
Complexity of LTL Model-Checking

for Safe Object Nets

Michael Köhler-Bußmeier and Frank Heitmann
University of Hamburg, Department for Informatics

Vogt-Kölln-Straße 30, D-22527 Hamburg
koehler,heitmann@informatik.uni-hamburg.de

Abstract

In this paper we present recently obtained results from [14] concerning the complexity of
LTL model checking of safe Elementary Object Nets (Eos) in a novel and more algorithmic
oriented way.

Object nets are Petri nets which have Petri nets as tokens – an approach known as the
nets-within-nets paradigm. Object nets are called elementary if the net system has a two
levelled structure. Due to these two modelling levels object nets are very suited to model
the mobility of e.g. active objects or agents. The well known p/t nets can be viewed as a
special case of Eos.

For p/t nets the concept of safeness means that there is at most one token on each place.
Since object nets have nested markings there are different possibilities to generalise this
idea for Eos. In this paper we concentrate on the variant of Eos safeness that guarantees
the finiteness of state spaces and show that for safe Eos the LTL model checking problem
is PSpace-complete.

1 Model Checking for Object Nets

In the following we investigate the analysis of object nets using temporal logics. Object nets are
Petri nets which have Petri nets as tokens – an approach which is called the nets-within-nets
paradigm, proposed by Valk [22, 24] for a two levelled structure and generalised in [11, 12]
for arbitrary nesting structures.1 The Petri nets that are used as tokens are called net-tokens.
Net-tokens are tokens with internal structure and inner activity. Due to these two modelling
levels object nets are very suited to model the mobility of active objects or agents (cf. [9] and
[10]).

In [12, 8] we studied decidability properties of unbounded object nets. In this paper we
repeat very recent results from [14] concerning bounded object nets and present them in a
novel way. In particular we repeat the formalism of (safe) elementary object nets and sharpen
the definitions in some points. We then prove that checking if a safe Eos satisfies a property
expressed in LTL is PSpace-complete. This was first proved in [14]. We recapitulate the proof
here, but take a more algorithmic oriented point of view and thus make the proof more elegant
and easier to follow in several places. Throughout this paper we stress the relevance of the
presented modelling formalism for the modelling of mobile objects and agents.

The paper has the following structure: In Section 2 elementary object systems (Eos) are
defined. In section 3 safe Eos are defined and in section 4 we discuss the complexity of LTL
model checking these nets. The paper ends with a conclusion.

In the following we assume basic knowledge of Petri nets, see e.g. [20].

1Related approaches dealing with nesting and Petri nets are object nets [23], recursive nets [4], nested
nets [17], PN2 [5], MOB nets [15], hypernets [1], Mobile Systems [16], AHO systems [6], adaptive workflow
nets [18], and Hornets [13].

Berndt Farwer (ed.); LAM’10; Volume 1, issue: 1, pp. 37–51 37

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

2 Elementary Object Systems

An elementary object system (Eos) is composed of a system net, which is a p/t net N̂ =

(P̂ , T̂ ,pre,post) and a set of object nets N = {N1, . . . , Nn}, which are p/t nets given as
N = (PN , TN ,preN ,postN). We assume that all sets of nodes (places and transitions) are

pairwise disjoint. Moreover we have N̂ 6∈ N and we assume the existence of the object net
• ∈ N which has no places and no transitions and is used to model anonymous, so called black
tokens.

Figure 1 shows an example, which will be explained in detail in example 2.2 and 2.4 below.
One may imagine the object nets (the nets which reside on places of the system net) to model
mobile agents with internal structure and activity, while the system net models the environment
in which the agents act and interact.

Figure 1: An object net

The system net places are typed by the mapping d : P̂ → N with the meaning, that the
place p̂ of the system net contains net-tokens of the object net type N if d(p̂) = N .2 No place

of the system net is mapped to the system net itself, since N̂ 6∈ N .

Since the tokens of an Eos are instances of object nets a marking µ ∈ M of an Eos OS is

a nested multiset. A marking of an Eos OS is denoted µ =
∑|µ|
k=1(p̂k,Mk) where p̂k is a place

in the system net and Mk is the marking of the net-token of type d(p̂k). To emphasise the

nesting, markings are also denoted as µ =
∑|µ|
k=1 p̂k[Mk]. Tokens of the form p̂[0] and d(p̂) = •

are abbreviated as p̂[].

The set of all markings which are syntactically consistent with the typing d is denoted M
(Here d−1(N) ⊆ P̂ is the set of system net places of the type N):

M := MS
(⋃
N∈N

(
d−1(N)×MS (PN)

))
(1)

The transitions in an Eos are labelled with synchronisation channels. We assume a fixed
set of channels C, including the channel ε which is used to describe the absence of any “real”
channel. Each transition of the system net has one label for each object, defined by the labelling
function function l̂ : T̂ → (N → C). Each transition of an object net N has one single label,

2In the following the terms (marked) object net and net-token are used almost interchangeable. We use the
term net-token whenever we like to emphasise the aspect that the marked object net is a token of the system
net.

38

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

defined by the labelling function function lN : TN → C.3

A system event is generated by transitions with matching labels. The labelling allows three
cases of events:

1. System-autonomous firing: Whenever l̂(t̂)(N) = ε holds for all N ∈ N , the system net
transition t̂ fires autonomously.

2. Synchronised firing: There is at least one object net that has to be synchronised, i.e.
there is a N such that l̂(t̂)(N) 6= ε.

3. Object-autonomous firing: An object net N ’s transition t fires autonomously whenever
lN (t) = ε.

These three kinds of events can be reduced to the case of a synchronisation where a system
net transition has exactly one synchronisation partner in each object net. This normal form is
obtained by adding some idle transitions: For each object net N ∈ N we add the idle-transitions
εN with preN (εN) = postN (εN) = 0 to its transition set. For object-autonomous events we

also add the set of idle transitions εP̂ := {εp̂ | p̂ ∈ P̂} with pre(εp̂) = post(εp̂) = p̂ to the set

of system net transitions. We extend the labelling to idle transitions by l̂(εp̂)(N) = lN (εN) = ε

for all p̂ ∈ P̂ and N ∈ N .
With these idle transitions the channel ε (which means “no synchronisation”) is modelled

as a synchronisation with an idle transition that has no effect.
The synchronisation labelling generates the set of system events Θ. An event is a pair –

denoted τ̂ [θ] in the following. Here, τ̂ is either a real transition t̂ or εp̂ for some p̂; θ maps each
object net to one of its transitions. An event has the meaning that the system net transition τ̂
fires synchronously with all the object net transitions θ(N), N ∈ N .

A special case for the mapping θ is the idle map εN which is defined εN (N) = εN for all
N ∈ N .

All events are generated from the labels: l̂(τ̂)(N) = lN (θ(N)) must hold for all N ∈ N .
Whenever τ̂ is an idle transition εp̂ ∈ εP̂ we also demand that θ(N) is the idle event εN except
for exactly one object net N (which is the object-autonomous event), i.e. |{N ∈ N : θ(N) 6=
εN}| = 1 holds.

Θl :=
{
τ̂ [θ] | ∀N ∈ N : l̂(t̂)(N) = lN (θ(N)) ∧

τ̂ ∈ εP̂ =⇒ |{N ∈ N : θ(N) 6= εN}| = 1
} (2)

Definition 2.1 (EOS). An elementary object system (Eos) is a tuple OS = (N̂ ,N , d,Θl) such
that:

1. N̂ is a p/t net, called the system net.

2. N is a finite set of disjoint p/t nets, called object nets.

3. d : P̂ → N is the typing of the system net places.

4. Θl is the set of events generated from the labelling l = (l̂, (lN)N∈N).

An Eos with initial marking is a tuple OS = (N̂ ,N , d,Θl, µ0) where µ0 ∈ M is the initial
marking.

3In the graphical representation the synchronisation labelling is defined by transition inscriptions in the form
〈N1 : l̂(t̂)(N1), . . .〉 in the system net and in the form 〈: lN (t)〉 in the object nets (ε is omitted).

39

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

Example 2.2. Figure 1 shows an Eos with the system net N̂ and the object nets N = {N1, N2}.
The system net is given as N̂ = (P̂ , T̂ ,pre,post) with P̂ = {p1, . . . , p6} and T̂ = {t}. The
first object net is N1 = (P1, T1,pre1,post1) with P1 = {a1, b1} and T1 = {t1}. The second
object net is N2 = (P2, T2,pre2,post2) with P2 = {a2, b2, c2} and T2 = {t2}. The typing is
d(p1) = d(p2) = d(p4) = N1 and d(p3) = d(p5) = d(p6) = N2. The labelling function of the

system net l̂ is defined by l̂(t)(N1) = c1 and l̂(t)(N2) = c2. The labelling lN1
of the first object

net is defined by setting lN1
(t1) = c1. Similarily, lN2

is defined by lN2
(t2) = c2. There is only

one synchronous event: Θl = {t[N1 7→ t1, N2 7→ t2]}. The initial marking has two net-tokens
on p1, one on p2, and one on p3:

µ = p1[a1 + b1] + p1[0] + p2[a1] + p3[a2 + b2]

Note that in figure 1 the structure of the three net-tokens is the same on p1 and p2 but the net-
tokens’ markings are different. Note also that the object nets may be viewed as models of mobile
agents with internal activity. The system net then models the environment.4 In example 2.5
below a mobile agent, which resides in a slightly more sophisticated environment, is presented.
�

We name special properties of Eos: An Eos is p/t-like iff it has only places for black tokens:

d(P̂) = {•}. An Eos is a generalised state machine (GSM) iff for all t̂ there is either exactly
one place in the preset and one in the postset typed with the same object net N or there are
no such places:

∀N ∈ N : ∀t̂ ∈ T̂ :
∣∣{p̂ ∈ •t̂ | d(p̂) = N}

∣∣ =
∣∣{p̂ ∈ t̂• | d(p̂) = N}

∣∣ ≤ 1 (3)

and the inital marking has at most one net-token of each type:

∀N ∈ N :
∑

p̂∈P̂ ,d(p̂)=N
Π1(µ0)(p̂) ≤ 1 (4)

Obviously each p/t-like Eos is a GSM since d(p̂) = • for all p̂.

2.1 Projections and Firing Rule

Firing a system event τ̂ [θ] ∈ Θl removes net-tokens together with their individual internal
markings. A nested multiset λ ∈ M that is part of the current marking µ, i.e. λ ≤ µ, is
replaced by a nested multiset ρ.

Let µ =
∑|µ|
k=1(p̂k,Mk) be a marking of an Eos. To formalize the firing rule we need to in-

troduce projections. The projection Π1 on the first component abstracts away the substructure
of all net-tokens:

Π1

(∑|µ|

k=1
p̂k[Mk]

)
:=
∑|µ|

k=1
p̂k (5)

The projection Π2
N on the second component is the abstract marking of all net-tokens of

the type N ∈ N ignoring their local distribution within the system net:

Π2
N

(∑|µ|

k=1
p̂k[Mk]

)
:=
∑|µ|

k=1
1N (p̂k) ·Mk (6)

4Since we only have one system net transition, the system net in figure 1 should be viewed as an excerpt of
a larger system net only.

40

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

where the indicator function 1N : P̂ → {0, 1} is given by 1N (p̂) = 1 iff d(p̂) = N . Note that
Π2
N (µ) results in an marking of the object net N .

The enabling condition is expressed by the enabling predicate φOS (or just φ whenever OS
is clear from the context):

φ(τ̂ [θ], λ, ρ) ⇐⇒ Π1(λ) = pre(τ̂) ∧Π1(ρ) = post(τ̂) ∧
∀N ∈ N : Π2

N (λ) ≥ preN (θ(N)) ∧
∀N ∈ N : Π2

N (ρ) = Π2
N (λ)− preN (θ(N)) + postN (θ(N))

(7)

With M̂ = Π1(λ) and M̂ ′ = Π1(ρ) as well as MN = Π2
N (λ) and M ′N = Π2

N (ρ) for all N ∈ N
the predicate φ has the following meaning:

1. The first conjunct expresses that the system net multiset M̂ corresponds to the pre-
condition of the system net transition τ̂ , i.e. M̂ = pre(τ̂).

2. In turn, a multiset M̂ ′ is produced, that corresponds to the post-set of τ̂ .

3. An object net transition tN is enabled if the combinationMN of the markings of net-tokens
of type N enables it, i.e. MN ≥ preN (θ(N)).

4. The firing of τ̂ [θ] must also obey the object marking distribution condition

M ′N = MN − preN (θ(N)) + postN (θ(N))

where postN (θ(N))− preN (θ(N)) is the effect of the object net’s transition on the net-
tokens.

Note that (1) and (2) assures that only net-tokens relevant for the firing are included in λ
and ρ. Conditions (3) and (4) allows for additonal tokens in the net-tokens.

For system-autonomous events τ̂ [εN] the enabling predicate φ can be simplified further. We
have preN (εN) = postN (εN) = 0. This ensures Π2

N (λ) = Π2
N (ρ), i.e. the sum of markings in

the copies of a net-token is preserved w.r.t. each type N . This condition ensures the existence
of linear invariance properties (cf. [12], Prop. 7).

Analogously, for an object-autonomous event we have an idle-transition τ̂ = εp̂ for the

system net and the first and the second conjunct is: Π1(λ) = pre(t̂) = p̂ = post(t̂) = Π1(ρ).
So, there is an addend λ = p̂[M] in µ with d(p̂) = N and M enables tN := θ(N).

Definition 2.3 (Firing Rule). Let OS be an Eos and µ, µ′ ∈ M markings. The event τ̂ [θ] is
enabled in µ for the mode (λ, ρ) ∈M2 iff λ ≤ µ ∧ φ(τ̂ [θ], λ, ρ) holds.

An event τ̂ [θ] that is enabled in µ for the mode (λ, ρ) can fire: µ
τ̂ [θ](λ,ρ)−−−−−→

OS
µ′. The resulting

successor marking is defined as µ′ = µ− λ+ ρ.

We write µ
τ̂ [θ]−−→
OS

µ′ whenever µ
τ̂ [θ](λ,ρ)−−−−−→

OS
µ′ for some mode (λ, ρ).

Example 2.4. Consider the Eos of figure 1 again. The current marking µ of the Eos enables
t[N1 7→ t1, N2 7→ t2] in the mode (λ, ρ) where

λ = p1[a1 + b1] + p2[a1] + p3[a2 + b2]
ρ = p4[a1 + b1 + b1] + p5[0] + p6[c2]

41

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

Figure 2: The EOS of figure 1 illustrating the projections Π2
N (λ) and Π2

N (ρ)

We have the current marking:

µ = p1[0] + p1[a1 + b1] + p2[a1] + p3[a2 + b2]︸ ︷︷ ︸
λ

= p1[0] + λ

The net-tokens’ markings are added by the projections Π2
N , resulting in the markings Π2

N (λ).
The sub-synchronisation generate Π2

N (ρ). (The results are shown above and below the transition
t.) After the synchronisation we obtain the successor marking on p4, p5, and p6 as shown in
figure 2:

µ′ = (µ− λ) + ρ = p1[0] + ρ
= p1[0] + p4[a1 + b1 + b1] + p5[0] + p6[c2]

Note that a different successor marking is possible: ρ′ = p4[a1 + b1 + b1] + p5[c2] + p6[0] would
also work, because we may distribute one object net’s tokens arbitrarily between all object nets
of this same type. Also note that (λ, ρ) is not the only mode that enables the above event. If we
take the other (empty) object net on place p1, we would still be able to fire. The transition t1
in the object net is still enabled due to the single token from the object net on p2.

Again interpreting the object nets as mobile agents and the system net as the environment,
the firing of transition t synchronously with transition t1 of object net N1 and t2 of object net
N2, may be viewed as an interaction of the two agents represented by the different object nets.
A object-autonomous event may then be viewed as an independent action of an agent, while a
system-autonomous event may either be viewed as something that happens in the environment
or as a movement of an agent. A synchronous event may be an interaction between several
agents as above, or it might be an interaction of one or several agents with the environment. �

Example 2.5. We now consider a mobile agent which moves from its home to the office where
it can execute two different tasks in parallel before he leaves for the city. The example system
shown in figure 3 can be expressed in rewriting logic [19]. The following specification is made in
Maude syntax. All operators for the system level are prefixed by “sn” and “on” for the object
net.

mod ONS is

42

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

Figure 3: A simple object net system

*** Nested Markings ***

sort Token-sys .

sorts Token-sn Marking-sn .

subsort Token-sn < Marking-sn .

op m-nil : -> Marking-sn .

op __ : Marking-sn Marking-sn -> Marking-sn [assoc comm id: m-nil] .

sorts Token-on Marking-on .

subsort Token-on < Marking-on .

op m-nil : -> Marking-on .

op __ : Marking-on Marking-on -> Marking-on [assoc comm id: m-nil] .

var M M1 M2 : Marking-on .

*** Net Tokens ***

sort ON .

op on : Marking-on -> ON .

sort SN .

op sn : Marking-sn -> SN .

*** Places and Channels ***

op s0 : SN -> Token-sys .

ops sn-home sn-office-in-1 sn-office-in-2

sn-office-out-1 sn-office-out-2 sn-city

sn-uptown sn-downtown : ON -> Token-sn .

ops on-init on-at-office on-idle : -> Token-on .

ops ch?! ch!? : -> Token-on .

*** Initial Marking ***

op Init-Marking : -> Token-sys .

eq Init-Marking = s0(sn(sn-home(on(on-init)))) .

43

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

*** Transitions ***

rl [sn-fork]: sn-home(on(M1 M2)) =>

sn-office-in-1(on(M1)) sn-office-in-2(on(M2)) .

crl [sn-sync]: sn-office-in-1(on(M1)) => sn-office-out-1(on(M2))

if ch?! M1 => ch!? M2 .

rl [on-sync]: ch?! on-init => ch!? on-idle .

rl [sn-move]: sn-office-in-2(on(M)) => sn-office-out-2(on(M)) .

rl [sn-join]: sn-office-out-1(on(M1)) sn-office-out-2(on(M2))

=> sn-city(on(M1 M2)) .

endm

This specification allows a rewriting sequence (i.e. firing sequence) resulting in the successor
marking s0(sn(sn-city(on(on-idle)))):

Maude> rew Init-Marking .

rewrites: 6 in 0ms cpu (5ms real) (~ rewrites/second)

result Token-sys: s0(sn(sn-city(on(on-idle))))

Maude>

Maude provides a generic LTL model checker [2]. The user only has to provide the basic
properties. For our example we define two properties: office2out and terminated. The first
proposition is true whenever the place sn-office-out-2 is marked and the second when the place
sn-city is marked.

var X : Marking-sn .

var M : Marking-on .

ops office2out terminated : -> Prop .

eq (s0(sn(X sn-office-out-2(on(M)))) |= office2out) = true .

eq (s0(sn(sn-city(on(M)))) |= terminated) = true .

ops phi1 phi2 : -> Prop .

eq phi1 = <> office2out .

eq phi2 = <> terminated .

In this specification we have the two LTL formulae φ1 and φ2. The formula phi1 = <>

office2out is the representation of φ1 = 3office2out, which expresses that the mobile agent
will sometimes be at the place sn-office-out-2. The satisfiability of the logical atoms is given
as equations:

eq (s0(sn(X sn-office-out-2(on(M)))) |= office2out) = true

Model-checking the state spaces reveals the correctness of φ1:

Maude> rew Init-Marking |= phi1 .

rewrite in CHECK : Init-Marking |= phi1 .

rewrites: 16 in 20ms cpu (32ms real) (800 rewrites/second)

result Bool: true

44

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

The formula phi2 = <> terminated (for φ2 = 3terminated) describes, together with the
equation

eq (s0(sn(sn-city(on(M)))) |= terminated) = true,

that the place sn-city will eventually be occupied by the mobile agent. It is maybe not obvious
at first sight that there is one trace which refutes the property: When firing the transition
fork the token on on-init might not be assigned to the object net on place sn-office-1-in

and therefore the synchronisation is disable. The model checking processes reveals this counter
example:

Maude> rew Init-Marking |= phi2 .

rewrite in CHECK : Init-Marking |= phi2 .

rewrites: 23 in 10ms cpu (28ms real) (2300 rewrites/second)

result ModelCheckResult: counterexample(

{s0(sn(sn-city(on(on-idle)))),’sn-fork}

{s0(sn(sn-office-in-1(on(m-nil))

sn-office-out-2(on(on-init)))),’sn-move},

{s0(sn(sn-office-in-1(on(m-nil))

sn-office-out-2(on(on-init)))),deadlock})

This example illustrates the potential of LTL model checking in the context of mobile agents
modelled with object nets. �

3 Boundedness and Safe Eos

Boundedness is the problem to decide whether there are only finitely many reachable markings.
A p/t net is called n-safe with n ∈ N if in every reachable marking there are at most n tokens
on each place: ∀m ∈ RS (m0) : ∀p ∈ P : m(p) ≤ n. A net that is n-safe for some n is also called
bounded. The following property is well-known for p/t nets.

Lemma 3.1. The set of reachable markings of a p/t net N is finite iff N is n-safe for some n.

Proof. If N is n-safe then |RS (m0)| ≤ (n+ 1)|P |. If the set of reachable markings is finite then
N is n-safe for n := max{m(p) | p ∈ P,m ∈ RS (m0)}.

A p/t net is called safe if it is 1-safe. Therefore, each reachable marking of a safe net is a
set and we have |RS (m0)| ≤ 2|P |, i.e. the number of subsets of P .

In the following we consider bounded object nets. Reachability is decidable whenever the
object nets are bounded. An Eos is N -bounded if Π2

N (µ) is bounded in each reachable marking
µ. An Eos is semi-bounded if it is bounded for all object nets N ∈ N . The reachability problem
is decidable for a semi-bounded Eos ([8], Thm. 3.4).

Note that it is possible that an Eos is N -bounded but N (considered as a p/t net in
isolation) is not bounded for the initial marking Π2

N (µ0). Any unbounded object net where
each transition is synchronised with a dead system net transition is an example.

In [14] we identified four different variants of safeness – named safe(1), safe(2), safe(3), and
safe(4) – where safe(i+1) implies safe(i), but not vice versa. On p/t-like Eos all these variants
coincide.

Definition 3.2. Let OS be an Eos.

• OS is safe(1) iff all reachable markings are sets.

∀µ ∈ RS (OS) : ∀p̂[M] : µ(p̂[M]) ≤ 1

45

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

• OS is safe(2) iff for all reachable markings there is most one token on each system net
place:

∀µ ∈ RS (OS) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1

• OS is safe(3) iff for all reachable markings there is most one token on each system net
place and each net-token is safe:

∀µ ∈ RS (OS) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1 ∧
∀N ∈ N : ∀p ∈ PN : ∀p̂[M] ≤ µ : M(p) ≤ 1

• OS is safe(4) iff for all reachable markings there is most one token on each place (w.r.t.
projections):

∀µ ∈ RS (OS) : ∀p̂ ∈ P̂ : Π1(µ)(p̂) ≤ 1 ∧
∀N ∈ N : ∀p ∈ PN : Π2

N (µ)(p) ≤ 1

We simply say that OS is a safe Eos if any of the above properties hold.

In the following we concentrate on the variant of safe(3) Eos, since it turned out that
reachability for safe(1) or safe(2) Eos is undecidable and an algorithm for the reachability
problem for safe(3) Eos will also work with safe(4) Eos. For generalised state machines safe(3)
is even equivalent to safe(4) (cf. [14]).

In contrast to p/t nets not all notions of safeness are equivalent to finiteness of the state
space: The state space of safe(1) or safe(2) Eos is infinite in the general case. Finiteness only
holds for safe(3) and safe(4) Eos:

Theorem 3.3 ([14]). If an Eos is safe(3) or safe(4) then its set of reachable markings is finite.

By Theorem 3.3 we know that (strongly) safe Eos have finite state spaces, but compared to
the state spaces of safe p/t nets they may become quite large: For 1-safe p/t nets it is known
that whenever there are n places, then the number of reachable states is bound by O(2n). In
the proof of Thm. 3.3 however, we have seen that whenever the number of places in the system
net and in all object nets is bound by n, then the number of reachable states is in O(2n

2

) – a
quite drastic increase. This combinatorical explosion makes it in general very hard to represent
the state space explicitly. In the following we characterise this kind of blow-up in complexity
theoretical terms.

4 Complexity of LTL Model Checking

It is a known fact that most interesting questions about the behaviour of classical 1-safe p/t
nets like liveness, deadlock-freedom, and reachability are Pspace-hard (see [3]). This follows
from the fact, first observed in [7], that a 1-safe p/t net of size O(n2) can simulate a linear
bounded automaton starting on an empty tape of size n. Since the net can furthermore be
constructed in polynomial time, hardness results concerning linear bounded automata carry
over to 1-safe p/t nets. From there they directly carry over to safe Eos, since 1-safe p/t nets
can be seen as a special kind of safe(4) Eos, which are also safe(3), safe(2), and safe(1). Thus
it is for instance Pspace-hard to decide reachability and liveness for safe Eos.

The more interesting question is therefore, if polynomial space suffices and, if so, devise
algorithms for these problems.

In [14] we showed that many problems on safe(3) and safe(4) Eos can be decided in polyno-
mial space. More explicitly we showed that Theorem 4.1 below holds. Among other problems

46

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

reachability can be expressed as an LTL formula and is thus Pspace-complete. Liveness can
not be expressed as an LTL formula and we will address the problem to decide liveness in the
outlook. Our construction in [14] is an adjustment of the construction given in [3] for 1-safe
p/t nets. In [14] we explicitly pointed out the similarities. Here we take a more algorithmic
oriented point of view, but we want to emphasize that the following result heavily relies on
ideas from [3] and also [25].

In the following we will uses LTL formulae to express a property like reachability with a
formula φ. A net is then said to satisfy φ if all its runs satisfy φ. A run of a net is just a
sequence of markings. To be able to express properties of a net with LTL formulas the set of
atomic propositions should be closely related to the markings. To achive this let p̂1, . . . , p̂n be
the system net’s places, let N1, . . . , Nn be the object nets with d(p̂i) = Ni for all i, and let
pNi,1, . . . , pNi,mi be the places of the object net Ni.

5 We now define

prop :=

 p̂1[], p̂1[pN1,1], . . . , p̂1[pN1,m1],
. . . ,
p̂n[], p̂n[pNn,1], . . . , p̂n[pNn,mn]


as the set of atomic propositions for the LTL formulae. A marking is a subset of prop and a
computation (resp. a run) is a sequence of subsets of prop. Here p̂1[pN1,1] + p̂2[] describes that
the object net N1 resides on the system net place p̂1 and that an empty object net of type N2

resides on the place p̂2. The place pN1,1 of the object net N1 is marked.6

In the following we want to show the following theorem:

Theorem 4.1. Given a safe(3) or safe(4) Eos N and an LTL formula φ checking whether N
satisfies φ can be done in polynomial space in the size of N and φ, that is, there is a polynomial
p independent of N and φ such that the algorithm uses O(p(|N |+ |φ|)) space.

Since reachability can be expressed as an LTL formula we have the following corollary:

Corrolary 4.2. The reachability problem for safe(3) and safe(4) Eos is Pspace-complete.

We need the following important result:

Theorem 4.3. Given an LTL formula φ, one can build a finite automaton Aφ and a Büchi
automaton Bφ such that L(Aφ)∪Lω(Bφ) is exactly the set of computations satisfying the formula
φ.

The proof of Theorem 4.3 exceeds the scope of this paper (see [3] and [25] for details). Here
it suffices to know the following two facts: First, the states of Aφ are sets of subformulae of φ
and the states of Bφ are pairs of sets of subformulae of φ, thus they both may have exponentially
many states in |φ| and must not be completly constructed if we want to prove Theorem 4.1
above. Yet note that a single state has polynomial size in |φ|. Second, given two states q1
and q2 of Aφ or Bφ and a marking µ (which is a symbol of the alphabet of Aφ resp. Bφ),
it is possible to decide in polynomial space (in |φ|) if a transition from q1 to q2 with label µ
exists. In what follows we will not need the automata Aφ and Bφ, but the automata A¬φ and

5Note that in general some places of the system net might be typed with the same object net. In that case
Ni = Nj for some i and j and also pNi,k = pNj ,k for all 1 ≤ k ≤ mi = mj .

6Note that with this interpretation some subsets of prop are useless. For example the set {p̂1[], p̂1[pN1,1]}
describes the same marking as {p̂1[pN1,1]}, namely that the net N1 resides on the place p̂1 and that its first
place is marked. This is only relevant for the given formula φ. In general, in a conjunction of the form
p̂i[]∧ p̂i[pNi,k]∧ . . . the conjunct p̂i[] can be deleted without loss. This is possible in time O(|φ|). If the formula
is correctly given in the first place, no further problems arise.

47

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

Algorithm 1 Checking A for nonemptiness

Var: q of type state of A¬φ
Var: µ of type state of AN

1: (q, µ)← (q0, µ0);
2: while (q, µ) is not a final state of A do

3: guess a state q′ of A¬φ with q
µ−−−→
A¬φ

q′

4: guess a marking µ′ and an event τ̂ [θ] with µ
τ̂ [θ]−−→
N

µ′

5: (q, µ)← (q′, µ′)
6: end while
7: return true

B¬φ instead. Below it will become clear why, but at first we will need two further automata,
AN and BN , obtained from the safe Eos N , whose set of states correspond to the reachable
markings of the net N . The initial state of AN and BN is the initial marking and the transition
relation δN (again the same for AN and BN) contains the triple (µ1, µ1, µ2) of markings if µ2

can be reached from µ1 via some event τ̂ [θ] ∈ Θ. Thus AN and BN correspond closely to the
reachability graph and indeed only differ from it in the edges’ labels. The set of final states of
AN is the set of deadlocked reachable markings of N and the set of final states of BN contains
all reachable markings of N , thus L(AN) is the set of all finite and Lω(BN) is the set of all
infinite runs of N . Note that AN and BN may have exponentially many states in |N | and we
again can not construct them completly.

We now define two automata A and B with the usual construction to be the product
automata of A¬φ and AN , resp. of B¬φ and BN . Then L(A) = L(A¬φ) ∩L(AN) and Lω(B) =
Lω(B¬φ)∩Lω(BN) holds7 and L(A)∪Lω(B) is the set of runs of N that do not satisfy φ. The
question whether N satisfies φ, i.e. if all of N ’s runs satisfy φ, is thus reduced to the question
if L(A) and Lω(B) are both empty.

To prove Theorem 4.1 we now devise a nondeterministic algorithm for the nonemptiness
problem of A and B. By Savitch’s Theorem [21] a deterministic algorithm follows, and by
reversing its answer we obtain the sought algorithm.

Apart from using nondeterminism we also make use of another trick: Since A and B may
have exponentially many states in |N | and |φ|, we construct them on the fly. We start with the
initial state as the current state (q, µ), repeatedly guess a next state (q′, µ′), check that (q′, µ′)
is indeed reachable from (q, µ) via some transition and, if so, update the current state. In the
case of A, we know that L(A) is nonempty, if we reach a final state. We thus return true in
this case. Algorihm 1 is outlined below and is only a minor modification from the algorithm
given in [3].

The case of B is only slightly more complicated. Since Lω(B) is nonemtpy if and only if
a final state is visited infinitly often, i.e. if there is a reachable final state q such that there is
a loop from q to itself, we proceed as in Algorithm 1 but if we reach a final state, we guess
that this final state will be revisited or not. This guess is then checked in a similar way as
Algorithm 1 checks for any final state. See [3] for details.

Why are these algorithms polynomial space algorithms (in |N | and |φ|)? At first we note
that only a constant number of states need to be saved and that the states of A¬φ (resp. B¬φ)

7In general it is not the case that the product of two Büchi automata accepts the intersection of the languages,
but it holds here.

48

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

and AN (BN) have polynomial size in |φ| and |N |.8 Since A and B have been constructed
with the product automata construction we actually need to check if a transition is possible
in A¬φ and AN to check if one is possible in A (and similar for B). For A¬φ (and B¬φ) this
follows from the construction of A¬φ which we have not shown here. (See for example [25].)
In the algorithm one only needs to store a state of A¬φ and a symbol of the alphabet (which
is a marking of N) of A¬φ. Then one can check similar to Algorithm 1 if a final state can be
reached. This can be done in polynomial space. See [25] for more details.

To check if a transition in AN or BN is possible, we need to check if, given two markings

µ, µ′ ∈M and an event τ̂ [θ] ∈ Θ, the relation µ
τ̂ [θ]−−→
N

µ′ holds.

For this we first check that τ̂ [θ] is indeed an event. Using the synchronisation labeling
this can easily be done in space polynomial in |N |, indeed we only need constant space for
this. Now we nondeterministicallys guess9 a mode (λ, ρ) ∈M2, which is in O(|N |2) and check
deterministically if the event τ̂ [θ] is enabled in µ for this mode, that is we check that λ ≤ µ
and φ(τ̂ [θ], λ, ρ) holds. This is both possible in polynomial space, where the former is obvious
and for the later we only need to compare partial markings of λ and ρ with the presets and
postsets of certain nets. At last we check that µ′ = µ − λ + ρ holds, which again is possible

in polynomial space. We thus have an algorithm to nondeterministically decide µ
τ̂ [θ]−−→
N

µ′ in

polynomial space. By Savitch’s Theorem [21] a deterministic algorithm follows.
Finally we need to be able to check if a state in A (resp. B) is a final state, that is we need

to check for final states in A¬φ, B¬φ, AN and BN . For A¬φ and B¬φ one by their definition
only needs to do some syntactic checks on the states, which are actually sets of subformulas of
φ. This is easily possible in polynomial space. To check for final states in BN is also simple,
since the set of final states of BN equals its set of states. At last to check if a state of AN is a
final state, we need to check if a marking µ of N , which is a state of AN , is a deadlock, that
is, we have to check that no event is enabled in µ. Above we have devised an algorithm which
given µ guesses µ′ and an event and then checks if µ′ is reachable from µ with this event, that
is the algorithm checks that µ is not a deadlock. Since this algorithm is deterministic we can
just reverse the answer and have an algorithm to check if µ is a deadlock.

Putting it all together we have proven Theorem 4.1.

5 Conclusion and Outlook

In this paper we discussed the concept of safeness for Elementary Object Nets (Eos). We have
shown that reachability is Pspace-complete for safe(3) and safe(4) Eos and that in fact every
property that can be expressed in LTL is decidable in Pspace for safe(3) and safe(4) Eos. We
also stressed the usefullness of Eos as a modelling tool for mobile objects or agents.

Not all interesting properties can be expressed in LTL, though, and liveness is a particularly
interesting example. Liveness can be expressed in CTL. However, CTL formulas need to be
treated differently than the LTL formulas discussed above. In [3] it is shown, that the model-
checking problem for CTL and 1-safe p/t nets is in Pspace, too. It seems to us that these
results, with slight modifications, carry over to safe(3) and safe(4) Eos, too. This and the
related case for safe(1) and safe(2) Eos will be further investigated in a forthcoming paper.

Appart from this a closer look at the LTL case might be interesting. The model checking
problem for many problems might indeed be far easier to solve than the general case presented

8To be more concrete: The states of Aφ and Bφ have size quadratic in |φ| and the states of AN and BN are
quadratic in |N |.

9Note that we have already guessed µ′ and τ̂ [θ], which also only have polynomial size in the size of the net.

49

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

here. Also the case for safe(4) Eos – even if Pspace-complete, too – might be algorithmically
easier to solve than the case for safe(3) Eos from a practitioners point of view. This might be
especially interesting with applications and therefore the need of an efficient implementation of
the LTL model checking algorithm above in mind.

References

[1] Marek A. Bednarczyk, Luca Bernardinello, Wieslaw Pawlowski, and Lucia Pomello. Modelling
mobility with Petri hypernets. In Josè Luiz Fiadeiro, Peter D. Mosses, and Fernando Orejas,
editors, Recent Trends in Algebraic Development Techniques (WADT 2004), volume 3423 of Lecture
Notes in Computer Science, pages 28–44. Springer-Verlag, 2004.

[2] Steven Eker, José Meseguer, and Ambarish Sridharanarayanan. The Maude LTL model checker.
In Electronic Notes in Theoretical Computer Science, volume 71. Elsevier, 2002.

[3] Javier Esparza. Decidability and complexity of petri net problems – an introduction. In Wolfgang
Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models, Advances in Petri
Nets, volume 1491 of Lecture Notes in Computer Science, pages 374–428. Springer-Verlag, 1998.

[4] Serge Haddad and Denis Poitrenaud. Theoretical aspects of recursive Petri nets. In S. Donatelli
and J. Kleijn, editors, Application and Theory of Petri Nets, volume 1639 of Lecture Notes in
Computer Science, pages 228–247. Springer-Verlag, 1999.

[5] Kunihiko Hiraishi. PN2: An elementary model for design and analysis of multi-agent systems. In
Farhad Arbab and Carolyn L. Talcott, editors, Coordination Models and Languages, COORDINA-
TION 2002, volume 2315 of Lecture Notes in Computer Science, pages 220–235. Springer-Verlag,
2002.

[6] Kathrin Hoffmann, Hartmut Ehrig, and Till Mossakowski. High-level nets with nets and rules as
tokens. In Application and Theory of Petri Nets and Other Models of Concurrency, volume 3536
of Lecture Notes in Computer Science, pages 268 – 288. Springer-Verlag, 2005.

[7] N. D. Jones, L. H. Landweber, and Y. E. Lien. Complexity of some problems in petri nets.
Theoretical Computer Science, 4:277–299, 1977.

[8] Michael Köhler. Reachable markings of object Petri nets. Fundamenta Informaticae, 79(3-4):401
– 413, 2007.

[9] Michael Köhler, Daniel Moldt, and Heiko Rölke. Modeling the behaviour of Petri net agents.
In J. M. Colom and M. Koutny, editors, Application and Theory of Petri Nets, volume 2075 of
Lecture Notes in Computer Science, pages 224–241. Springer-Verlag, 2001.

[10] Michael Köhler, Daniel Moldt, and Heiko Rölke. Modelling mobility and mobile agents using nets
within nets. In W. v. d. Aalst and E. Best, editors, Application and Theory of Petri Nets, volume
2679 of Lecture Notes in Computer Science, pages 121–140. Springer-Verlag, 2003.

[11] Michael Köhler and Heiko Rölke. Concurrency for mobile object-net systems. Fundamenta Infor-
maticae, 54(2-3), 2003.

[12] Michael Köhler and Heiko Rölke. Properties of Object Petri Nets. In J. Cortadella and W. Reisig,
editors, Application and Theory of Petri Nets, volume 3099 of Lecture Notes in Computer Science,
pages 278–297. Springer-Verlag, 2004.

[13] Michael Köhler-Bußmeier. Hornets: Nets within nets combined with net algebra. In Karsten Wolf
and Giuliana Franceschinis, editors, Application and Theory of Petri Nets, volume 5606 of Lecture
Notes in Computer Science, pages 243–262. Springer-Verlag, 2009.

[14] Michael Köhler-Bußmeier and Frank Heitmann. Safeness for object nets. Fundamenta Informati-
cae, 2010. To appear.

[15] Olaf Kummer, Roxana Dietze, and Manfred Kudlek. Decidability problems of a basic class of
object nets. Fundamenta Informaticae, 79(3-4):295–302, 2008.

50

LTL Model-Checking for Safe Eos M. Köhler-Bußmeier and F. Heitmann

[16] Charles Lakos. A Petri net view of mobility. In Formal Techniques for Networked and Distributed
Systems (FORTE 2005), volume 3731 of Lecture Notes in Computer Science, pages 174–188. Sprin-
ger-Verlag, 2005.

[17] Irina A. Lomazova. Nested Petri nets – a formalism for specification of multi-agent distributed
systems. Fundamenta Informaticae, 43(1-4):195–214, 2000.

[18] Irina A. Lomazova, Kees M. van Hee, Olivia Oanea, Alexander Serebrenik, Natalia Sidorova, and
Marc Voorhoeve. Nested nets for adaptive systems. In Application and Theory of Petri Nets and
Other Models of Concurrency, Lecture Notes in Computer Science, pages 241–260. Springer-Verlag,
2006.

[19] José Meseguer. Conditional rewriting logic as a unified model of concurrency. Theoretical Computer
Science, 96:73–155, 1992.

[20] Wolfgang Reisig and Grzegorz Rozenberg, editors. Lectures on Petri Nets I: Basic Models, volume
1491 of Lecture Notes in Computer Science. Springer-Verlag, 1998.

[21] W.J. Savitch. Relationship between nondeterministic and deterministic tape complexities. J. on
Computer and System Sciences, 4:177–192, 1970.

[22] Rüdiger Valk. Modelling concurrency by task/flow EN systems. In 3rd Workshop on Concurrency
and Compositionality, number 191 in GMD-Studien, St. Augustin, Bonn, 1991. Gesellschaft für
Mathematik und Datenverarbeitung.

[23] Rüdiger Valk. Petri nets as token objects: An introduction to elementary object nets. In Jörg
Desel and Manuel Silva, editors, Application and Theory of Petri Nets, volume 1420 of Lecture
Notes in Computer Science, pages 1–25. Springer-Verlag, 1998.

[24] Rüdiger Valk. Object Petri nets: Using the nets-within-nets paradigm. In Jörg Desel, Wolfgang
Reisig, and Grzegorz Rozenberg, editors, Advanced Course on Petri Nets 2003, volume 3098 of
Lecture Notes in Computer Science, pages 819–848. Springer-Verlag, 2003.

[25] Moshe Vardi. An automata-theoretic approach to linear temporal logic. In F. Moller and
G. Birtwistle, editors, Logics for Concurrency: Structure versus Automata, volume 1043 of Lecture
Notes in Computer Science, pages 238–266. Springer-Verlag, 1996.

51

	Model Checking for Object Nets
	Elementary Object Systems
	Projections and Firing Rule

	Boundedness and Safe Eos
	Complexity of LTL Model Checking
	Conclusion and Outlook

