
EPiC Series in Computer Science

Volume 34, 2015, Pages 25–30

ARCH14-15. 1st and 2nd International Workshop on
Applied veRification for Continuous and Hybrid Systems

Benchmarks for Temporal Logic Requirements for

Automotive Systems

Bardh Hoxha, Houssam Abbas, and Georgios Fainekos

Arizona State University,
Tempe, AZ, USA

{bhoxha, hyabbas, fainekos}@asu.edu

Abstract

We propose to standardize two Matlab/Simulink models of automotive systems as benchmark prob-

lems for hybrid system verification. Both models can be simulated quickly, making them ideal for

testing-based verification methods that require a significant number of system output trajectories. One

of the benchmarks is the Automatic Transmission model, which is deterministic. The other benchmark

is the Fault-Tolerant Fuel Control System, which exhibits stochastic behavior. Our benchmark stan-

dardization defines a number of Metric Temporal Logic requirements for the models.

Category: academic Difficulty: medium

1 Context and Origins

We propose to standardize as benchmarks existing models of hybrid systems that are widely
available and documented by Mathworks and at the same time exhibit all the complexities of
industrial strength models.

Automatic Transmission We propose a slightly modified version of the Automatic Trans-
mission model provided by Mathworks as a Simulink demo [5]. It is a model of an automatic
transmission controller that exhibits both continuous and discrete behavior. The model is de-
terministic: that is, it does not contain components with stochastic behavior. Our motivation
for proposing this model as a benchmark problem is founded on the fact that this model has
already been used by multiple research groups.

To the best of our knowledge, this benchmark was first considered in [8] to illustrate a genetic
algorithm approach to test input generation for hybrid systems. In [7], the authors used the
model for estimating the range of the parameters of Metric Temporal Logic (MTL) specifications
such that the system does not satisfy the specification. In [2], the authors use the model to
perform MTL falsification, i.e. to find a trajectory that does not satisfy the specification (also
known as a counter example). In [4], the authors utilize the model to illustrate a method for
mining requirements from closed-loop models.

Fault-Tolerant Fuel Control System Fault-Tolerant Fuel Control System is a modified
version of the model provided by Mathworks as a Simulink demo [6]. The model detects system
failures and as a result modifies its control law to sustain system performance. The arrival of

G.Frehse and M.Althoff (eds.), ARCH15 (EPiC Series in Computer Science, vol. 34), pp. 25–30 25

Benchmarks for Temporal Logic Requirements for Automotive Systems Hoxha et al.

gear_state 1
fourth
entry:
gear = 4;

third
entry:
gear = 3;

second
entry:
gear = 2;

first
entry:
gear = 1;

selection_state
during: CALC_TH ;

2

steady_state

upshiftingdownshifting

UP
1

UP UP
1

DOWN
2

DOWNDOWN

2

[speed > up_th]
1

[speed < down_th]
2

[speed > down_th]

2

after(TWAIT,tick)
[speed <= down_th]
{gear_state.DOWN }

1
after(TWAIT,tick)
[speed >= up_th]
{gear_state.UP }

1

[speed < up_th]

2

0 5 10 15 20 25 30
0

50

100
Throttle

0 5 10 15 20 25 30
0

5000
RPM

0 5 10 15 20 25 30
0

100

200
Speed

Figure 1: Left: The switching logic for the automatic drivetrain; Right: An input signal (top)
and the corresponding output signals that falsify the specification.

faults is modeled by Poisson stochastic processes with different arrival rates. This benchmark
was first considered in [9], where the authors use Bayesian statistical model checking techniques
to, among others, estimate the probability of satisfying the specification, and to estimate a
corresponding confidence interval.

2 Brief description

Automatic Transmission There are two inputs to the system: the throttle and break. The
break input enables the user to model variable load to the engine, e.g., going uphill or downhill.
The physical system has two continuous-time state variables which are also its outputs: the
speed of the engine ω (RPM) and the speed of the vehicle v (mph). Initially, the vehicle is at
rest at time 0, i.e. the speed v = 0 and engine speed ω = 0. Therefore, the output trajectories
depend only on the input signals ut and ub which model the throttle and break inputs. The
throttle and break, at each point in time, can take any value between 0 (fully closed) to 100
(fully open). The range for the break depends on the engine load that we would like to model.
The system is deterministic, i.e., under the same input u, it will produce the same output y.

The model contains 69 blocks among which there are 2 integrators (i.e., 2 continuous state
variables), 3 look-up tables, 3 2D look-up tables and a Stateflow chart. The Stateflow chart
(see Fig. 1 for a schematic) contains two concurrently executing Finite State Machines with 4
and 3 states, respectively.

Table 1 presents a number of requirements that should be verified on the automatic trans-
mission model. As an example, consider formula φAT

2 in Table 1: this is a simple invariant.
The goal of the verification is either to prove the invariant or produce counter examples that
demonstrate that the invariant is not true. The verification of the model is challenging for the
following reasons. First, the engine and the vehicle components contain nonlinear equations
and lookup tables. The latter increases the size of the hybrid state space substantially. Second,
the switching conditions of the Stateflow chart depend on both state variables and input signals
and are also time dependent. Both reasons make the problem challenging for state of the art
reachability analysis tools [3] .

For the invariant in φAT
2 , we would like to generate trajectories such that the vehicle speed

v and the engine speed ω exceed the values 120 mph and 4500 RPM, respectively. Such a
falsifying system trajectory appears in Fig. 1.

Fault-Tolerant Fuel Control System This system models the fuel controller for a gasoline
engine. Its goal is to keep the air-to-fuel ratio close to the “ideal” stoichiometric ratio so that

26

Benchmarks for Temporal Logic Requirements for Automotive Systems Hoxha et al.

0 10 20 30 40 50 60 70 80 90 100
-5

0

5
fuel-flow rate

0

50

100
air-fuel ratio

0

0.5

1

fault arrival (Poisson mean 20s)

0

0.5

1

fault arrival (Poisson mean 10s)

0

0.5

1

fault arrival (Poisson mean 8s)

Time offset: 0

Figure 2: The output trajectories for the Fault-Tolerant Fuel Control System under constant
input. Top: air-to-fuel ratio. Bottom: fuel-flow rate.

both the oxygen and the fuel are consumed completely in the process. The outputs of the
system are the fuel rate and the air-to-fuel ratio - see fig. 2 for an example output of the
system. For correct operation, the system requires sensor information. There is one sensor
that provides readings on the amount of residual oxygen present in the exhaust gas, one for the
engine speed, one for the throttle, and one for the manifold absolute pressure. The system
is designed to detect sensor failures, and the control system changes dynamically to ensure
uninterrupted operation. If a single sensor fails, the system compensates. If more than one fail
then the system is shut down. The system exhibits discrete and continuous behavior that is
described by nonlinear and linear differential equations with a switching condition.

We have extended the modifications to the system implemented in [9] by adding three Pois-
son processes to model sensor failures with different arrival rates which are inversely correlated
with the throttle input signal: the larger the input, the smaller the rate of the Poisson process
i.e. more faults on the system. With the modifications made, this becomes an example of a
Stochastic Cyber Physical System.

Table 1 lists example specifications that should be satisfied by this system.

3 Formal specifications

Table 1 lists the proposed formal specifications for both systems. It contains both simple
properties (e.g. safety property φAT

1) and more complex ones (e.g. φAT
8). It also contains formal

requirements with and without real-time constraints. The former is challenging for reachability
analysis tools that ignore timing when approximating the states that cross a switching guard.

For the Automatic Transmission model, by varying the thresholds ω̄ and v̄, the benchmark
problems can vary from proving invariants to falsification problems. To date, the authors are
not aware of an algorithm that can verify these properties for these systems. Thus they serve as
good benchmarks for driving the development of formal verification in that direction. Moreover,
some properties have not yet been falsified with testing-based methods. If used as benchmarks
for testing-based falsification, the goal would be to compare different methodologies on their
speed of detecting counterexamples. All else being equal, properties that involve the discrete
gear sequence (like φAT

2−5) are generally more challenging than ones that don’t use the gear:
intuitively, that is because the current continuous state affects the switching guards, and these
guards determine the gear sequence. Thus the gear sequence is a delayed indicator of the
variations in the continuous state. Having to consider the real-valued continuous state and
the evolving guards (whose evolution can’t be pre-computed or analytically described in terms
of the search variables) is problematic for formal methods, and challenging to testing methods

27

Benchmarks for Temporal Logic Requirements for Automotive Systems Hoxha et al.

Table 1: Various specifications expressed in natural language and MTL.

Property Natural Language MTL

Automatic Transmission

φAT
1 The engine speed never reaches ω̄. 2(ω < ω̄)

φAT
2

The engine and the vehicle speed
never reach ω̄ and v̄, resp.

2((ω < ω̄) ∧ (v < v̄))

φAT
3

There should be no transition from
gear two to gear one and back to
gear two in less than 2.5 sec.

2((g2 ∧Xg1)→ 2(0,2.5]¬g2)

φAT
4

After shifting into gear one, there
should be no shift from gear one to
any other gear within 2.5 sec.

2((¬g1 ∧Xg1)→ 2(0,2.5]g1)

φAT
5

When shifting into any gear, there
should be no shift from that gear to
any other gear within 2.5sec.

∧4i=12((¬gi ∧Xgi) → 2(0,2.5]gi)

φAT
6

If engine speed is always less than ω̄,
then vehicle speed can not exceed v̄
in less than T sec.

¬(3[0,T](v > v̄) ∧2(ω < ω̄))

φAT
7

Within T sec the vehicle speed is
above v̄ and from that point on the
engine speed is always less than ω̄.

3[0,T]((v ≥ v̄) ∧2(ω < ω̄))

φAT
8

A gear increase from first to fourth
in under 10secs, ending in an RPM
above ω̄ within 2 seconds of that,
should result in a vehicle speed
above v̄.

((g1 U g2 U g3 U g4) ∧ 3[0,10](g4 ∧
3[0,2](ω ≥ ω̄))) → 3[0,10](g4 →
X(g4 U[0,1] (v ≥ v̄)))

Fault-Tolerant Fuel Control System

φFCS
1

The fuel flow rate should not be 0
for more than 1 sec within the next
100 sec period.

¬3[0,100]2[0,1](FuelF lowRate = 0)

φFCS
2

Always, if the air-to-fuel ratio out-
put goes out of bounds, then within
1 sec it should settle inside the
bounds and stay there for a sec.

2((λ out of bounds) →
3[0,1]2[0,1]¬(λ out of bounds))

ω: Engine rotation speed, v: vehicle velocity, gi : gear i, λ : air-to-fuel ratio.
Recommended values: ω̄ : 4500, 5000, 5200, 5500 RPM; v̄ : 120, 160, 170, 200 mph; T : 4, 8,
10, 20 sec; λ bounds: 0.9 - 1.1.
2: Always, �: Eventually, U : Until

28

Benchmarks for Temporal Logic Requirements for Automotive Systems Hoxha et al.

that can only look at the next guard to cross in deciding the next input to try.

4 Outlook

There are several possibilities for future development. For the Automatic Transmission model,
noise can be introduced to the system through the sensors and actuators. We can also modify
the model to support semiautomatic gear shift instead of fully automatic. This would add the
gear setting as part of the input search space. Another possibility is to introduce a hybrid
drivetrain. In either case, the temporal logic requirements will become more complicated. For
the Fault-Tolerant Fuel Control model, the arrival of faults could be optionally modeled with
other stochastic processes. Also, the engine nominal speed and throttle command could be
added to the input search space. The current properties for this system are on the output
behavior: they describe the permissible changes in the fuel flow rate and the fuel-to-air ratio.
It will be interesting and more challenging to examine ‘white-box’ properties that describe
permissible tolerances during fault recovery: i.e., in case of one sensor failure, what transients
are allowed? In case of two sensor failures, what is a graceful degradation to engine shutdown?

Acknowledgments. This work was partially funded under NSF awards CNS 1116136,
CNS 1319560. We would also like to thank Adel Dokhanchi for his help with the robustness
computations.

A Appendix

Both benchmarks are available through our Matlab Toolbox S-TaLiRo [1], available at https:
//sites.google.com/a/asu.edu/s-taliro/s-taliro under the bechmarks/ARCH2014 sub-
folder. They can be simulated out-of-the box, and demo programs are provided to illustrate
how to define properties for them and how to falsify them.

The following is the list of modifications made to both models: for the automatic trans-
mission, we added inputs for the throttle and brake schedule, and outputs for the vehicle and
engine speed and the transmission gear. For the fault-tolerant fuel control system, we added an
input for the throttle angle, and three separate Poisson processes to model the arrival of faults,
with arrival rates inversely proportional to the throttle angle. We also added outputs for the
fuel-flow rate and the air-to-fuel ratio.

References

[1] Yashwanth Singh Rahul Annapureddy, Che Liu, Georgios E. Fainekos, and Sriram
Sankaranarayanan. S-taliro: A tool for temporal logic falsification for hybrid systems. In Tools
and algorithms for the construction and analysis of systems, volume 6605 of LNCS, pages
254–257. Springer, 2011.

[2] Georgios Fainekos, Sriram Sankaranarayanan, Koichi Ueda, and Hakan Yazarel. Verification of
automotive control applications using s-taliro. In Proceedings of the American Control
Conference, 2012.

[3] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. Spaceex: Scalable verification of
hybrid systems. In Proceedings of the 23d CAV, 2011.

[4] Xiaoqing Jin, Alexandre Donzé, Jyotirmoy V Deshmukh, and Sanjit A Seshia. Mining
requirements from closed-loop control models. In Proceedings of the 16th international conference
on Hybrid systems: computation and control, pages 43–52. ACM, 2013.

29

https://sites.google.com/a/asu.edu/s-taliro/s-taliro
https://sites.google.com/a/asu.edu/s-taliro/s-taliro

Benchmarks for Temporal Logic Requirements for Automotive Systems Hoxha et al.

[5] Mathworks. http://www.mathworks.com/videos/

modeling-an-automatic-transmission-and-controller-68823.html.

[6] Mathworks. http://www.mathworks.com/products/demos/stateflow/fuelsys.html.

[7] Hengyi Yang, Bardh Hoxha, and Georgios Fainekos. Querying parametric temporal logic
properties on embedded systems. In Testing Software and Systems, pages 136–151. Springer, 2012.

[8] Qianchuan Zhao, Bruce H. Krogh, and Paul Hubbard. Generating test inputs for embedded
control systems. IEEE Control Systems Magazine, August:49–57, 2003.

[9] Paolo Zuliani, André Platzer, and Edmund M. Clarke. Bayesian statistical model checking with
application to simulink/stateflow verification. In 13th ACM International Conference on Hybrid
Systems: Computation and Control, pages 243–252, 2010.

30

http://www.mathworks.com/videos/modeling-an-automatic-transmission-and-controller-68823.html
http://www.mathworks.com/videos/modeling-an-automatic-transmission-and-controller-68823.html
http://www.mathworks.com/products/demos/stateflow/fuelsys.html

	Context and Origins
	Brief description
	Formal specifications
	Outlook
	Appendix

