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Abstract

Crowd Density Estimation (CDE) can be used ensure safety of crowds by preventing
stampedes or reducing spread of disease which was made urgent with the rise of Covid-19.
CDE a challenging problem due to problems such as occlusion and massive scale varia-
tions. This research looks to create, evaluate and compare different approaches to crowd
counting focusing on the ability for dilated convolution to extract scale-invariant contex-
tual information. In this work we build and train three different model architectures: a
Convolutional Neural Network (CNN) without dilation, a CNN with dilation to capture
context and a CNN with an Atrous Spatial Pyramid Pooling (ASPP) layer to capture
scale-invariant contextual features. We train each architecture multiple times to ensure
statistical significance and evaluate them using the Mean Squared Error (MSE), Mean
Average Error (MAE) and Grid Average Mean Absolute Error (GAME) on the Shang-
haiTech and UCF CC 50 datasets. Comparing the results between approaches we find
that applying dilated convolution to more sparse crowd images with little scale variations
does not make a significant difference but, on highly congested crowd images, dilated con-
volutions are more resilient to occlusion and perform better. Furthermore, we find that
adding an ASPP layer improves performance in the case when there are significant differ-
ences in the scale of objects within the crowds. The code for this research is available at
https://github.com/ThishenP/crowd-density.

1 Introduction

Countless unnecessary deaths are caused by stampedes in dense crowds. This may be due to
poor crowd management and a lack of information about the formation of the crowd. The
risk of similar tragedies is ever increasing due to the rapid increase in population around the
world. In addition to this the Covid-19 pandemic has highlighted the need for understanding
densities of crowds in order to decrease the spread of disease. Understanding the spatial density
distribution of crowds at all times can play a massive role in ensuring the safety of those within
the crowds. It would, therefore, be valuable to develop automated methods for accurate Crowd
Density Estimation (CDE).
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Crowd counting and Crowd Density Estimation are different formulations of a similar prob-
lem in which a given image of crowd is mapped to a number of people within the crowd. The
step of creating a density map alongside an image count is what differentiates the problems.
This mapping can be seen in Figure 1 with an image and its corresponding ground-truth density
map. It is however common in the field to refer to both problems under the umbrella term of
crowd counting.

The crowd counting problem was originally formulated as a detection based problem [24, 8,
14] but these methods were superseded by traditional regression methods [4]. The success of
deep learning has had a large benefit in this field and now the vast majority of the state of the
art CDE methods make use of Convolutional Neural Networks (CNN) [3, 16, 15, 31, 21, 23].
Most of the CNN models take in an image of a crowd and output a density map representing
the spatial distribution of objects within an image. An example of such a density map is shown
in Figure 1.

Many of the current approaches to CDE struggle with problems like occlusion and large scale
variations [10]. The primary goal of this research is to address the problem of scale variations and
occlusion by incorporating Dilated Convolutional layers and Atrous Spatial Pyramid Pooling
into the CNNs. These techniques are known to help capture scale-invariant context [5] and we
show that they adequately address the problems associated with scale and occlusion in CDE.

We find that applying Dilated convolutions within the network helps it retain more contex-
tual information and allows the models to be robust to images with a higher level of occlusion
than traditional convolutions. In addition to this, we find that including an Atrous Pyramid
Pooling layer to capture scale invariant context increases performance when the crowd data
contains large differences in object scales.

The remainder of this paper goes on to explain the necessary concepts for understanding
the paper as well as outline the related work in Section 2. The way in which we went about
conducting this research is explained in Section 3. The specific experiments performed as well
as evaluation of the experiments can be found in Section 4. Lastly, the document is concluded
in Section 6.

2 Background and Related Work

2.1 Background

2.1.1 Common problems in Crowd Density Estimation

One common problem in crowd density estimation is occlusion, which often occurs when objects
overlap or appear to merge from the perspective of the camera. This can make it more difficult
for algorithms to recognise all people within the image.

Figure 1: Example crowd image and corresponding density map
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Scale variations also form a large challenge for Crowd Density Estimation. This problem
refers to the fact that in many real-world crowd photographs people stand at a variety of
distances and angles from the camera. This causes different parts of the images to be at vastly
different scales. Researchers, therefore, have to implement scale-invariant algorithms which
tends to be difficult and can lead to a higher computational cost.

The field also deals with all the problems that may come with traditional computer vision
tasks such as lighting changes, computational cost and low-resolution images.

2.1.2 Dilated Convolution

Dilated Convolution refers to convolution in which a filter’s receptive field is increased without
increasing the filter’s overall area. This is achieved by skipping pixels within the filter’s grid.
The following formula found in [29] illustrates how the pixel positions within the convolutional
kernel are being skipped.

(G ∗l k)(p) =
∑

s+lt=p

G(s)k(t)

where G represents the image, k represents the kernel and l represents the dilation factor. The
dilation factor causes the kernel to skip pixels and create a more spread out filter as can be
seen in Figure 2. A dilated convolutional layer could take into account a larger receptive field

Figure 2: An illustration of receptive fields for dilated kernels [7]

without taking more pixels into account. This can therefore give more contextual information
without increasing the size of the network. This also and somewhat more importantly captures
contextual information without decreasing the resolution since the same number of pixels are
being used to create the output. This could be used to create a deep network that takes
into account a large amount of context and does not lose resolution in its mappings. This is,
therefore, useful in the crowd density estimation field.

2.1.3 Atrous Spatial Pyramid Pooling

The process of Atrous Spatial Pyramid Pooling (ASPP) [6] involves filtering an input using a
variety of dilated kernels each with a different dilation rate. A 1x1 convolution and global av-
erage pooling are also applied to the input. The outputs of all previously mentioned operations
are then concatenated. A 1x1 convolution is then applied to the concatenation of features to
reduce the depth of feature maps. This combination of features accounts for context at various
scales and allows for a variety of receptive fields to be taken into account further down the
network. An illustration of the combination of dilated features can be found in Figure 3.

Contextual information can be useful in crowd density estimation field as models could
pick up on information around objects that may be obscured or at a very low resolution. It
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is however difficult to extract useful contextual information when there is a large amount of
variance in the scale of the objects being considered. ASPP may offer a way to address these
problems as it can provide similar contextual information at many scales using a variety of
receptive fields.

Figure 3: Architecture of an Atrous Spatial Pyramid Pooling Layer [2]

2.2 Related Work

2.2.1 Traditional Approaches

Early crowd counting approaches fell into the category of detection based methods [24, 8, 14]
in which individual objects would be identified and counted to create a final crowd count of the
image. Early detection methods [27] split images into cells and used techniques such as texture
analysis to detect objects within the cells. The cells are subsequently summed to retrieve an
overall crowd count. These methods were however superseded by regression-based methods
[4] that directly learn a crowd count. Most modern formulations of the problem incorporate
density estimation in which a crowd image is mapped to a density map [1]. In recent years
deep, fully convolutional methods have dominated the state of the art. These models make use
of CNNs to create a density map given a crowd image. This density map is then summed to
get the crowd count

2.2.2 CNN based methods

Zhang et al [31] make use of a multicolumn CNN with varied receptive fields between columns
to account for the sizeable scale variations that are inherent to the CDE problem space. Oñoro-
Rubio and López-Sastre [20] also make use of multiple columns but feed in a pyramid of scale
varied patches to the network. Sam et al. [21], dealing with the same problems of scale
variations, proposed the use of a switching architecture in which an image would be split up into
different patches with each patch being fed into a model trained on similar data. Boominathan
et al. [3] account for low and high-level features by training two separate CNN columns. One
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shallow, for low-level features, and one deep, for high-level features. The results of both are
merged to create a density map.

Liu et al. [16] apply Spatial Pyramid Pooling [11] to extract scale aware contextual features.
Li et al. [15] include dilated convolutions in their network to make use of valuable contextual
information. Zhaoyi Yan et al. [28] leverage fractional dilated convolution in which dilation
rates are guided by an estimated perspective of an image. This allows for the dilated kernels to
be more robust to scale variations. Diptodip Deb and Jonathan Ventura [9] make use of a multi-
column CNN similar to Oñoro-Rubio and López-Sastre [20] but leverage dilated convolutions
to increase kernel size between layers without increasing the number of parameters. Yu-Jen
Ma et al. [17], in estimating crowd density within videos, apply dilated convolutions to reduce
the number of parameters and improve inference speed. Nguyen et al. [19] apply a multi-task
learning approach in which a density map is created making use of dilated kernels of increasing
dilation rate. In order to increase the scale invariance, by understanding perspective, a depth
map is also learned. This depth map is taken into account when producing the final density
map. Thanasutives et al. [23] make use of ASPP layers to extract scale-invariant contextual
information in crowd images. Although much progress has been made in the field, accuracy
in high-density images is still a problem due to issues such as high occlusion. This area needs
further exploration and research into the contextual information provided by dilated convolution
could be valuable.

3 Methodology

This research attempts to tackle scale invariant CDE by exploring the direct impact of dilated
convolution and Atrous Spatial Pyramid Pooling. This is done by building and comparing sim-
ilar models which only significantly differ by what is being tested. Ideas of dilated convolution
and ASPP have been used in other CDE research but often form small parts of a larger model.
This makes it difficult to understand the impact of the techniques in CDE. We, therefore,
believe our more direct comparison is a valuable contribution to the field.

We aim to explore the contextual and scale-invariant phenomena that can be created through
various configurations of dilated convolutions. We subsequently train and compare three differ-
ent CNN architectures. We analyse how each model impacts the performance of crowd counting
and the estimation of crowd density maps. We propose a baseline convolutional model contain-
ing no dilation, a basic dilated convolutional model and a dilated convolutional model with an
ASPP layer.

3.1 Ground Truth Generation

The standard ground truth found in crowd counting datasets contains a list of coordinates
that correspond to the positions of heads within the crowd image. In order to capture spatial
information of the crowd we convert the ground truth into a density map.

In order to create the density maps we, as is common in the field [23, 25], follow Zhang et
al. [31] using a fixed standard deviation σ = 4. Given N heads present in the image, each head
annotation at pixel xi can be represented as δ(x − xi). This is then convolved with gaussian
kernel Gσ(x) as follows:

F (x) =

N∑
i=1

δ(x− xi) ∗Gσ(x)
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Due to the nature of the Gaussian blur, the sum of the density map is roughly equal to the
number of coordinates in the original ground truth list. This, therefore, means that summing
the density map will return the image crowd count. The model, therefore, optimises for a
density map F (x) which captures spatial information and this map can simply be summed to
produce the crowd count. In training, the ground truth values are scaled to the size of the model
outputs and multiplied by the scaling factor to retain the property that the sum is equivalent
to the crowd count.

Although the method of summing the ground truth density map to retrieve the true count
is incredibly accurate there is sometimes a very small perturbation. This is fine for training
but for testing, in order to have complete accuracy, the points are summed before Gaussian
blurring to find the ground truth crowd count.

3.2 Approaches

To reduce training cost, the first seven layers of a pre-trained VGG-16 [22] make up the early
layers of each proposed model.

3.2.1 Baseline Approach

The baseline approach makes use of a Convolutional Neural Network (CNN) that does not
include dilation. The architecture for this model can be seen in Figure 4 where the images
are fed into the VGG layers. The output of the VGG layers is fed into the rest of the layers
which we call the dilatable layers. In the case of the baseline, the dilation rate for all layers of
the dilatable layers is set to 1. This model is intended to be used as a baseline that does not
consider as much contextual information as subsequent dilated convolutional models.

Conv 3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv 3x3 Conv 1x1
VGG layers  

256 256 256 128 128 64 64

Dilatable Layers

Figure 4: Base architecture of models. If Dilatable layers have a dilation rate of 1 it is the
Baseline model. If If Dilatable layers have a dilation rate of 2 it is the Dilated model. if an
ASPP layer is inserted between VGG Layers and Dilatable layers it is the ASPP model

3.2.2 Dilated Convolution Approach

The dilated convolution approach adapts the model architecture of the baseline approach but
makes use of a dilation factor of 2 for the dilatable layers. The dilation rate causes model to
have a larger receptive field and consider more contextual information within the crowd scenes.

3.2.3 ASPP Approach

The ASPP approach adapts the model architecture of the Dilated Convolution Approach but
inserts an ASPP layer immediately after the VGG-16 layers. The architecture of the ASPP
layer follows the method used in DeeplabV3 [6] which was shown previously in Figure 3. The
ASPP layer applies a 1x1 convolution, global average pooling and 3 sets of dilated convolutions
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with each set having a different dilation rate. The dilation rates for the 3 sets are 6, 12 and
18. These 3 sets of feature maps and the outputs of the pooling and 1x1 convolution are
concatenated to create a set of feature maps with depth 1280. In order to decrease depth and
combine information a 1x1 convolution layer is applied bringing the depth of the feature maps
down to 256. This is then sent through to the rest of the dilatable layers with a dilation rate of
2. We create this model in hopes of allowing the model to consider context at multiple scales
and therefore achieve a level of scale invariance.

4 Experimentation

4.1 Dataset

We evaluate each model on two commonly used and publicly accessible crowd counting datasets.
These being ShanghaiTech [31] and UCF CC 50 [12]. Each dataset contains many crowd images
and each has corresponding annotations. These annotations are in the form of a list of co-
ordinates of each head present within an image.

4.1.1 ShanghaiTech

The ShanghaiTech [31] crowd counting dataset is a still image crowd counting dataset that
contains 1198 images and 330,165 head annotations [10]. The dataset is split into part A and
part B. Part A contains high-density images scraped from the internet while part B contains
more sparse crowd images collected by fixed street cameras. Part A has more diversity as the
count range is between 33 and 3139 as opposed to the range of 12 to 578 in part B. Part A and
part B have predefined train and test splits with part A having 300 training images and 182
test images. Part B has 400 training images and 316 test images. Examples from part A and
part B can be found in Figure 5a and Figure 5b respectively.

4.1.2 UCF CC 50

The UCF CC 50 dataset [12] is a challenging crowd counting dataset which contains 50 images
collected from the internet as well as their corresponding annotations. The scenes are often at
a large scale with significant variations in the scale of people within the images. It includes
scenes such as stadiums, protests or concerts. The crowd counts of the images range from 96
to 4633. An example from the dataset can be found in Figure 5c.

(a) ShanghaiTech Part A (b) ShanghaiTech Part B (c) UCF CC 50

Figure 5: Examples crowd images from the datasets used in the research
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4.2 Training Details

4.2.1 Training and Validation sets

The training and validation sets are made of a combination of the predefined training sets
from the ShanghaiTech dataset. There is no predefined set split for UCF CC 50 meaning that
training on the data would rule out the possibility of evaluation on the dataset. This dataset is
an important evaluation benchmark in the field and we, therefore, do not include the dataset
in training.

In exploring the ShanghaiTech dataset we find that there is a relative lack of diversity in
crowd scale variations in part B when compared to part A. Therefore, to avoid overfitting to
part B, we decide to make use of the whole training set from part A but only 100 of the 400
training images from part B.

The validation set is created by splitting the image counts into bins and splitting the val-
idation data off from the training set in a similar way to a stratified split commonly used on
classification data. The stratification is however done on intervals of crowd counts rather than
classes.

4.2.2 Data Augmentation

A train image size is decided upon before training and each input image is randomly cropped
to this size. This allows for the ground truth density maps to be scaled by a fixed amount to
be used to calculate the loss. In addition to this, it causes more diversity in training, allowing
the model to generalise better to the problem space. In some cases, it will flip the image to
allow for an added level of diversity in the data.

4.2.3 Training Loss

In training we make use of the L2 loss function, where Θ represents the model parameters, N
represents the batch size, F (Xi; Θ) represents the ith predicted density map in a batch, and Fi

represents the ith ground truth density map.

L(Θ) =
1

2N

N∑
i=1

||F (Xi; Θ)− Fi||22

The loss function finds the square of the euclidean distance between the two output maps. It,
therefore, gives a mean squared error at the density map level. This takes into account every
pixel and ensures the model does not optimise for overall crowd count but rather an accurate
density map of the image. This train loss function is commonly used in the CDE field [3, 15, 31].

4.3 Experiments

We train each of the three models using the same training data. Each model is trained ten
times on an NVIDIA GTX-3080 GPU for 800 epochs using the Adam optimizer [13]. Number of
epochs, optimizer, batch size and learning rate were all optimized using the validation dataset.

4.4 Evaluation Metrics

The performance of each approach is evaluated on full-sized images as opposed to cropped
images used for training. Mean Absolute Error(MAE), Root Mean Squared Error(RMSE) and
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Relative Average Error (RAE) are used for the evaluate the predicted crowd counts. This is
in line with common standards in the field. The formulas for the metrics are shown below in
which a lower value indicates superior performance.

MAE =
1

n

n∑
i=1

|yi − ŷi|,

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2,

RAE =

∑n
i=1 |yi − ŷi|∑n
i=1 |yi − ȳ|

,

where n refers to the number of training examples, yi represents a single image’s labelled crowd
count, ŷi represents a single image’s predicted crowd count and ȳ represents the mean value of
y.

The previously mentioned metrics evaluate the overall count accuracy of the predictions,
this therefore does not accurately measure the the density distribution of the predicted density
map. In order to better evaluate this we, similar to Thanasutives et al. [23], use the Grid
Average Mean Absolute Error (GAME).

GAME(L) =
1

N

N∑
i=1

4L∑
l=1

|yl,i − ŷl,i|,

In order to obtain the GAME metric the image is split into a grid 4L non overlapping patches.
The MAE value is then found for each patch and combined to get a measure that takes into
account the predicted location of density in the map

4.5 Results

The box plot in Figure 6 depicts the distribution of RAE values obtained from the 12 runs and
evaluations of each model. The orange line in the box plot signifies the median while the green
triangle signifies the mean. The mean results of the models tested in this research over 12 runs
are presented in Table 1. How the results fit into the context of other literature can be found
in Figure 2. In addition to that the Density map outputs of all models can be found in Figure
7.

Table 1: Comparison of methods tested

ShanghaiTechA ShanghaiTechB UCF CC 50
Approach MAE RMSE GAME MAE RMSE GAME MAE RMSE GAME

Baseline 99.1 163.7 120.9 31.3 43.4 42.4 534.4 770.6 566.5
Dilated 81.7 130.4 99.8 27.2 38.2 36.6 454.5 664.7 497.2
ASPP 85.7 134.3 104.3 38.5 48.5 47.5 414.0 619.3 459.1
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Figure 6: Distribution of RAE values over 12 trains of each model (lower is better)

Table 2: Comparison of methods tested to other methods in literature

ShanghaiTechA ShanghaiTechB UCF CC 50
Approach MAE RMSE MAE RMSE MAE RMSE

Baseline (ours) 99.1 163.7 31.3 43.4 534.4 770.6
Dilated (ours) 81.7 130.4 27.2 38.2 454.5 664.7
ASPP (ours) 85.7 134.3 38.5 48.5 414.0 619.3
MCNN [31] 110.2 173.2 26.4 41.3 377.6 509.1

M-SFANet+M-SegNet [23] 57.6 94.5 6.32 10.0 167.5 256.3
CSRNet [15] 68.2 115.0 10.6 16.0 266.1 397.5
SGANet [26] 58.0 100.4 6.3 10.6 224.6 314.6

Zhang et al [30] 181.8 277.7 32.0 49.8 467.0 498.5

4.6 Statistical Significance

To ensure insights learned from the research are statistically significant we train 12 of each
model architecture and combine the metrics into a distribution for each architecture. Each
model has a distribution for both its MAE and MSE on each dataset. To test for significance
the Mann-Whitney U Test [18] is leveraged. We consider the difference between distributions
to be statistically significant if ρ is less than or equal to 0.05. Tables presenting the ρ values
given the MAE and MSE distribution can be found in Section A. In both tables the ρ value
for statistically significant combinations is in bold. We find that all differences between models
on UCF CC 50 are statistically significant and all differences on ShanghaiTech B are not. On
ShanghaiTech A the differences between the Baseline and Dilated models as well as Baseline
and ASPP models are statistically significant.

4.7 Analysis

We find that none of the differences between the models’ metrics on ShangahaiTech Part B are
statistically significant. The dataset is more sparse leaving less room for improvement from
contextual information. We cannot draw meaningful insights from ShanghaiTech Part B so we
consider the more dense datasets: ShanghaiTech Part A and UCF CC 50.
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The dilated model outperforms the baseline on the more dense datasets including Shang-
haiTech part A and UCF CC 50 and this difference is found to be statistically significant. The
improvements in performance come in both the overall count and density distribution given the
GAME score. These datasets have a high level of occlusion which the baseline faces difficulty
with. The dilated model captures more contextual information. This becomes very useful in
the case of heavily occluded objects as the area around an object could provide information
about an occluded object. In the case of people, a model could detect an obstructed face using
contextual information such as the presence of shoulders. The results, therefore, illustrate the
benefit of using dilated kernels to capture context in dense crowd counting.

In this case of ShanghaiTech Part A, we fail to reject the null hypothesis that the ASPP
model differs significantly to the dilated model based on the tested metrics. This illustrates that
the more scale invariant context from the ASPP layer does not alter the results significantly in
the dataset. The dilated model’s dilation rate of 2 is sufficient to capture context in this dataset
and the ASPP model may be overkill for the level of object scale variation found in the dataset.
We do, however, reject the null hypothesis on UCF CC 50 where the ASPP model out performs
the dilated model in both overall count and density distribution. The ASPP model seems to
perform better on this dataset as it contains larger scale variations in a single dataset than the
ShanghaiTech datasets. We believe that the increase in performance on UCF CC 50 is due to
the ability of the ASPP model to capture scale invariant context using multiple receptive fields.

Considering all the results, we find that when tackling more sparse crowds with fewer scale
variations all models perform similarly. Therefore, the simpler CNN without dilation would be
sufficient. We, however, feel the technology could have a bigger impact In the area of more
dense crowds with large scale variations. The dilated model would be beneficial in higher
density crowd images as it captures useful contextual information. However, if a high level of
scale variation of objects within the crowds is expected the ASPP model would be preferable.

Crowd Image Ground Truth (116) Baseline Model Prediction (183) Dilated Model Prediction (159) ASPP Model Prediction (207)

Crowd Image Ground Truth (1284) Baseline Model Prediction (1375) Dilated Model Prediction (1477) ASPP Model Prediction (1532)

Figure 7: Density Map Predictions by models on two test images. The numbers in brackets
represents the overall crowd count

5 Future Work

This research provides insights into the effects and benefits of configurations of dilated con-
volution in the context of crowd counting. There is however room to extend this research as
problems such as scale variation and occlusion are still a challenge. We notice that the ASPP
model, while providing a level of scale invariance in the smaller range of object sizes it, does not
provide benefits on datasets in which the scale of objects are significantly larger. We therefore
believe that a wider range of receptive fields could be added to the ASPP concatenation to
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address this. This therefore leads into further work in which data sets with larger variations
in scale can be collected in order to optimise for more robust scale invariant crowd density
estimation.

Dilated convolution allows for a network to capture a large receptive field while training
fewer parameters than a dense kernel. We therefore suggest that research be done on the
possible computational cost and speed benefits of the approach. This could be extended to
tackle the problem of crowd counting in videos.

6 Conclusion

In this work, we compare three different approaches to Crowd Density Estimation and Crowd
Counting. These approaches include a CNN without Dilation, a CNN with dilation and a CNN
with an Atrous Spatial Pyramid Pooling (ASPP) layer. The model architectures are trained
multiple times and evaluated on the ShanghaiTech and UCF CC 50 datasets. Given the results,
we find that if dealing with relatively sparse crowds, dilated convolutional methods do not
offer much improvement. However, in more dense crowds a larger receptive field capturing
more contextual information is beneficial. Furthermore, in dense crowds with significant scale
variations, we find that an ASPP layer improves on the dilated model by capturing scale
invariant context. We hope that this research will help to inform decisions about when and
how to use configurations of dilated convolution in future work.
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A Statistical significance ρ values

Table 3: Statistical Significance - ρ values using MAE distributions

ShanghaiTechA ShanghaiTechB UCF CC 50
Approach Pair ρ ρ ρ

Baseline and Dilated 0.00122 0.25336 0.00037
Baseline and ASPP 0.00363 0.46549 0.00002
Dilated and ASPP 0.46549 0.14274 0.00005

Table 4: Statistical Significance - ρ values using MSE distributions

ShanghaiTechA ShanghaiTechB UCF CC 50
Approach Pair ρ ρ ρ

Baseline and Dilated 0.00012 0.14274 0.00100
Baseline and ASPP 0.00045 0.37542 0.00006
Dilated and ASPP 0.46549 0.25336 0.00255
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Table 5: Statistical Significance - ρ values using GAME distributions

ShanghaiTechA ShanghaiTechB UCF CC 50
Approach Pair ρ ρ ρ

Baseline and Dilated 0.00068 0.08743 0.00030
Baseline and ASPP 0.00213 0.25336 0.00001
Dilated and ASPP 0.37542 0.23524 0.00012
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