeseries. These model inputs should be highly 
correlated to historical urban growth after some pre-processing. Absolute driver 
values or relative year over year changes can be unsuitable for calibration (e.g. vary 
significantly each year) or weakly correlated to urban growth dynamics. In this 
manner, pre-processing can include transforming absolute values to annual rates of 
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change or rate of change over a greater period e.g. 5-year rate of change to account 
for “lag” of the urban system to respond to a driver’s change. There is flexibility in 
assigning different types of drivers as inputs in other case studies, as the external 
subsystem employs four parameters ( , , , ) that transform non-linearly the 
annual input information to new cells.  
The first two parameters ( , ) form a linear model that relates relating new cells 

 with the inputs  and  in step . Moreover, the urban growth is correlated 
with the previous step, to account for parsimony and “inertia” in changing cells 
via . Parameter  transforms the model with a power law. In addition, a stochastic 
component can be added to the equation, either after residual analysis or arbitrarily 
constructed to explore uncertainty and urban system dynamics. The external 
subsystem in each step  can be summarized by the following equation: 

  (1) 

The parameters are calibrated against historical number of cells changed in each step 
with the Nash - Sutcliffe Efficiency metric as it gives a qualitative estimation of 
performance against using the trivial model of generating each step the mean number 
of observed urban cells changing through the calibration period of  years., i.e. 
using a steady rate of urban change. In eq. 2  denotes the timeseries of observed 
urban changes. 

  (2) 

2.2 Internal subsystem: spatial allocation of cells 
The internal subsystem is responsible for the spatial allocation of the new  
generated cells from the external subsystem in each time step . The internal 
subsystem is inherently dynamic as the allocation of cells is stochastic and based on 
a suitability factor estimation technique (for example [6]), affected by an ensample 
of mechanisms. Despite its nature, the spatial allocation module of DESTICA is 
data-parsimonious. Absolute data requirements are a “starting point” urban state in 
binary form, formed by dividing the region into urban cells and non-urban cells, the 
topographical slope of the cells derived from a suitable DEM (even from SRTM if 
not available otherwise), a collection of points of interest that according to the 
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modeller attract urbanization (e.g. centroids of towns, villages, airports, university 
campus etc.) and the road network which can be digitized if not available/open from 
the respective municipality archives. 
Three mechanisms affect organic urban expansion (outwards) while the forth induces 
spontaneous growth (new clusters). Thus, in each step , a portion of the cells 
denoted corresponds to organic expansion and a portion  forms new urban 
clusters. The ratio between them, as shown in eq. 3 and 4, is calibrated by two 
parameters signified  and , which respectively describe the percentage of 
new cells that become the centroid of a new cluster and the percentage of cells that 
form the immediate neighbours to these clusters, controlling cluster size. For 
example, low SC and SG values means that most of the urban growth occurs at the 
“urban edges”, while high SC and low SG denotes a scattered urban growth. 

  (3) 

  (4) 

The suitability factor for the allocation of  cells depends on the weighted factors 
(eq. 9) derived from the following mechanisms: 
The first is an edge expansion mechanism, where cells adjacent to or near urban 
cells, as defined by a Moore neighbourhood, are more suitable for transition. 
Suitability of a non-urban cell in position  in the current step , symbolized 
depends on an inverse distance power law, where  is the minimum distance to an 
urban cell counted in intermediate number of cells and  a non-negative calibration 
parameter defining the rate at which the adjacency effect diminishes. Thus, this 
suitability ranges from 0 to 1. 

  (5) 

The second mechanism is slope-dependent. A fuzzy inference system (FIS) is 
formulated that translates slope input of cell  to slope-suitability  by 
fuzzy-mapping slope value groups to suitability ranging from “very bad” to “very 
good”, translated to [0,1] suitability score. 

  (6) 

The third mechanism relates road accessibility in the form of cost distance surfaces 
, to every point of interest , with the attractiveness of each point in terms of 
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population size in year  , marked  (or another case-dependent weighting 
factor). Cost is calculated from the least time measured in minutes needed to 
transverse from a cell to a particular point of interest  , by assigning to each cell 

 the normal transport speed of the major type of road network overlapping it 
(e.g. 80 km/h in a highway), while cells not overlapping with elements of the road 
network are assigned the normal walking speed of 5 km/h. A modified gravity model 
is used to calculate the accessibility - suitability factor  as shown in eq. 7 and 8. 
Calibration parameter  of weighting factor  transforms non-linearly the relative 
importance of population among the different sized points of interest (i.e. how much 
more “important” is a city to a smaller town in the same region). The non-negative 
calibration parameter  implements a rule of distance decay. If needed, a bias can 
be added to any point of interest to further increase its importance. 

  (7) 

  (8) 

These three mechanisms are normalized in every step  to 0-1 (denoted by prefix ) 
in order to form the total suitability factor of each cell by utilizing the equation 9. 
Parameter denotes the respective weight of the mechanism in the calculation of 
the suitability factor.  

  (9) 

Every yearly step , after calculating the suitability factor  of every cell, each 
cell is tested against a randomly generated number from a “choice function” (which 
is essentially a beta probability distribution with two calibration parameters  and 

) reflecting uncertainty and public disposition against the estimated suitability 
factor. Some choices for urbanizing a cell are not truly rational e.g. for the reason of 
already owning a parcel of land. A stochastic ranking procedure is implemented via 
the subtraction of the randomly generated numbers from the suitability matrix. 
The  cells with the highest score transit to urban state, as represented in eq. 10 
and 11. 
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 (11) 

Some cells,  (number defined from the percentage), that are not near urban 
cells (distance defined by a cut-off threshold, e.g. more than five cells) change state 
to urban, based solely on the suitability due to slope and road accessibility. 
Subsequently, these cells form new urban cluster centroids and some cells,  in 
their immediate neighbourhood change state as defined by  percentage. This 
immediate neighbourhood of a cluster centroid is symbolized by . These 
changes are shown in the following equations. The same stochastic ranking 
technique is used to select the  fittest cells for urbanization due to the 
spontaneous urban growth mechanism. 

 (12) 

  (13) 

 (14) 

 (15) 

 (16) 

2.3 Calibration of internal subsystem 
The parameters of the internal subsystem (ten in total) are calibrated against the 
similarity of the output to the real urban changes across a specific timespan, using 
three weighted metrics. The metrics used are the modified Cohen’s Kappa 
coefficient of agreement  [3], a shape index and the agreement by number of 
clusters. Specifically, , which is based on the contingency matrix of the classes, 
is used to determine solely the performance of the model in the spatial allocation 
because DESTICA is calibrated using the observed instead of the simulated number 
of cells changed [7]. In eq. 17  represents the observed fraction of agreement 
between the allocation of the classes [urban, non-urban] and represents the 
expected fraction of agreement, given the sizes of the class transitions to other 
classes. Allocation agreement alone is not a representative indicator of performance 
[7]. Realistically, pixel per pixel accuracy in allocating urban change cannot be very 
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high, considering the usual size of a suburban area (large), the size of urban changes 
over a short time window (small) and the related degrees of freedom in cell 
allocation. Also, the model dynamics allow a variety of different emergent behaviors 
derived from dissimilar parameter sets to achieve similar performance. Therefore, 
the shape and cluster number metrics support performance evaluation by giving an 
estimation of “compactness”, dispersion and patterns of urban growth. Shape is 
calculated as the ratio of the total area  of the clusters to the total perimeter . 
Both shape and number of clusters metrics are compared to the observed indices of 
the urban area, and . The comparison is made between the 
output of DESTICA (last simulation step in the calibration process) and the reference 
urban state. The optimization problem is defined as the minimization of the objective 
function in eq. 19, using different weights .  

 (17) 

  (18) 

 (19) 

Due to the stochastic nature of the model, a Monte-Carlo technique is applied in 
combination with a genetic algorithm for optimization. For each individual of the 
population, the model is executed a pre-specified number of times for the same 
parameters (e.g. 100, determined by the available processing capability). The 
performance is evaluated each time and the median value of the is utilized to 
assess the score of the individual. 

3 Identification of historical urban growth 
Alongside DESTICA, an urban classifier model is developed in order to enable it to 
use open data from remote sensing sources, such us Landsat images. Landsat is the 
longest running open data mission, and therefore is a suitable source for generating a 
large enough timeseries to determine, via remote sensing historical, urban change in 
an area. In addition, the medium resolution of the produced data (ca. 30 m × 30 m) is 
sufficient for urban identification. Other data collections with lower resolution (e.g. 
MODIS, ca. 250 m × 250 m) provide a coarser approach to the classification. High 
resolution data (e.g. Worldview ca. 0.5 m × 0.5 m) are typically commercial and 
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recent. Therefore, their timeseries is limited, while processing time rises 
exponentially with resolution. 
Coupling remote sensing with an urban growth model is a key point of our 
methodology, as suitable and accessible data are in many cases scarce and should be 
inferred by other means. However, identification of urban areas from satellite data is 
an inherently difficult task. We developed an urban classifier model that uses an 
artificial neural network (ANN) structure utilizing not only multispectral bands as 
inputs, but also the texture info. We constructed various sets of predictors for ANN 
input that included: a) only spectral bands except panchromatic, thermal and special 
bands of Landsat 8 (i.e. for R, G, B, IR, MIR1 and MIR2 bands - 6 predictors), b) 
spectral bands plus 20 available Haralick-GLCM texture indices for every spectral 
band for moving windows of 3×3, 5×5, 7×7 pixels (126 predictors for each moving 
window), c) spectral bands plus selected contrast, dissimilarity, energy and entropy 
texture info for the bands R, IR, MIR1, MIR2, for moving windows of 3×3, 5×5, 7×7 
(22 predictors for each), d) spectral bands and multivariate variogram methods for 
texture info (7 predictors), where multivariate info between bands is calculated either 
by Euclidean, Mahalanobis or spectral angle distance [4], for 3×3 moving window. 
We also use a Monte-Carlo scheme to account for uncertainty in selecting samples. 
Control samples for calibration, validation and testing are randomly selected from a 
predefined pool (from basemaps, Google Earth etc.) and the classification 
performance is evaluated 1000 times. The set of predictors with the best distribution 
of performance is used to select a classifier type that classifies the most recent 
satellite image, because the control samples are readily available only for recent 
images in most cases. The output of the classifier is then combined with an object-
oriented hierarchical (in a temporal manner) classification methodology to derive the 
required historical land-use change timeseries from the other preceding Landsat 
images. The latter is required to calibrate the parameters of DESTICA model. In this 
manner, we use an iterative process of employing the multiresolution segmentation 
algorithm of eCognition software to define objects in each year, and test resemblance 
to the previous year to identify any changes. 

4 Case study & results 
The above methodology is applied to the greater area around Rethymno city in Crete, 
Greece. The area includes various settlements (and a university campus) that differs 
significantly in size and patch density. Centroids are used as points of interest. The 
mixing of different land uses greatly increases the difficulty for both the urban 
classifier model and DESTICA. Also, historical data are scarce, incomplete and 
inaccurate. This paradoxically makes it an ideal case to demonstrate the robustness 
of the new methodology.  
In order to calibrate the ANN urban classifier, 1390 control samples are selected 
from the area mainly using Google Earth, comprised of 729 non-urban and 661 
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urban samples. Classification is performed on a Landsat 8 image of July 2016. 
Monte Carlo analysis is performed utilizing 1000 random subsets of the samples split 
in 70% calibration, 15% validation and 15% testing. The predictor set that performs 
better is the one with the 7 predictors comprised of the 6 spectral bands and the 
multivariate texture using spectral angle distance. As shown in Figure 1, the mean 
classification error is 5.24%, while standard deviation is 0.94%. The best classifier, 
which is subsequently used to classify the whole Landsat image, has a 2.73% 
classification error.  

 

Figure 1 Left: Classification error distribution of the best predictor set (spectral bands and 
spectral angle distance multivariate texture). Right: Confusion matrices of the best classifier. 

Classified images are presented in Figure 2. The urban classifier model provides the 
initial state (top left) of year 1984 and the end state of year 2016 (top right) based on 
the respective Landsat 5 and 8 images. In order to demonstrate DESTICA flexibility 
and magnify the attractiveness of two specific points of interest, ‘University 
Campus’ and ‘Old Town’, two more bias weights, , are added to eq. 7. 
DESTICA simulation from years 1984 to 2016 after the calibration of the 12 internal 
model parameters  can be visualized (bottom 
right) along with the heatmap of urban state probability, after 100 model trials 
(bottom left). Table 1 presents the parameter values and the evaluation of metrics 

. The respective weights for calibration 
are . 
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Figure 2 Top left: initial binary state of year 1984 (□: urban cells, ■: non-urban cells). Top 
right: real end state of year 2016. Bottom right: simulation end state of year 2016. Bottom 
left: probability heatmap of cells being urban at simulation end state after 100 model trials. 

Table 1 DESTICA internal model parameters and metrics evaluation 

             
0.106  0.113 1.765 3.237 1.068 0.645 0.068 0.287 215 119 4580 3320 

    

 1.76 ( : 1.74) 0.21 532 (  : 530) 

The external subsystem is calibrated with inputs  representing the annual 
growth rate of GDP with lag of three years and the average 5-year growth rate of 
Rethymno population. The parameter values of are 

. The  value of 0.70 signifies good performance of the 
external model in simulating annual urban changes for the specified period (1984-
2016). DESTICA is fully calibrated and could be used for a future urban state 
prediction for the area of Rethymno. Figure 3 presents an example prediction of 
urban state at year 2040 and an application in defining flood risk in the eastern part 
of the city for a storm of years return period. New urban patches in the areas 
marked with deep blue colour are the ones at higher risk.  
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Figure 3 Left: prediction example of new urban cells (grey) until 2040 using “dummy” GDP 
and population predictors. Right: the new urban state at the eastern part of the city and flood 

depths in blue tone colormap. 

5 Conclusions 
The results are very promising, indicating that the methodology is capable of both 
identifying historical urban growth from open remote sensing data using the urban 
classifier model and simulating the complex nature of urban growth, even in 
unfavorable conditions, via the use of DESTICA. The hypothetical future water 
resources-related example highlights the utility of the proposed methodology in the 
context of modern urban water strategic planning. 
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