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Abstract 

This work presents the classification of functional near-infrared spectroscopy 

(fNIRS) signals as a tool for prediction of epileptic seizures. The implementation of 

epilepsy prediction is accomplished by using two classifiers, namely a Support Vector 

Machine (SVM) for EEG-based prediction and a Convolutional Neural Network (CNN) 

for fNIRS-based prediction. Performance was measured by computing the Positive 

Predictive Value (PPV) and the Accuracy of a classifier within a 5-minute window 

adjacent and previous to the start of the seizure. The objectives of this research are to 

show that fNIRS-based epileptic seizure prediction yields results that are superior to those 

based on EEG and to show how deep learning is applied to the solution of this problem. 

1 Introduction 

The prediction of epileptic seizures consists in detecting the future occurrence of a seizure by 

analyzing the brain signals from an epileptic patient. These signals are characterized by four behavioral 

patterns or phases at different time intervals, ictal phase, pre-ictal phase, post-ictal phase, and inter-

ictal phase. The ictal phase takes place when an epileptic seizure occurs; the pre-ictal phase is the 

behavioral pattern that happens before a seizure; the post-ictal phase follows a seizure, and the inter-

ictal is the signal segment between the end of post-ictal and the start of pre-ictal. In this study, the post-

ictal phase is considered as part of the inter-ictal phase, and an epileptic seizure is predicted when the 

pre-ictal phase is detected [14]. Most works for seizure prediction have widely used 

electroencephalogram (EEG) signals because of their capability to monitor electrical activity of the 

brain [24] and the portability of devices for recording of EEG signals [3]. Nonetheless, there are 

disadvantages associated with EEG signals [11], such as background noise and artifacts from eye 

movements and muscle activity [12]. 
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Functional Near Infrared Spectroscopy (fNIRS) is a new optical modality to collect information 

regarding brain activity [17]. In fNIRS, near-infrared light is injected into the scalp and the reflected 

light intensity is registered with optodes. The absorption spectrum of hemoglobin depends on the level 

of blood oxygenation. By using the fNIRS technique, the relative level of oxygenated hemoglobin 

(HbO) and deoxygenated hemoglobin (HbR) are measured and monitored, and these two parameters 

are related to brain activity [16, 20]. fNIRS recordings arise from hundreds of channels, where HbO 

and HbR values are registered at each channel. Although fNIRS signals have been used to study others 

aspects of epilepsy [6], these signals have not yet been fully studied in depth as a tool for seizure 

detection or prediction [7]. Another challenge faced when working on fNIRS-based epileptic seizure 

prediction is that there are not public datasets related to fNIRS from epileptic patients.  

The proposed approach for epileptic seizure prediction consists of two stages: (1) extraction of a 

feature vector (one-dimensional structure) or tensor (three-dimensional structure) from the signal of 

interest; and (2) classification of the extracted features as ictal, inter-ictal or pre-ictal. An epileptic 

seizure is predicted when the pre-ictal phase is detected. A feature vector is used to store up to 19 EEG 

channel values at a particular time position. On the other hand, the format for fNIRS consists of a three-

dimensional structure, since these signals are recorded from multiple channels (rows), at multiple time 

positions (columns), by using two different measures (feature maps or planes), HbO and HbR.  

Synchronous extraction of fNIRS and EEG is of interest because of the absence of electro-optical 

interference, and their simple integration. Integrated synchronous measurements of EEG and fNIRS 

have been performed on epileptic patients [12, 24] to assess the usefulness of fNIRS in epileptic patients 

focused on the hemodynamic mechanisms before, during, and after seizures at different time scales and 

brain locations [22].  

This document is organized as follows: Section 2 gives details of the methodology followed in this 

research. The results of this work are presented and discussed in Section 3. Finally, conclusions are 

given in Section 4. 

2 Methodology 

2.1 Dataset 

 

The used dataset was the result of recording EEG and fNIRS signals from five patients with focal 

refractory epilepsy. These recordings were performed and analyzed by epileptologists from Hôopital 

Notre-Dame du Centre Hospitalier de l’Université de Montréal. This dataset has been already used for 

the study of inter-ictal epileptiform discharges [20, 17, 15, 18, 20]. Table 1 shows the information of 

the five patients during the recording sessions. A detailed description of the EEG-fNIRS recording 

process can be found in Peng et al. (2014) and Nguyen et al. (2012) [18, 15]. EEG signals were sampled 

at 500 Hz with a Neuroscan Synamps 2TM system (Compumedics, U. S. A.). The fNIRS signals were 

recorded simultaneously using an optical multi-channel Imagent Tissue Oximeter (ISS Inc., Champaign, 

IL, U.S.A.). Multiple fNIRS channels (115 ± 39 channels per subject) were used in each patient. An 

optical channel consisted of one source and one detector that could receive several sources. A 

wavelength at 690 nm was used for HbR; and the other, at 830 nm, was used for HbO. fNIRS channels 

were sampled at a frequency of 19.5312 Hz. Seizure events were labeled online, on the EEG trace of 

an Analyzer 2.0 (Brain Products GmbH, Germany), by a neurophysiologist and reviewed by an 

epileptologist. HbR and HbO concentration changes were computed from light intensity by using the 

modified Beer-Lambert Law [4].  
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Patient fNIRS 

Channels 

Recording 

Sessions 

Epileptic 

Seizures 

Recording 

Time in min. 

1 146 12 1 170.49 

2 133 6 4 83.88 

3 104 1 1 11.28 

4 138 2 5 30.76 

5 135 4 11 61.28 

Table 1: Information of the patients whose recordings integrate the dataset. 

 

2.2 Pre-processing, Synchronization and Normalization of Signals 

 

To suppress noise, mainly from motion artifacts, amplitude values greater than the mean value by 

three standard deviations were removed. Low-pass filtering was applied with an SPM8 canonical 

hemodynamic response function and with a 4s full width at half maximum, which corresponds to 0.6 

Hz cutoff frequency [26]. Furthermore, a fourth-order IIR Butterworth highpass filter, with cutoff 

frequency at 0.01 Hz, was also used [8]. EEG and fNIRS signals were simultaneously acquired; 

however, they were sampled at different frequencies: 19 EEG channels were sampled at 500 Hz, while 

fNIRS channels were sampled at 19.5312 Hz. The ictal phase was labeled by the epileptologist within 

the ground truth for the EEG signals, while labeling of the ictal phase within fNIRS signals was 

achieved by matching the number of fNIRS samples to the number of EEG samples with linear 

interpolation. Another result of interpolating fNIRS samples was the synthesis of fNIRS data. Signals, 

from different channels, were normalized according to ������ =
�	�
���	


	
, where ����� is the signal at the 

ith channel, µ� is the mean value at the ith channel, and �� is the corresponding standard deviation. 

 

2.3 Feature Extraction from Brain Signals 

 

A feature vector � ∈ ℛ�is extracted by collecting the amplitude values from all the � EEG channels 

at one time-position �. These values were arranged as a column array � = [�����, �����, … �����]�. For 

the case of fNIRS channels, a three-dimensional tensor � ∈ ℛ�×�×�
 is extracted from � channels (146 

rows for patient 1 and 133 rows for patient 2),   time positions �, � − 1, � − 2, …, � −  + 1 (125 

columns), and two measures (two planes). Each plane corresponds to one measurement, HbO or HbR. 

HbO and HbR readings take place at each optode, and these values are assigned tensor entries with the 

same row (channel), same column (time position), and different plane. Since HbO and HbR values are 

measured at the same position from the same optode, there is a spatial correlation between these two 

values, which is preserved within the tensor structure. 

In this study, the elapsed time of a feature vector depends on the sampling frequency (500 Hz) and 

it is equal to 
� %&�'()

*++ ,-
 = 2 ms, while the elapsed time of the tensor is 

��* %&�'()%

*++ ,-
 = 250 ms. Since the 

number of channels (tensor rows) is different for each patient, a different CNN architecture is built for 

each patient. 

A feature vector or a tensor is assigned a class depending on the phase (ictal, pre-ictal, inter-ictal) 

where it is positioned. In this study, the pre-ictal phase is a five-minute segment previous and adjacent 

to the ictal phase. The number of samples within a pre-ictal phase is 500 
%&�'()%

%)./�0
× 60

%)./�0%

���3
)
×

5  5�6�78 = 150,000 89 :;78. In this study, the time length of the pre-ictal phase is chosen arbitrarily 

since there is no convention on the total length of a pre-ictal phase [9]. 
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2.4 Classification 

 

Two classification techniques were used to detect the pre-ictal phase, the phase previous to the 

seizure. Epileptic seizure prediction is performed by doing pre-ictal phase detection. A Support Vector 

Machine (SVM) was used to classify feature vectors extracted from EEG signals, while a Convolutional 

Neural Network (CNN) was used for classification of tensors extracted from fNIRS signals. A 

justification for these classification choices is that EEG features are extracted from few electrical 

channels while fNIRS features arise from hundreds of optical channels and two measurement types 

(HbO and HbR), which makes a tensor an appropriate structure for classification. 

The Support Vector Machine (SVM) is a classifier, which is geometrically represented by a hyper-

plane, which is the furthest away from each class after training this classifier with labeled data. In this 

study, the SVM consisted of a Gaussian Kernel function, with (1) three output nodes corresponding to 

the three different phases (pre-ictal, ictal, inter-ictal), and (2) 19 input nodes. The kernel for this 

classifier (fine Gaussian) was chosen because it is known to give the best results for non-linearly-

separable problems, at the cost of more complexity. 

Fig. 1 shows the implementation of a Convolutional Neural Network (CNN) for classification of a 

tensor, which contains HbO and HbR measurements. The input tensor dimensions were 125 time 

positions, 2 planes, and 146 channels for patient 1 or 133 channels for patient 2. The tensor dimensions 

were reduced during processing at the subsequent convolutional layers because of pooling. After the 

first convolutional layer, the tensor dimensions were 41 columns, 2 planes, and 48 rows for patient 1 or 

44 rows for patient 2. The tensor height and width were reduced because of the use of a 3 × 3 pooling 

kernel. The tensor dimensions after the third layer were 4 columns, one plane, and 5 rows for patient 1 

or 4 rows for patient 2. This tensor was unfolded to generate a 16- or 20- feature vector, which is fed to 

a 50-neuron hidden classification layer. 

 
Figure 1: CNN architecture for tensors with HbO and HbR measurements extracted from patient 2. 

 

The size of the set for training and testing a CNN, depends on the number of seizures during 

recordings and the sampling frequency. For the patient 1, who was diagnosed as having one single 

seizure during recordings, the number of ictal samples is seizures × pre-ictal window × sampling rate 

= 1 seizure × 300 seconds × 500 samples per second = 150,000 pre-ictal samples. Since the number 

of pre-ictal instances matches the number of inter-ictal, and ictal instances; the final set is not biased to 

one particular class and it contains 450,000 observations. This set size is suitable for training of a CNN. 
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2.5 Training and Testing Sets 

 

The set is randomly divided into 5 equal-sized subsets or folds to run 5 cross-validation processes. 

Each fold includes feature vectors which might come from any phase, (ictal, inter-ictal, pre-ictal). At 

each one of the 5 processes, 4 different folds are used to train the classifier while the left one is used to 

test the performance of the trained model. This process results in five estimates of a performance metric. 

The total estimate is computed by averaging these values. 

 

2.6 Performance Metrics 

 

In this study, we are reporting performance using accuracy. The accuracy is the percentage of 

detected events which are real. 

<== =  
�>? + >@� × 100

>? + >@ + A? + A@
 

(1) 

 

We also reporting the performance of the pre-ictal detector through the Positive Predictive Value 

(PPV). PPV is a metric that takes into account the prevalence of samples of different classes and can be 

computed according to: 

??B =  
>? × 100

>? + A?
 

 

(2) 

 

where True Positives (TP) represent the number of times that an instance, of the class of interest, is 

correctly classified; while False Positives (FP) indicate the number of times that a classifier incorrectly 

identifies an instance of a different class as one of the class of interest. 

3 Results 

Fig. 2 shows an HbO signal, which includes the three phases: ictal in green, pre-ictal in red, and 

inter-ictal in blue. The amplitude of the signal is specified as the hemoglobin variation percentage, 

assuming a typical baseline of 75 CM for HbO signal and 25 CM for HbR [2]. An epileptic seizure is 

predicted when the corresponding pre-ictal phase (in red) is detected. 

 
Figure 2: Segment of an HbO signal, extracted from an epileptic patient, showing three states, ictal, inter-

ictal and pre-ictal 
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For each patient, EEG and fNIRS recordings were acquired simultaneously to compare seizure 

prediction based on fNIRS with that based on EEG. For each patient, feature vectors are extracted from 

EEG recordings and three-dimensional tensors were extracted from fNIRS (HbO and HbR 

measurements) for epileptic seizure prediction within a five-minute pre-ictal interval before the ictal 

phase, with performance results shown in Table 2. Because of the small number of EEG channels, these 

features were stored in vectors and a Support Vector Machine (SVM) was used for classification. The 

performance of seizure prediction, when HbO and HbR are jointly used, is higher than that obtained by 

using only single reading, HbO or HbR. The HbO-HbR (fNIRS) integration allows higher prediction 

rates since this combination allows convolutional layers to extract more relevant features, which 

provides spatial and temporal interaction. Both measurements are extracted at the same scalp position. 

 

Patient Performance 

metric 

EEG fNIRS 

1 
PPV 95.8 100 

ACC 95.5 100 

2 
PPV 96 100 

ACC 95.2 100 

3 
PPV 87 100 

ACC 90 100 

4 
PPV 98 99.51 

ACC 97.1 98.33 

5 
PPV 96 100 

ACC 96 100 
Table 2: Performance metrics of the seizure predictor for all patients 

According to Table 2, fNIRS-based seizure prediction yields results that are superior to those of 

methods based on EEG. Seizure prediction is effectively achieved within a five-minute pre-ictal 

segment. Thus, there is enough time to take precautions before a seizure occurs. 

The computational time during real-time prediction is low since the number of convolutional layers 

is low. The proposed method predicts seizure activity by analyzing signal segments of 0.25 seconds, 

while other works consider seizure detection by analyzing signal segments of 2 seconds [19], 2.5 

seconds [21], 4-12 seconds [10], 4 seconds [13], 5 seconds [5], 8 seconds [23], 16 seconds [28][25], 

23.6 seconds [1]. One advantage of the proposed method is that the observation segment is of very short 

duration when compared with other methods, which allows for a very large number of observations in 

the training set. 

Although some public EEG datasets are characterized by a larger recording time than that of the 

fNIRS dataset that we used, the number of training observations is smaller: 705 8-second ictal segments 

[23], 2359 4-second ictal segments and 69753 4-second inter-ictal segments [13], 5400 inter-ictal 16-

second segments and 240 ictal segments [25], 100 ictal segments and 100 inter-ictal 23.6-second 

segments [1, 26]. 

4 Conclusions 

This study gives evidence of the effectiveness of fNIRS signals for detection of the pre-ictal state. 

Moreover, this work demonstrates that fNIRS recordings outperform EEG recordings, the current 

standard for seizure detection and prediction. The motivation for applying CNNs to fNIRS data is the 

spatial correlation between HbO and HbR values, both measured at the same scalp position, which is 
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maintained within a three-dimensional tensor. A disadvantage of the application of CNNs to fNIRS 

recordings is the high computational time during CNN training in a MATLAB implementation. 
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