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Abstract 

NASA’s GeneLab platform is the first omics database and platform limited to studies 

related to space flight. This platform provides the scientific community a valuable 

resource for exploring, evaluating, and discovering hypotheses of space biology. In the 

platform we offer users multiple tools to explore GeneLab data including: a 

comprehensive, well-annotated data repository for all space related omics data, omics 

data analysis tools, space environmental metadata, and differential gene expression 

visualization tools. Here we focus on the latter, and how these tools can be utilized to 

explore scientific questions related to space biology. Spaceflight is known to create many 

health risks in astronauts due to both microgravity and space radiation exposure. Current 

research is focused on the underlying biological mechanisms behind these health risks 

and potential countermeasures to mitigate these health risks. One specific health risk  is 

related to increased liver damage during exposure to the space environment (Beheshti et 

al, Scientific Reports, 2019). Longer exposure to the space environment appears to cause 

increased lipid accumulation and transcriptomic analysis suggests pathways and genes 

related to liver disease (i.e. PPARα, Insulin or INS, and Glucagon or GCG) can be 

activated. We use this scenario to demonstrate how GeneLab’s platform and visualization 

capabilities can be utilized to quickly reveal this process in GeneLab platform data. 

Lastly, we discuss some issues and best practices for implementing similar, public-

platform visualization tools. 
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1 Introduction 

The impact of the space environment on astronauts has been known to increase the chance of many 

pathologies, including: cardiovascular disease, central nervous system (CNS) disorders, muscle 

degeneration, bone loss, and cancer [1]. Since upcoming NASA missions will be focused on more long-

term and even deep space travel, these health risks will be of even greater interest to NASA in order to 

more fully understand their biological mechanisms and to develop countermeasures. Recently it has 

been observed that spaceflight might increase chances of liver disease, specifically non-alcoholic fatty 

liver disease [2]. This work was done by utilizing capabilities of NASA’s GeneLab platform, a data 

repository and set of analysis tools for space-related omics data [3-5]. The repository contains raw and 

processed omics space research data (i.e. transcriptomics, proteomics, methylomics, metabolomics, 

genomics, metagenomics, etc.) for many different species, as well as tools to store and share these or 

proprietary omics data, a modified version of the Galaxy tool [6] for web-based analysis of omics data, 

a repository of space environmental data (i.e. accumulated space radiation exposure, environment 

factors on the International Space Station (ISS), etc.), and, most recently, omics data visualization tools. 

The GeneLab platform has already been utilized to generate novel and interesting science [3-5, 7, 8]. 

The omics data visualization tools are a new feature of the platform, including: basic omics visualization 

features such as principal component analysis (PCA) [9], pair plots, volcano plots [10], heatmaps, and 

data query tools. There are also more advanced analysis and visualization capabilities including S-plots 

(a graphical analysis tool at the biochemical pathway level) and chromosome analysis visualization 

tools referred to as “Ideogram”. Below, we discuss the challenges regarding designing and 

implementing these visualization tools, with specific examples using GeneLab data.  

Finally, we describe how visualization tools like these can be utilized to generate new hypotheses 

related to space biology research, using as example our recent publication describing lipid accumulation 

after exposure to the space environment [2]. This work utilized four sets of transcriptomic and 

proteomics data in the GeneLab repository from mice that were flown to space. Our analysis revealed 

lipid-related pathways, genes, and proteins that were contributing to demonstrable lipid accumulation 

in liver tissue, with potentially an increased risk of liver disease. Here, we show using the new GeneLab 

visualization tools how this effect can be observed and studies. Lastly, we demonstrate how Ideogram 

can be utilized to reveal how certain chromosomes will be impacted by spaceflight.  

 

2 NASA GeneLab Visualization Tools and Capabilities 

In this section we discuss GeneLab’s visualization tools, beginning with how the tools were 

developed and implemented, to examples of the application of each tool to visualize GeneLab data and 

data analysis result. 

2.1 Server and Software Design 

2.1.1. Development Framework 

For bioscience applications, the use of open-source development frameworks has become 

widespread, particularly those available for scripting languages like python and R. These languages 

have seen substantial growth in code libraries available for scientific data analysis and visualization. In 

order to meet the goals for GeneLab data visualization, we chose to develop our application using the 

open-source application frameworks Flask (Python), and D3 (javascript). Using these frameworks 
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allowed us to reduce development time significantly by leveraging numerous pre-built server and client-

side libraries for data transformation, plotting, and visualization. 

2.1.2. Hosting, Data Storage and Transfer 

The GeneLab project includes collaborations with several on-site contracting organizations as well 

as with numerous faculty and staff from universities and other research institutions across the globe. 

However, deployment of software into U.S. government-managed production environments can be 

onerous, as such environments often require tighter security controls than many academic 

environments, largely because they are more frequently targets for hackers. For this reason, we chose 

to deploy our application into an environment for education and research, supported by the Universities 

Space Research Association (USRA), an on-site NASA service contractor. This choice of hosting 

environment afforded us the opportunity to respond more agilely to end-user requirements, as the time 

from development to deployment can be more extensively controlled by the GeneLab project, rather 

than by universally levied government agency-wide edicts.  

The GeneLab data repository employs a commercial cloud storage solution for both raw and 

processed omics data. This choice supports unlimited growth of the GeneLab repository data. Similarly, 

developers of applications that consume these data, such as the visualization application discussed in 

this paper, need not be concerned with data storage limitations. Due to this design, the transfer of these 

data from cloud locations to target applications requires network traversal. Therefore, we developed a 

local caching mechanism for visualization application data files, so that loading of the data into the 

application can be expedited, once cached.  

For this caching system, the visualization tools access the underlying data using a restful API 

(https://github.com/LankyCyril/genefab) written in Python and utilizing the Flask framework 

(https://palletsprojects.com/p/flask/). The API exposes metadata associated with datasets and with 

assays, and processed assay data in several formats. Datasets metadata contains information about 

factors and assays associated with the dataset, and is accessed by appending the dataset accession name 

to the root URL of the API. By default, the information is returned in tab-separated format, but can be 

represented as JSON by passing the &fmt=json parameter. Data from any file presented in the array 

metadata can be requested by supplying a regular expression matching the metadata column name and 

an expression matching the file name to the assay data URL. For the most commonly used data types, 

short aliases are implemented. Finally, sample and factor information from the metadata can be added 

to the narrow-form data frame. Usage of the API is outlined at its root URL (http://genelab-

visualization.usra.edu/genefab/) and is being iteratively updated and expanded. 

2.2 Basic Visualization Tools 

We sought to develop a set of visualizations, in order to allow users to quickly be able to see if a 

given dataset shows substantial variation between samples, and therefore would a good candidate for 

further analysis. Some of these tools are basic visualization which are widely used for omics analysis. 

The goal of these tools was to allow these users to quickly answer the question “are they obvious 

differences in pattern of biological factors between subgroups?”  The first visualization is a PCA plot 

[9] (Figure 1A). The plot is interactive, and users can remove groups from the plot by clicking on the 

group name in the legend. PCA plots are a logical choice as the first method to visualize these data; 

these plots allow a user to quickly view how gene expression of individual biological samples group 

and cluster together in inferred component vector space. For example, in Figure 1A the user is 

comparing gene expression from samples flown in space to two types of ground control sample. Users 

should be able to clearly identify that each group of samples are clustering together indicating that this 

dataset is a good candidate to study further the specific gene expression differences occurring between 
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the groups. Users can download the PCA plots as a PNG file, zoom in and out of plots, rotate the plots, 

and reset plots to default settings. 

 Using a second visualization tool, the pair plot, users can study how close each biological sample 

(or replicate) is to another (Figure 1B). Pair plots simply plot the gene expression (or other factors) 

levels of one sample/replicate compared to another; users can alternatively opt to compare the mean 

expression values of two experimental groups (i.e. the average of all flight data versus the average of 

all ground data), or any sample/replicate vs. any group mean. Similar interactive capabilities are 

available as described for the PCA plots above. 

To query the expression of specific genes of interest per dataset, we developed a “query tab” 

visualization in which users can enter a gene of interest (Figure 1C). For each gene entered/selected, 

the following information will appear for each sample or group selected: log2 fold-change, raw and 

adjusted p-value. 

If a user wants to view how the top varying genes cluster together (by Pearson correlation distances), 

they can use the dendrogram visualization tool (Figure 1D). By default, the visualization tool loads the 

top 100 statistically significantly differentially expressed genes (i.e. ordered by p-value) into the 

dendrogram. The user has the option to change the number of genes being displayed and/or zoom in 

 
Figure 1. Basic visualization on GeneLab. A) Interactive PCA plot. B) Interactive pair plots to compare 

overall genes between two conditions. C) Query data option to find idividual genes of interest. D) Dendrogram 

of the genes starting with the highest signficiant genes. E) Volcano plot. 
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and out of specific regions of the dendrogram. These plots can be utilized to view how groups of genes 

for each dataset and biological comparison cluster by amount of differential expression.  

Lastly, users can also visualize at standard volcano plot of differential gene expression (Figure 1E) 

[10]. These plots can quickly allow the user to identify how many significantly regulated genes exist 

within each group, and correlate 

amount of differential expression with 

statistical significance for each gene. 

The volcano plots have similar 

interactive controls as the previously 

described plots. 

2.3 Pathway 

Visualization Tool 

There are many different ways to 

visualize biological pathways for 

omics analysis. Our pathway 

visualization tool utilizes an S-plot of 

statistical significance vs. fold change of differential gene expression an overlay of biochemical 

pathway association (Figure 2). The S plot allows a user to determine how differentially expressed 

genes in each dataset are impacting pathways through each gene’s with one or more Gene Ontology 

(GO) pathways. The interactive plot allows a user to adjust both significance level and fold-change cut-

off values. The S-plot loads with no pathways indicated on the plot. Once the user selects a pathway of 

interest, which they can search for or select using the pathway input selector, all significantly (by fold 

change and statistical significance) differentially expressed genes within the dataset will be highlighted 

with a larger circle. For example, in Figure 2 we have plotted the genes for the data set “GLDS-25” 

with a p-value cut-off of < 0.05 highlighting all genes related to the “Cell Cycle” pathway. The gray 

bar covers the genes with a log2 fold-change < 1.2 or > -1.2. This grey bar can be adjusted to include 

more fold-change values with the top slider bar or by entering a value directly in the slider box. The 

user can also adjust the p-values to include more genes with less statistical significance or highlight 

fewer genes with a higher statistical cutoff. Lastly, if a user hovers over any of the highlighted genes, a 

popup window appears with the gene name, a description of the gene, and exact p-value, and log2 fold-

change value. 

2.4 Ideogram: Chromosome Visualizations 

Ideogram.js (https://github.com/eweitz/ideogram) is a JavaScript library for chromosome 

visualization.  Ideogram supports drawing and animating genome-wide datasets for human, mouse, and 

many other eukaryotes.  The Ideogram API for annotations supports histograms, heatmaps, overlays, 

and points of arbitrary shape and color layered in tracks. Ideogram can be embedded as a reusable 

component in any web page or application.  Examples at https://eweitz.github.io/ideogram show how 

to use Ideogram to research  and report findings on cancer, clinical variants, gene expression, evolution, 

agriculture, and more. GeneLab has developed a novel genome visualization using Ideogram to enable 

users to explore graphically how space flight affects gene expression on chromosomes (Figure 3). 

When a user first displays Ideogram for a dataset, all the chromosomes associated with the specific 

species for that datasets appear with a distribution and location of all the log2 fold-change values for the 

genes mapped on the chromosomes (Figure 3). The visualization is interactive; the user clicks on each 

chromosome to zoom in on the specific chromosome for further details. In addition, the user can adjust 

both the log2 fold-change cut-off values and the adjusted p-values . The user can also select which group 

comparison in that dataset will be mapped on the chromosomes, for datasets with more than two 

 
Figure 2.  An example of a S-plot visualization on GeneLab. 

Each dot is associated with a gene and when hovering over a dot 

the gene name and description popup. 
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subgroups.  Lastly, a user can filter the type of genes (i.e. protein coding RNAs, lncRNAs, miRNAs, 

snoRNAs, etc.). There is an additional gene query function under the chromosomes with the log2 fold-

change values, adjusted p-value and the chromosome location, and the user can search for specific 

gene(s) of interest. 

3 Analysis with GeneLab Visualization: Lipid Accumulation 

During Spaceflight Leads to Liver Disease.  

To demonstrate the visualization capabilities on GeneLab we will provide a brief example of how a 

user can interact with the visualization tools to produce novel hypotheses related to biological changes 

that can occur during spaceflight. We will focus on potential increases in lipid accumulation in the liver, 

and the key biological functions and pathways driving this response [2]. For this analysis we will focus 

on the GLDS-25 liver dataset on GeneLab. These data are from an experiment using C57BL/6 wild-

type female mice which were flown for 13 days in space on a U.S. ”Space Shuttle” mission at 9 weeks 

of age [11, 12]. During this experiment the mice were flown back to Earth and sacrificed within 24 

hours after return. These experiments also contained two ground controls: 1) a habitat ground control 

(also previously referred to as an Animal Enclosure Module, AEM) and 2) a vivarium ground control. 

The mice in the habitat ground control (or AEM control) experienced the same environmental 

conditions (temperature, humidity, etc.) as the mice flown in space, except for microgravity and space 

radiation components [4]. The mice in the vivarium controls were housed in “normal” animal housing 

and conditions for all regular experiments performed on Earth. The livers of the mice were harvested 

and the samples were run on an Affymetrix microarray platform to obtain the transcriptomic data. 

Additional experimental details are available on GeneLab for this dataset (https://genelab-

data.ndc.nasa.gov/genelab/accession/GLDS-25).  

3.1 Differences Between Flight and Ground Samples 

To examine if this dataset has any changes between spaceflight and ground control samples, we first 

observe its PCA plot (Figure 1A): a clear separation occurs between the group of biological replicates 

for the spaceflight samples and the two ground controls on this plots). This suggests that spaceflight 

induces a key biological global response specifically related to the conditions in space in liver tissue. 

 
Figure 3. Example of Ideogram display on GeneLab.  The data shown is for GeneLab data set GLDS-25. 
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Interestingly, global biological 

differences may also be present 

between the two ground controls. We 

have reported that key biological 

differences can occur in mice 

depending on the housing conditions 

utilized on Earth [7]. We discovered 

that these biological differences occur 

due to the ambient CO2 differences for 

mice housed in the ground control 

habitat versus in the ground control 

vivarium. The habitats have CO2 levels 

which are approximately 10-fold 

higher than the vivarium controls (or 

equivalent to the normal CO2 in our atmosphere). The habitat ground controls have a higher CO2 level 

that match the higher CO2 levels which are present on the International Space Station and Space Shuttle 

missions. This example demonstrates that a user can easily notice on a biological global scale these key 

intriguing changes occurring and start exploring potential explanations for these differences. 

To determine the variance that might occur in the biological replicates and the overall amount of 

significantly regulated genes, we utilized both the pair plots and the volcano plots. When comparing 

the individual biological replicates for GLDS-25 within each experimental group, we observe little 

variance occurring between the biological replicates (Figure 4A). We have shown one example of this 

in Figure 4A displaying the comparison between two different biological replicates for the habitat 

ground controls. This example shows how tightly the genes are correlated between the biological 

replicates which is good indication that there is little variance between the two biological replicates.  

Next, we want to look for differences in gene expression occurring between the spaceflight and 

ground control sample group. By selecting to compare the mean expression values in each group, we 

observe that there appears to be many differentially expressed genes (Figure 4B). The volcano plot for 

this comparison (Figure 1E) also indicates that there are many differentially regulated genes by both 

adjusted p-value < 0.05 and overall fold-change values > 1.2. By quickly utilizing the GeneLab 

visualization tools we are able to determine that GLDS-25 has global differences occurring in the liver 

tissue samples due to spaceflight justifying further exploration of these data. 

3.2 Key Lipid Related Pathways Being Dysregulated During Spaceflight 

Finally, we want to examine if the observed differential gene expression changes we see occurring 

in the liver tissue samples are lipid pathway related, as previously published [2, 11, 13]. The changes 

previously reported in the liver has been known to be associated with non-alcoholic fatty liver disease 

also known as NAFLD [14]. To examine specific biological pathways that are associated with NAFLD, 

we utilize the S-plot. It is known that lipid and fatty acid pathways can have drastic impact on the 

development of liver disease [15, 16]. Since we also know from previously reported data that lipid 

accumulation occurs in livers during spaceflight [2, 11], we will utilize the S-plots to investigate lipid 

and fatty acid pathways changes occurring in the GLDS-25 dataset. The S-plots revealed that the 

majority of genes related to lipid (Figure 5A) and fatty acid pathways (Figure 5B) are up-regulated in 

the space environments, indicating that the pathways are most likely activated. It has also been 

previously reported that increased insulin dysregulation are heavily involved with risk of developing 

NAFLD [17, 18]. Again, using the S-plot, we observe that the majority of genes involved with “Insulin 

Receptor Signaling” pathway are also up-regulated in space environments, indicating that this pathway 

is also likely being activated (Figure 5C). Lastly, it is known that inflammation is a key player with the 

progression of liver disease and NAFLD [19]. The S-plot with the pathway “Acute Inflammatory 

 
Figure 4. Pair plots for GLDS-25 liver dataset. A) One 

example of comparing  two different biological repcliates. B) A 

pair plot comparing overall the mean values of the genes for all 

Spaceflight samples versus the Rodent Ground Control samples. 
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Response” selected again reveals a majority of significantly up-regulated genes in the liver, indicating 

activation of this pathway (Figure 5D). Overall these analyses using the GeneLab S-plot reveals that 

known pathways related to increase risk of liver disease are being activated by space flight.  

3.3 Spaceflight Lipid Dysregulation Impacting Specific Chromosomes 

It is known that chromosome location of genes can provide important information on the function 

of the genes and overall impact of the biological mechanisms of diseases. The impact of spaceflight on 

 
Figure 6. Ideogram analysis on GLDS-25 with specific liver disease related genes. A) The significantly 

regulated genes for GLDS-25 with adjusted p-value < 0.05 and fold-change > 1.2 or < -1.2. Specific search 

for genes related to lipid and NAFLD: B) PPARA, C) GCG, and D) Insulin. Note: GCG did not have the 

significance that PPARA and Insulin had. 

 
Figure 5. Biological pathways related liver disease in GLDS-25 Spasceflight versus Habitat Ground 

Controls. S-plots for signifcantly regulated genes related A) Response to Lipids pathway, B) Fatty Acid 

Transport, C) Insulin Receptor Signaling Pathway, and D) Acute Inflammatory Response. 
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causing chromosomes abnormalities is also of great concern as to how it can alter and increase potential 

health risks. For liver disease specifically, it has been reported that the location and dysregulation of 

genes on specific chromosome regions can increase risk for both lipid accumulate and NAFLD [20, 

21]. We utilized the GeneLab ideogram visualization to start exploring how the genes in specific 

chromosomal regions can contribute to liver disease health risk due to spaceflight. Again, using GLDS-

25 data, we observed the distribution of significantly regulated genes (adjusted p-value < 0.05) with an 

overall fold change of 2 on the chromosomes (Figure 6A). We noticed several chromosomes on whom 

the majority of the genes being dysregulated: 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 15, and 19. It has been 

reported in a large GWAS study on genetic variants associated with NAFLD that chromosome 8 is 

heavily involved with progression to NAFLD, chromosome 7 is associated with fibrosis in the liver, 

chromosomes 10, 11, and 12 are involved with lobular inflammation, and chromosomes 1, 4, and 12 

are involved with elevated aspartate aminotransferase level associated with NAFLD [20]. In another 

publication, the loss of chromosome 8p has been associated with altered lipid metabolism and 

associated with liver tumor progression [21].  

Based on our previous publication [2] and the genes known to be associated with NAFLD, we did 

a data query using the GeneLab Ideogram visualization for the following genes: PPARα, GCG (or 

glucagon), and Insulin. PPARα is significantly upregulated with a large fold-change and is found to be 

on chromosome 15 (Figure 6B). GCG is found on chromosome 2 (Figure 6C) and the majority of the 

insulin related genes are found on chromosomes 1, 2 8, and 10 (Figure 6D). The visualization through 

Ideogram of the location of these genes on the chromosomes related with NAFLD and found to be 

heavily regulated during spaceflight in the liver brings additional insight on how spaceflight will induce 

changes in the liver at the chromosomal-genetic level.  

4 Conclusions 

NASA’s GeneLab is a platform that allows users with various backgrounds, from advanced 

bioinformaticians to neophyte scientists with little background in genomics to easily navigate and 

visualize the GeneLab omics data sets. Here, we have provided a description of the GeneLab 

visualization tools and provided a scientific example of how an individual can use them to quickly 

visualize differential gene expression data. Specifically, we have shown that by utilizing these 

visualization tools, users can quickly generate and test hypotheses, leading to further experimentation 

and validation of existing data. The basic visualization tools which include PCA plots, volcano plots, 

dendrograms are common tools that will allow users a quick guide of the data. The new and unique 

tools which include the S-plots and Ideogram allow users to explore the space biology omics data with 

a new approach. Specifically, Idoegram allows users to map genes onto chromosome which is not 

commonly explored with omics data involving space biology. The visualization tools on GeneLab can 

continue to evolve rapidly since we chose an open-source development framework. In addition, we 

continue to seek collaborations from the community to add more visualization tools to help the scientific 

community analyze GeneLab data. 
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