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Abstract

“Up and Down the Temporal Way” was a paper published by Howard Barringer in the 1980s that used
temporal logics to formally specify a lift system. Based on that temporal specification, we describe
some advances and extensions to temporal specification and verification that the authors have been
involved with since then.

1 Introduction

In 1985, Howard produced a temporal logic specification for a lift system [2] which was subsequently
published in [3]. Our paper is (loosely) inspired by Howard’s specification [3] and we outline some
of the advances, extensions and refinements within temporal specification and verification that we have
been involved with over the last 25 years. Throughout, we will endeavour to use Howard’s lift example
to provide examples.

The lift specification given by Howard in [2, 3] began with a series of informal properties of lifts and
then moved on to the temporal logic specification first of an individual lift, and then multiple lifts. Whilst
verification of lift properties was not carried out, an informal justification of whether the specification
met the (English) requirements was provided. Also the paper cited [30] as a route for proving properties
from this specification, utilizing tableau calculi for a number of propositional temporal logics.

In this paper, we provide two specifications for a single lift, one with a single call button for each
floor and the other with two call buttons for each floor (up and down). We also specify multiple lifts.
We follow [3] as far as possible but do introduce some additional propositions that make the formulation
easier for the contemporary provers we use. Specifically, we describe several temporal resolution calculi
and their related implementations and use these to prove some of the properties for the lift specification.

This paper is structured as follows. To begin with, in Section 2 we provide a quick review of
Propositional (Linear) Temporal Logic [29], recalling temporal operators such as ‘ g’, ‘ ’, ‘♦’, ‘U ’
(“until”), and ‘W ’ (“unless”). We also describe a temporal normal form, Separated Normal Form
(SNF) [21], on which our subsequent proof and execution techniques will be based. In Section 3 we
recall some of the informal lift requirements from Howard’s paper, for example

“when a lift has no outstanding requests to service, it remains at the current floor with doors
closed.”

We next define the lift-related propositions that we will use as a basis for the specification. These are
similar to the original paper, for example, where i ∈ {0 . . .n},

ati is true if lift is at floor i and false otherwise;

di is true if the door at floor i is open and false otherwise.
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So, at0 is true if the lift is at the ground floor and d0 is true if the lift doors are open on the ground
floor, while atn is true if the lift is at the top floor and dn is false if the lift doors are closed on the top
floor. Given these basic propositions, we present some of the structural constraints described purely in
propositional logic. For example, for all i and j in {0 . . .n} if a lift is at some floor it cannot also be at
another floor.

ati ⇒
∧
j 6=i

¬atj .

We also develop a temporal logic specification of the dynamic changes between such configurations.
Since we are considering movement of lifts, we also introduce the concept of a lift direction, simply

via ‘up’ and ‘down’ (actually for the latter we will use ‘¬up’). Then we can specify properties such as
“initially, the lift is at the ground floor and the direction is up” via:

start ⇒ (at0∧up)

where ‘start’ is a (nullary) connective that holds only at the beginning of time. Now we can describe
various rules concerning lift behaviour. For example, let a proposition c j denote that the lift is called to
floor j via the external call button. Also assume that the proposition cai denotes a request for the lift
above floor i, defined as pressing the external call buttons or the internal send buttons for a floor above
floor i. We might specify

(ati∧ cai∧up) ⇒ gati+1

to denote that the lift should continue travelling upwards to service a request above floor i. Next we
show how to extend the specification, in an obvious way, to a multi-lift system.

Finally, we highlight some of the the general properties of the lift specification, which are either
explicitly added to the specification, or that we would like to prove from the specification. These are
properties, such as “all requests must eventually be serviced”:

(cj ⇒ ♦di) .

This leads to a set of properties that we would like to prove of the specification.
In Section 4 we discuss how such a specification could be executed using METATEM, a program-

ming framework based on executable temporal logic. This provides a way to animate the specification,
attempting to build a model for it. Section 5 describes a resolution calculus for PTL and an implemen-
tation of this, allowing us to apply a propositional prover to the lift specification and various properties.
In Section 6 we describe two temporal calculi that allow constraints on temporal formulae as part of the
input. These provide a much more concise specification and constrained proof mechanism. In Section 7
we extend the logic to a first-order setting and describe a resolution calculus for this logic. In Section 8
we provide further extensions to the basic specifications and present some concluding remarks.

2 Propositional Temporal Logic
Propositional Linear Time Temporal Logic (PTL) can be thought of as classical propositional logic
extended with operators to deal with time [41, 29]. The future-time temporal connectives we use include
‘ g’ (in the next moment) and ‘U ’ (until). Formally, PTL formulae are constructed from the following
elements:

• a set, PROP, of propositional symbols
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• propositional connectives, true,¬,∨; and

• temporal connectives, g, and U .

The set of well-formed formulae (WFF) of PTL, is defined as the smallest set satisfying the following:

• any elements of PROP and true are in WFF;

• if ϕ and ψ are in WFF, then so are ¬ϕ,ϕ ∨ψ, gϕ,ϕ U ψ.

A literal is defined as either a proposition symbol or the negation of a proposition symbol. We (ambigu-
ously) assume that the negation of ¬p is p.

A model for PTL formulae can be characterised as a sequence of states, σ , of the form σ =
s0,s1,s2,s3, . . . , where each state si is a set of propositional symbols representing those propositions,
which are satisfied at the ith moment in time. The notation (σ , i) |= ϕ denotes the truth of formula ϕ in
the model σ at the state of index i ∈ N and is defined as follows.

(σ , i) |= true
(σ , i) |= p iff p ∈ si where p ∈ PROP
(σ , i) |= ¬ϕ iff it is not the case that (σ , i) |= ϕ

(σ , i) |= ϕ ∨ψ iff (σ , i) |= ϕ or (σ , i) |= ψ

(σ , i) |= gϕ iff (σ , i+1) |= ϕ

(σ , i) |= ϕ U ψ iff ∃k ∈ N. k ≥ i and (σ ,k) |= ψ and
∀ j ∈ N, if i 6 j < k then (σ , j) |= ϕ

Note we can obtain false and the other Boolean operators via the usual equivalences and we define ‘ ’
(always in the future), ‘♦’ (sometime in the future) and ‘W ’ (unless or weak until) operators as follows.

♦ϕ ≡ trueU ϕ

ϕ ≡ ¬♦¬ϕ

ϕ W ψ ≡ (ϕ U ψ)∨ ( ϕ)

For any formula ϕ , model σ , and state index i ∈ N, either (σ , i) |= ϕ holds or (σ , i) |= ϕ does not hold,
denoted by (σ , i) 6|= ϕ . If there is some σ such that (σ ,0) |= ϕ , then ϕ is said to be satisfiable. If
(σ ,0) |= ϕ for all models, σ , then ϕ is said to be valid and is written |= ϕ . A set N of formulae is
satisfiable in the model σ at the state of index i∈N if, and only if, for all ϕ ∈N ,(σ , i) |= ϕ . A formula
of the form♦ϕ or ψ U ϕ is called an eventuality.

2.1 Normal Form
It is often convenient to operate on formulae represented in a normal form. Separated Normal Form
(SNF) was first introduced for PTL in [20] and also discussed in [25]. To assist in the definition of the
normal form we introduce a further (nullary) connective ‘start’ that holds only at the beginning of time,
i.e.,

(σ , i) |= start iff i = 0.

This allows the general form of the (temporal clauses of the) normal form to be implications. In the
following, small Latin letters, ki, l j, m represent literals in the language PROP. A normal form for PTL
is of the form ∧

h

Xh
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where each Xh is an initial, step, or sometime clause (respectively) as follows:

start⇒
∨

i

li (initial)∧
i

ki⇒ g∨
j

l j (step)∧
i

ki⇒ ♦m (sometime)

We can translate any PTL formula ϕ into a formula ϕ ′ such that ϕ is satisfiable if and only if ϕ ′ is
satisfiable.

Theorem 1. [25] Any PTL formula can be transformed into an equi-satisfiable PTL formula in SNF
with at most a linear increase in the size of the formula.

The translation uses standard equivalences from propositional and temporal logic, renames complex
subformulae using new propositions, linking the new propositions with the satisfaction of the renamed
subformula everywhere in the model and unwinding temporal operators into formulae to be satisfied
now, and in the next moment in time, using their fixpoint definitions.

When specifying the behaviour of systems, it is sometime convenient to consider ‘traditional’ clauses
of the form ∨

i

li (global)

Every global clause can, if necessary, be represented as a combination of an initial and a step clause:

start⇒
∨

i

li and true⇒ g∨
i

li

To save space we will sometimes use global clauses in Section 3 or formulae that can easily be translated
into global clauses. We also assume clauses are kept in their simplest form by performing classical style
simplification; for example that

p⇒ g(q∨q∨ r)

would always be re-written as
p⇒ g(q∨ r).

3 Lift Specification
Next we examine the lift specification [3] and, based on this, provide a specification for several lift
systems. The following are the rules for the lift system as stated in [3].

L1 Each lift has a set of buttons, one button for each floor. These illuminate when pressed and cause the
lift to visit the corresponding floor. The illumination is cancelled when the corresponding floor is
visited (i.e. stopped at) by the lift.

L2 Each floor has two buttons (except the ground floor and top floor), one an “up request” and one a
“down request”. These buttons illuminate when pressed. The buttons are cancelled when a lift
visits the floor and is either travelling in the desired direction, or visiting the floor with no requests
outstanding. In the latter case, if both floor-request buttons are illuminated only one should be
cancelled. The algorithm to decide which to service should minimise the waiting time for both
requests.
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L3 When a lift has no request to service, it should remain at its final destination with its doors closed
and await further requests.

L4 All requests for lifts from a floor must be serviced eventually, with all floors given equal priority.

L5 All requests for floors within lifts must be serviced eventually, with floors being serviced sequen-
tially in the direction of travel.

L6 Each lift has an emergency button which, when pressed, causes a warning signal to be sent to the
site manager. the lift is then deemed to be ‘out of service’. Each lift has a mechanism to cancel
its ‘out of service’ status.

To save space we do not further consider emergency behaviour, (L6), but the lift specifications we have
developed can be extended if necessary.

3.1 Simple Single Lift
First we specify a single lift with a single external call button (denoting both a call up and a call down)
and send buttons within the lift. This aims to specify (L1)–(L5) ignoring (L6) where (L2) is modified
as there is only one call button on each floor. We assume that the ground floor is floor 0 and the top
floor is floor n. We use the following propositions similar to those proposed in [3]. In each case, assume
0 6 i 6 n unless it is stated otherwise.

ati the lift is at floor i;

di the lift door is open (and ¬di the lift door is closed);

ci the external call button at floor i is pressed;

si the internal button to send the lift to floor i is pressed;

lci the external call light at floor i is lit;

lsi the internal send light at floor i is lit;

cai the lift has been called (or sent) from a floor above i (for all floors 0 6 i < n);

cbi the lift has been called (or sent) from a floor below i (for all floors 1 < i 6 n);

up the lift movement is up (and ¬up is the lift movement is down).

Note we add the propositions ati and up which were not originally present in [3] but which make dealing
with servicing requests easier and cai and cbi, which are abbreviations for disjunctions of lc j and ls j
where j > i or j < i respectively. In the subsequent text we relate formulae to those in [3]. To try avoid
any confusion when referring to formulae from [3] we denote a formula (j) from [3] as (Bj).

Buttons and Lights
In [3] the following formulae labelled (B1).

n∧
i=0

(ci⇒ (lci W di))
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and (B3)
n∧

i=0

(¬lci⇒ (¬lci W ci))

relate the calling of the lift with the lighting of the call buttons and the doors opening. This is partially
to model L2. Note that we also assume that

n∧
i=0

(lci⇒ (lci W di)).

From this we obtain the following formulae for all floors 0 6 i 6 n.

(ci ⇒ (lci∨di)) (1)
(lci ⇒ g(lci∨di)) (2)

(¬lci ⇒ g(¬lci∨ ci)) (3)

Similar formulae exist for the send button within the lift and its related light to model L1. In [3] the
following formula labelled (B2)

n∧
i=0

(si⇒ (lsi W di))

and (B4)
n∧

i=0

(¬lsi⇒ (¬lsi W si))

relates the sending of the lift via the internal buttons with the lighting of the send button within the lift
to the lift doors opening. Note we also assume that

n∧
i=0

(lsi⇒ (lsi W di)).

From this we obtain the following formulae for all floors 0 6 i 6 n.

(si ⇒ (lsi∨di)) (4)
(lsi ⇒ g(lsi∨di)) (5)

(¬lsi ⇒ g(¬lsi∨ si)) (6)

From [3] formula (B5) we have

n∧
i=0

((lci⇒¬di)∧ (lsi⇒¬di))

i.e. if the call or send lights are on then the doors must be closed, and we obtain for all floors 0 6 i 6 n

(lci ⇒ ¬di) (7)
(lsi ⇒ ¬di) (8)
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Lift Door Behaviour
In [3] formulae (B7) are provided to ensure that at most one door is open at any moment.(

n∧
i=0

¬di

)
∨

n∨
i=0

(
di∧

∧
j 6=i

¬d j

)

As a side effect of how we deal with lift servicing behaviour we introduce a proposition ati to represent
that the lift is at floor i and ensure that this holds for exactly one floor i (see (26) and (27)). In addition
we relate di to ati (see (22)) so we can try to prove the above holds rather than stating it.

Servicing behaviour
This is to deal with movement between floors, service requests, etc, as specified in L3, L4 and L5. In
[3] the constraints required are as follows.

1. All requests must eventually be serviced, and no floor should be stopped at when there is not
unserviced request for that floor.

2. The lift should not pass a floor for which there is an outstanding unserviced request.

3. The lift should not change direction if there is an outstanding request whose service would cause
the lift to continue in the same direction.

The following formulae aim to keep the lift moving in the same direction as long as there is a service
request still to be satisfied in that direction. The following are clauses for all floors 0 < i < n.

(ati∧ cai∧up ⇒ g(ati+1∧up)) (9)
(ati∧ cbi∧¬up ⇒ g(ati−1∧¬up)) (10)

(ati∧¬cai∧ cbi∧up ⇒ g(ati−1∧¬up)) (11)
(ati∧ cai∧¬cbi∧¬up ⇒ g(ati+1∧up)) (12)

(ati∧¬cai∧¬cbi ⇒ gati) (13)

Note some of these clauses are modified for at0 and atn because there cannot be a call from below if
the lift is at floor 0 and there cannot be a call from above if the lift is at floor n. We first provide the
formulae for at0.

(at0∧ ca0 ⇒ g(at1∧up)) (14)
(at0∧¬ca0 ⇒ gat0) (15)

The following are the formulae for atn.

(atn∧ cbn ⇒ g(atn−1∧¬up)) (16)
(atn∧¬cbn ⇒ gatn) (17)

The following formulae define the propositions cai (call from above) for i = n−1.

(can−1 ⇐⇒ lcn∨ lsn) (18)

and where for 0 6 i < n−1

(cai ⇐⇒ cai+1∨ lci+1∨ lsi+1) (19)
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The following defines cbi (call from below) for i = 1

(ca1 ⇐⇒ lc0∨ ls0) (20)

and for for all floors 1 < i 6 n

(cbi ⇐⇒ cbi−1∨ lci−1∨ lsi−1) (21)

Clearly ¬cb0 and ¬can. Now, the following states that for a door to be open the lift must be at that
floor and it should only open if either the external call light or the internal send light for that floor was
lit at the last moment or either the external call button has been pressed or the internal send button has
been pressed.

(di ⇒ ati) (22)
(¬lci∧¬lsi ⇒ g(¬di∨ ci∨ si)) (23)

The following ensures that if the lift has been called or sent to a floor (i.e. the call or send lights are on)
then in the next moment if the lift is at that floor then the lift door is open, for all floors 0 6 i 6 n

(lci⇒ g(di∨¬ati)) (24)
(lsi⇒ g(di∨¬ati)) (25)

The lift must be at exactly one floor at any moment

(
n∨

i=0

ati) (26)

and for each 0 6 i 6 n, 0 6 j 6 n, i 6= j

(¬ati∨¬at j) (27)

Actions
In [3] various actions are specified to describe the pushing of the call and send buttons and the opening
and closing of doors. These are described as not being essential so we do not specify these as they seem
to be forcing certain behaviour on the environment.

Initial conditions
Initially the lift doors are closed, there are no call or send requests and none of the lift buttons are lit.

start ⇒
n∧

i=0

(¬di∧¬ci∧¬si∧¬lci∧¬lsi) (28)

3.2 Single Lift with Up and Down Call Buttons
Following [3] we replace the single call button and lights by a “call up” button and light and a “call
down” button and light. In particular ci is replaced by cui and cdi and lci is replaced by lcui and lcdi.
Note that there will be no call down button on floor 0 and no call up button on floor n.

cui the external call up button at floor i is pressed (for all floors 0 6 i < n);
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cdi the external call down button at floor i is pressed (for all floors 1 < i 6 n);

lcui the external call up light at floor i is lit (for all floors 0 6 i < n);

lcdi the external call down light at floor i is lit (for all floors 1 < i 6 n);

The following formula define the propositions cai (call from above) for i = n−1

(can−1 ⇐⇒ (lsn∨ lcdn) (29)

and where for i = 0, . . .n−2

(cai ⇐⇒ (cai+1∨ lcui+1∨ lsi+1∨ lcdi+1)) (30)

The following defines cbi (call from below) for i = 1

(cb1 ⇐⇒ lcu0∨ ls0) (31)

and for i = 2, . . .n

(cbi ⇐⇒ cbi−1∨ lcui−1∨ lcdi−1∨ lsi−1) (32)

The following ensures that the lift door opens at floor i if the call up (respectively down) button was lit
in the previous moment in time, the lift is at floor i and is travelling up (respectively down) or it was
travelling down (respectively up) and there were no calls from below (respectively from above). For
0 < i < n we have the following

(lcui⇒ g(di∨¬ati∨¬up)) (33)
(lcui⇒ g(di∨¬ati∨up∨ cbi)) (34)

(lcdi⇒ g(di∨¬ati∨up)) (35)
(lcdi⇒ g(di∨¬ati∨¬up∨ cai)) (36)

and additionally we have the following formulae for the top and bottom floors.

(lcu0⇒ g(d0∨¬at0)) (37)
(lcdn⇒ g(dn∨¬atn) (38)

In [3] the four unless formulae and formulae (7) and (8) in Section 3.1, Buttons and Lights, are replaced
by the following formulae using the above and a notion of up service at floor i. The notion of up service
at floor i is described as

• the lift must be at floor i;

• there must be a request to go up;

• if it is the case that the lift came from above (in the down direction) then

– it must not be the case that the lift is already servicing a down request at floor i; and

– it must not be the case that the lift is has a request to continue in the same direction.

The notion of down service at floor i is described analogously. We introduce some additional proposi-
tions uvi and dvi as abbreviations for other propositional formulae to capture these notions. We do not
embed the need for a request to go up (respectively down) into the notion of an upservice (respectively
downservice) to match with the previous specifications. Let

93



On and On the Temporal Way Clare Dixon and Michael Fisher

uvi denote that there is an upservice at floor i (for all floors 0 6 i < n);

dvi denote that there is an down service at floor i (for all floors 1 < i 6 n);

We define up service at i as follows for i = 0

uvi ⇐⇒ di (39)

and for 0 < i < n

uvi ⇐⇒ (di∧ (up∨ (¬up∧¬cbi))) (40)

Similarly we define down service at i as follows for 0 < i < n.

dvi ⇐⇒ (di∧ (¬up∨ (up∧¬cai))) (41)

and also

dvn ⇐⇒ dn (42)

The unless formulae relating to calling the lift from Section 3.1, Buttons and Lights, now become the
following for calls upwards.

n−1∧
i=0

(cui⇒ (lcui W uvi))

n−1∧
i=0

(¬lcui⇒ (¬lcui W cui))

n−1∧
i=0

(lcui⇒ (lcui W uvi))

From this we obtain the following formulae for all floors 0 6 i < n.

(cui ⇒ (lcui∨uvi)) (43)
(lcui ⇒ g(lcui∨uvi)) (44)

(¬lcui ⇒ g(¬lcui∨ cui)) (45)

The unless formulae relating to calling the lift from Section 3.1, Buttons and Lights, now become the
following for calls down.

n∧
i=1

(cdi⇒ (lcdi W dvi))

n∧
i=1

(lcdi⇒ (lcdi W dvi))

n∧
i=1

(¬lcdi⇒ (¬lcdi W cdi))

From this we obtain the following formulae for all floors 0 < i 6 n.

(cdi ⇒ (lcdi∨dvi)) (46)
(lcdi ⇒ g(lcdi∨dvi)) (47)

(¬lcdi ⇒ g(¬lcdi∨ cdi)) (48)
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Together formulae (43)–(48) replace (1)–(3). Note that the unless formulae relating to the buttons within
the lift remain the same as previously.

The formula (7) is now replaced by two formulae

(lcui ⇒ ¬uvi) (49)
(lcdi ⇒ ¬dvi) (50)

The servicing behaviour is as before, namely (9)–(17).

Initially the lift doors are closed, there are no call or send requests and none of the lift buttons are lit.

n∧
i=0

(¬di∧¬si∧¬lsi)∧
n−1∧
i=0

(¬cui∧¬lcui)∧
n∧

i=1

(¬cdi∧¬lcdi) (51)

3.3 Multiple Lifts
Following [3] we next consider multiple lifts. Consider m lifts and n floors. We extend the propositions
ati, di, si, lsi, up, cai and cbi to include an index relating to which lift is being referred to as follows.

at ji the lift j is at floor i;

d ji the lift j door is open at floor i (and ¬d ji the lift j door is closed at floor i);

s ji the internal button to send the lift j to floor i is pressed;

ls ji the internal send light in lift j at floor i is lit;

up j lift j movement is up (and ¬up j is the lift j movement is down);

caji denotes a request for lift j above floor i;

cbji denotes a request for lift j below floor i.

We add the following propositions relating to up and down services in relation to some lift and floor.

uvji denotes an up service by lift j at floor i;

dvji denotes a down service by lift j at floor i.

The following formula re-define the propositions cai (call from above) for i = n−1, j = 1, . . .m

(ca jn−1 ⇐⇒ lcdn∨ ls jn) (52)

and where for i = 0, . . .n−2, j = 1, . . .m

(ca ji ⇐⇒ ca ji+1∨ lcui+1∨ lcdi+1∨ ls ji+1) (53)

The following defines cbi (call from below) for i = 1, j = 1, . . .m

(cb j1 ⇐⇒ lcu0∨ ls j0) (54)

and for i = 2, . . .n, j = 1, . . .m

(cb ji ⇐⇒ cb ji−1∨ lcui−1∨ lcdi−1∨ ls ji−1) (55)
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The formulae (33)–(38) relating to ensuring that the lift opens are extended to the multiple lift versions
by adding an additional index to represent each lift. We define up service at floor i = 0, . . .n− 1 as
follows

(uvi ⇐⇒ (
m∨

j=1

uv ji)) (56)

and down service at floor i = 1, . . .n as follows

(dvi ⇐⇒ (
m∨

j=1

dv ji)) (57)

The formulae for upservice (uv ji) and down service for each lift (dv ji) for j = 1, . . .m is the same as
previously except with an additional lift index for each proposition, namely formulae (39)–(42). The
formulae relating to the pressing and lighting of the the external call up and call down are as previously,
i.e. (43)–(50). The send buttons within lifts, namely (4)–(6) are the same as previously but including an
additional index for each lift. The servicing behaviour is as before, see (9)–(17), except each proposition
is given an additional index for the lift under consideration. Each lift must be at exactly one floor at any
moment for j = 1, . . .m

(
n∨

i=0

at ji) (58)

and for j = 1, . . .m for each 0 6 i 6 n, 0 6 k 6 n, i 6= j

(¬at ji∨¬at jk) (59)

The formulae (22), (24), (25) are as previously but given an additional index for the lift in question.
The initial conditions are as previously but with propositions extended with the lift index. Note that this
means many clauses are repeated for each lift which makes the specification much longer.

4 Execution
Once we have our temporal specification, then we might like to prototype this to see if it behaves as we
would expect. For this we can use METATEM [4].

The METATEM system essentially takes a temporal specification, again in SNF [21], and attempts
to build a model for it. Given a set of SNF clauses, the basic METATEM execution process involving
forward chaining from the initial clauses via the step clauses. During this the execution attempts to
satisfy any ‘♦’ formulae generated from sometime clauses. In order to ensure that no satisfying path
has been missed, the execution may backtrack to consider alternative choices [4, 5].

METATEM has been developed and refined over the years, but we here just use the basic model
building capabilities. See [26, 24] for further details on aspects available in the current implementation,
including: multiple processes/agents; communication between agents; limited first-order syntax; limited
backtracking; preferences (and other meta-level predicates); and context.

In the case of our lift specification, we can take the SNF version and directly execute it. For the
basic specification, this is likely to be uninteresting since no lift calls are prescribed. The lift could just
sit at one floor forever and so happily satisfy its specification. So, in addition to the earlier specification,
we need to have some description of the environment. Specifically, we need a description of the pattern
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of call button presses. So long as we can describe this behaviour in temporal logic, then we just add this
to our lift specification an execute using METATEM.

As an example, we took the specification for the 3 floor lift system and executed it using the
METATEM implementation developed by Anthony Hepple and available at

http://www.csc.liv.ac.uk/~michael/TLBook

With some simple “print” statements added, the basic lift specification, when executed, just chose one
floor to be at, in a fairly arbitrary way. However, once we added

start ⇒ g(c2∧ g g(c0∧ g gc1))

specifying a sequence of calls, the output became:

State 0: At floor 1

State 1: Called to floor 2; At floor 1

State 2: Called to floor 0; At floor 2

State 3: Called to floor 1; At floor 1

State 4: At floor 0

.............

Similarly, we can add formulae such as

(♦c0 ∧♦c1 ∧♦c2)

and have an infinite number of calls.

This is a good way to explore straightforward specifications, but is not especially efficient. For example,
once we get to examples with 4 or 5 floors, then METATEM becomes very slow. Note however, that the
implementation used above essentially allows first-order temporal specifications and this, together with
some programming directives which improve efficiency, can make such specifications execute much
more quickly.

5 Proofs About Lifts

So, once we have our lift specification, and we are happy that it appears to do what we want, then we
would like to prove some properties of it. Since we now have

Spec — a temporal formula specifying the lift system

Req — a temporal formula describing our requirements

then we would like to prove

` Spec ⇒ Req

But, how shall we do this? We can, if necessary, use METATEM as seen in the last section, since
METATEM is a complete model-building procedure for PTL (within one agent). However, letting
METATEM backtrack over all possibilities is very inefficient. So, instead, we consider the clausal
temporal resolution method [25].
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5.1 Resolution for Propositional Temporal Logic
This is a refutation method, so we negate the formula we wish to prove. Then, since it is a clausal
method, we translate the resulting formula into SNF again. Once a formula has been transformed into
SNF, both step resolution and eventuality resolution rules can be applied. Step resolution effectively
consists of the application of the standard classical resolution rule to formulae representing constraints
at a particular moment in time, together with simplification rules, subsumption rules, and rules for
transferring contradictions within states to constraints on previous states. Eventuality resolution resolves
a sometime clause whose right-hand side is, for example, ♦l with a set of clauses that together imply
that l is always false. Pairs of initial or step clauses may be resolved using the following initial and step
resolution rules (where A and B are disjunctions of literals, C and D are conjunctions of literals, and p
is a proposition).

start ⇒ A∨ p
start ⇒ B∨¬p
start ⇒ A∨B

C ⇒ g(A∨ p)
D ⇒ g(B∨¬p)

(C∧D) ⇒ g(A∨B)

The following is used to remove clauses which imply false (where A is a conjunction of literals).

{A⇒ gfalse} −→
{

start ⇒ ¬A
true ⇒ g¬A

}
Thus, if, by satisfying A, a contradiction is produced in the next moment, then A must never be satisfied.

The eventuality resolution rule effectively resolves together formulae containing the and♦ con-
nectives. However, as the translation to SNF restricts the clauses to be of a certain form, the application
of such an operation will be between a sometime clause and a set of step clauses that together ensure a
complementary literal will always hold.

The eventuality resolution rule applies between a sometime clause and a set of clauses that together
imply A⇒ g ¬l.

A ⇒ g ¬l
C ⇒ ♦l
C ⇒ ¬AW l

The resolvent states that once C has been satisfied A must remain false unless l becomes true. The
resolvent requires further translation into SNF. Note that the first premise does not occur in the normal
form. The full temporal resolution rule, in detail, is as follows.

A0 ⇒ gB0
. . . ⇒ . . .
Ar ⇒ gBr
C ⇒ ♦l

C ⇒

[
r∧

i=0

(¬Ai)

]
W l

where Ai⇒ gBi is a
conjunction of one or more step clauses

such that for all i,0≤ i≤ r
Bi⇒¬l; and

Bi⇒
r∨

j=0

A j.

The side conditions ensure that
(
∨

i

Ai)⇒ g ¬l.

The set of clauses Ai ⇒ gBi that satisfy these side conditions are together known as a loop in ¬l.
Algorithms to find the loop within a set of SNF clauses are described in [9, 10]. The resolvent must
again be translated into SNF before any further resolution steps. Whilst this introduces additional new
propositions the number required is finite (one for each eventuality) so does not not affect the termina-
tion of the calculus (see [25] for more details). The step resolution process terminates when either no
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new resolvents can be generated or a contradiction is derived by generating the following unsatisfiable
formula

start ⇒ false.

Given any temporal formula, A, to be tested for unsatisfiability, the following steps are performed [24].

1. Translate A into SNF, giving As.

2. undertake step resolution (including simplification and subsumption) on As until either

(a) start⇒ false is derived—terminate declaring that A is unsatisfiable; or

(b) no further resolvents are generated—continue to step (3).

3. Choose an eventuality from the right-hand side of a sometime clause within As, for example♦l.
Search for loop-formulae for ¬l.

4. Construct loop resolvents for the loop detected and each sometime clause with ♦l on the right-
hand side. If any new formulae (i.e., that are not subsumed by clauses already present) have been
generated, go to step (2).

5. If all eventualities have been resolved, i.e., no new formulae have been generated for any of the
eventualities, terminate declaring A satisfiable; otherwise go to step (3).

The following theorem shows the correctness of the calculus.

Theorem 2. [25] A clause set, S, is satisfiable if and only if temporal resolution procedure terminates
declaring the set of clauses is “satisfiable” when applied to S.

5.2 TRP++
TRP++ [33] is a theorem prover for PTL which is implemented in C++ and based on the above temporal
resolution calculus. Input uses the SNF normal form but has a different syntax to that given above which
is more amenable to mechanisation. To apply the initial and step resolution rules clauses are translated
into first order logic using a natural arithmetic translation. For example an initial clause

start⇒ p1∨ p2∨ p3

is translated to
p1(0)∨ p2(0)∨ p3(0)

where 0 is the natural number 0, and step clauses

p1∧ p2⇒ g(p3∨ p4)

are translated to
∀x(¬p1(x)∨¬p2(x)∨ p3(s(x))∨ p4(s(x)))

where s represents the successor function over the natural numbers. Both initial and step resolution
correspond to standard first-order ordered resolution. The eventuality resolution rule can also be imple-
mented using an algorithm based on step resolution as described in [11]. Thus using this translation
any first-order resolution prover could be used to perform initial and step resolution. However TRP++
implements its own ‘near propositional’ approach to do this. An earlier version of TRP++ has been com-
pared with a implementations of a number of temporal tableau-based decision procedures and performs
well [34].
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5.3 Properties to Prove

We now describe some temporal properties that we might like to prove of the above specifications. For
simplicity, we assume that n = 4, i.e. the top floor is the 4th.

5.3.1 Simple Single Lift

P1a This property relates to the lift specification L1 about buttons and lights inside the lift. Pressing a
button for some floor in the lift causes the light within the lift to illuminate (if the lift doors are
not already open at that floor).

4∧
i=0

((si∧¬di)⇒ lsi)

P1b This property relates to the lift specification L1 about buttons and lights inside the lift. If the send
light is illuminated for some floor it is cancelled when the lift visits that floor.

4∧
i=0

(di⇒¬lsi)

P2a Properties P2a and P2b relate to the lift specification L2 about buttons and lights outside the lift on
each floor. Note that as in this specification we only have one button per floor we cannot deal with
the properties that relate to the direction of the lift. (It is not simple to specify the property relating
to minimising waiting times.) Pressing a button on some floor causes the light to illuminate (if
the lift doors are not already open at that floor).

4∧
i=0

((ci∧¬di)⇒ lci)

P2b If a call light is illuminated on some floor it is cancelled when the lift visits that floor.

4∧
i=0

(di⇒¬lci)

P3 This relates to lift specification L3. When a lift has no request to service it should remain at its final
destination with its doors closed and await further requests.

(
(

4∧
i=0

(¬lci∧¬lsi))⇒
4∧

i=0

(ati⇒ gati)

)
.

P4 This relates to lift specification L4. All requests for lifts from a floor must be serviced eventually.
(It is not straightforward to model the part of L4 “with all floors given equal priority”.)

4∧
i=0

(ci⇒♦di). .
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P5 This relates to L5. All requests for floors within lifts must be serviced eventually. We do not attempt
to specify “with floors being serviced sequentially in the direction of travel”.

4∧
i=0

(si⇒♦di). .

P6 We cannot specify this as we have not dealt with emergency behaviour.

P7 We show that the lift door is either closed on all floors or is open on at most one floor (see Sec-
tion 3.1).

4∧
i, j=0,i6= j

(¬di∨¬d j)

5.3.2 Single Lift with Up and Down Call Buttons

P1a and P1b As previously.

P2 Properties P2a and P2b relate to the lift specification L2 about buttons and lights outside the lift on
each floor. (Again, it is not obvious how to specify the property relating to minimising waiting
times.)

P2au’ Pressing a call up button on some floor causes the light to illuminate (if there is not already
an upservice at that floor).

3∧
i=0

(cui∧¬uvi)⇒ lcui

P2ad’ Pressing a call down button on some floor causes the light to illuminate (if there is not
already a down service at that floor).

4∧
i=1

(cdi∧¬dvi)⇒ lcdi

P2bu’ If a call up light is illuminated on some floor it is cancelled when the lift visits that floor (i.e.
there is an up service at that floor).

3∧
i=0

(uvi⇒¬lcui)

P2bd’ If a call down light is illuminated on some floor it is cancelled when the lift visits that floor
(i.e. there is an down service at that floor).

4∧
i=1

(dvi⇒¬lcdi)

P3’ This relates to lift specification L3. When a lift has no request to service it should remain at its final
destination with its doors closed and await further requests. We now have to use the up and down
versions of the light buttons(

n−1∧
i=0

¬lcui∧
n∧

i=1

¬lcdi∧
n∧

i=0

¬lsi

)
⇒

4∧
i=0

(ati⇒ gati) .
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P4 This relates to lift specification L4. All requests for lifts from a floor must be serviced eventually.
(Again, it is not straightforward to model the part of L4 “with all floors given equal priority”.)

P4u’ We have split this into two the first for call up buttons and the second for call down buttons.
First the call up version.

3∧
i=0

(cui⇒♦uvi).

P4d’ Next the call down version.
4∧

i=1

(cdi⇒♦dvi).

P5 As previously

P5a’ We also try proof this for a sample floor

(s2⇒♦d2).

P6 As previously we cannot specify this as we have not dealt with emergency behaviour.

P7 As above.

5.3.3 Multiple Lifts

We can state properties in a similar manner for multiple lifts.

5.4 Proving Selected Properties

We use the above specifications as input to TRP++. Assume that n = 4, i.e. the top floor is floor 4.

5.4.1 Simple Single Lift

First we consider the specification of a simple single lift with just one external button per floor (see
Section 3.1) and the properties in Section 5.3. Let Spec be the conjunction of the formulae (1)–(28) and
Req be the property we wish to prove. The following table show the results from inputting Spec∧¬Req
to TRP++. The first line shows that the specification on its own is satisfiable. The negation of the other
properties returns unsatisfiable as expected.

Req Satisfiable Time (s)
- Satisfiable 0.03
P1(a) Unsatisfiable 0.36
P1(b) Unsatisfiable 0.03
P2(a) Unsatisfiable 0.36
P2(b) Unsatisfiable 0.03
P3 Unsatisfiable 0.12
P4 Unsatisfiable 6.15
P5 Unsatisfiable 12.3
P7 Unsatisfiable 0.03
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5.4.2 Single Lift with Up and Down Call Buttons

Next we consider the specification of a simple single lift with two external buttons per floor (see Sec-
tion 3.1) and the properties in Section 5.3. Let Spec1 be the conjunction of the formulae (4)–(6), (8),
(9)–(17), (22), (25)–(27), and (29)–(51) and Req be the property we wish to prove. The following table
show the results from inputting Spec1∧¬Req to TRP++. The first line shows that the specification on
its own is satisfiable. The entry with the time denoted as > 3600 denotes that the prover had not finished
within an hour. The negation of the other properties returns unsatisfiable as expected.

Req Satisfiable Time (s)
- Satisfiable 1.62
P1(a) Unsatisfiable 2.29
P1(b) Unsatisfiable 1.78
P2(au)’ Unsatisfiable 2.78
P2(ad)’ Unsatisfiable 8.80
P2(bu)’ Unsatisfiable 2.28
P2(bd)’ Unsatisfiable 5.32
P3’ Unsatisfiable 6.76
P4u’ Unsatisfiable 24.89
P4d’ Unsatisfiable 55.71
P5 Unsatisfiable > 3600
P5a’ Unsatisfiable 13.91
P7 Unsatisfiable 1.64

5.4.3 Multiple Lifts

Next we consider the specification of two lifts each with two external buttons per floor (see Section 3.3)
and the properties in Section 5.3. Let Spec2 be the conjunction of the formulae (with propositions
extended by the additional lift index where necessary) (4)–(6), (9)–(17), (22), (25), (33)–(51), and (52)
-(59) and Req be the property we wish to prove. At this point we find the proof time becoming very
large. This shows that some, more refined, representation is required instead of describing everything
in PTL (and using a large number of propositions). In the next two sections, we describe two such
improved representations.

6 Applying Constraints
When we write our specification in PTL, we of course get too many/big formulae. We might turn to
first-order temporal logics to solve this (see later) but there is another approach. Consider the structural
constraints we gave earlier, essentially in propositional (not temporal) logic. For example, with one lift
and 5 floors, we need all of:

at0 ⇒ (¬at1∧¬at2∧¬at3∧¬at4)
at1 ⇒ (¬at0∧¬at2∧¬at3∧¬at4)
at2 ⇒ (¬at0∧¬at1∧¬at3∧¬at4)
at3 ⇒ (¬at0∧¬at1∧¬at2∧¬at4)
at4 ⇒ (¬at0∧¬at1∧¬at2∧¬at3)

to state that the lift is at most one floor at any moment (see (26) and (27)). Additionally we also need to
add

at0∨at1∨at2∨at3∨at4

103



On and On the Temporal Way Clare Dixon and Michael Fisher

to ensure that the lift is at some floor at any moment. This is even before we get to more interesting
formulae that specify the dynamic aspects of the lift. If we go on to 10, or 100, or 1000 lifts then the
above formulae are huge.

We here describe a class of temporal logics that have such structural constraints built in. These log-
ics, called TLX [14, 16] and TLC [15], not only reduce the size of the temporal specifications we use
but also significantly reduce the complexity of the decision problem for such specifications if the spec-
ifications are in or near SNF. Note that this approach involves reasoning in the presence of constraints
rather than reasoning about them. We begin with the logic TLC.

Essentially the logic TLC is PTL extended by the addition of cardinality constraints that restricts
the numbers of literals that can be satisfied at any moment in time. To specify the constraints we allow
statements stating that up to k literals, or exactly k literals from some subset of literals, are true at any
moment in time. The above statement expressing that a lift may be at exactly one floor is written as

T =1 = {at0, . . . ,atn}=1

Other constraints that appear in this specification are the doors on some lift must be open on at most one
floor.

D61 = {d0, . . . ,dn}61

Formally, a constraint C∝imi
i is a tuple (Ci,∝i,mi), where Ci is a set of literals with a cardinality re-

striction ∝i mi, such that ∝i∈ {=,≤} and mi ∈N. The logic TLC is parametrised by a set of constraints,
TLC(C∝1m1

1 , · · · ,C∝nmn
n ). The set of propositional symbols PROP is constructed as follows

PROP = {p | p ∈C∝imi
i }∪ {p | ¬p ∈C∝imi

i }∪ A

where A is a set of unconstrained propositions. The syntax of TLC formulae is the same as for PTL.
The semantics of TLC uses the satisfiability of a constraint which we define next.

The notation L |=PL ϕ denotes the truth of propositional logic formula ϕ with respect to a set of
propositions L . L |=PL p iff p ∈L where p ∈ PROP and the semantics of the operators ¬, ∨ is as
usual. Let L be a set of propositions, C∝m a constraint and

Eval(L ,C∝m) = {p | p ∈L and p ∈C} ∪{¬p | p 6∈L and ¬p ∈C}

then
L |=PL C=m iff |Eval(L ,C=m)|= m,
L |=PL C6m iff |Eval(L ,C6m)|6 m.

Note that the operator |=PL is only defined for formulae from propositional logic (not from temporal
logic). A set C of constraints is satisfiable (|=PL C ) if, and only if, there is a set of propositions L , such
that, for each C∝imi

i ∈ C (i ∈ N), L |=PL C∝imi
i .

A model for TLC(C ) formulae can be characterised as a sequence of states, σ , of the form σ =
s0,s1,s2,s3, . . . , where each state si is a set of propositional symbols representing those propositions,
which are satisfied at the ith moment in time. Every si should satisfy the set of constraints, C , i.e., for
all si we have si |=PL C (where si is a set of propositions).

Theorem 3. [15] Satisfiability of a T LC(C ∝1m1
1 , . . .C ∝nmn

n ) formula ϕ in Separated Normal Form can
be decided in time

O
(
|ϕ|×

(
|C ∝1m1

1 |m1 ×·· ·× |C ∝nmn
n |mn ×2|A |

)2
)

where |ϕ| is the length of ϕ , |C ∝imi
i | is the size of the set C ∝imi

i of constrained literals, and |A | is the
size of the set A of unconstrained propositions.
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If the TLC formulae are in, or close to, the normal form, in practice, this result means that TLC reasoning
can be much more efficient than reasoning with the representation of constraints in PTL.

In [15] we provided a tableau-like algorithm to check satisfiability for TLC formulae. Essentially
we construct a graph like structure where nodes are sets of literals that satisfy the constraints and edges
represent temporal successors that satisfy step formulae. Deletions in the graph occur when a node has
no edges from it (i.e. no node satisfies the right hand side of any step clauses) and terminal subgraphs
where some eventuality cannot be fulfilled. In experiments the use of constraints appears not only to
provide a succinct representation but also outperforms other tableau reasoners for temporal logic when
a large number of propositions are constrained. However there are a number of disadvantages. First, we
have to explicitly enumerate sets of propositions that satisfy the set of constraints. Second, although the
algorithm only generates reachable states, we are often forced to construct all the states, e.g., when there
are no initial clauses. This immediately results in the worst case complexity. Inherently, the incremental
graph construction adopts a breadth-first style that requires us to construct, and keep in memory, a large
number of nodes, resulting in an unavoidable inefficiency. We are currently developing a more standard
tableau calculus along the lines of [44].

TLX is sublogic of TLC. The constraints in TLX are restricted to be “exactly one” sets (and as
usual some unconstrained propositions are allowed), i.e. all the constraints are of the form C=1

i . As a
further restriction we require that the sets of propositions in each Ci are disjoint. Thus TLX(C1, . . . ,Cn)
= TLC(C=1

1 , . . . ,C=1
n ) with the additional restriction of disjointness. In [16] we devised a temporal

resolution calculus for TLX, and established its completeness and complexity. Specifically, if a set of
TLX clauses is unsatisfiable, then a contradiction will be deduced within time polynomial in N1×N2×
·· ·×Nn×2A where N1 is the size of C1, N2 is the size of C2, etc, while A is the number of unconstrained
propositions. TLX has a number of potential applications, and its relatively low complexity makes fast
analysis feasible.

7 Many Lifts
As mentioned above, when we get many lifts/floors then our PTL specifications become large. We must
duplicate many formulae for each lift, for example in relation to the movement, location and door status
of each lift. Also we must make sure that formulae relating to interactions between lifts is correctly
specified e.g., when to turn off a external call light which may have been serviced by any lift. However,
since all lifts have the same temporal specification, then what we really want is a first-order temporal
logic (FOTL) specification that we can instantiate for each particular lift. While appealing, FOTL has
severe complexity problems. However, if we restrict ourselves to the monodic fragment [31] then the
logic remains tractable.

7.1 First Order Temporal Logic

First-Order (discrete linear time) Temporal Logic, FOTL, is an extension of classical first-order logic
with operators that deal with a linear and discrete model of time (isomorphic to N with the usual order
relation, <, ‘less than’). Formulae in FOTL are constructed in a standard way [21, 31] from:

• predicate symbols P0,P1, ... each of which is of some fixed arity (null-ary predicate symbols are
called propositions);

• individual variables x0,x1, ...;

• individual constants c0,c1, ...;
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• Boolean operators true, ¬, and ∨;

• quantifiers ∃; and

• temporal operators ‘♦’ (sometime in the future), ‘ g’ (at the next moment in time), and ‘U ’
(until);

So,

• true is a FOTL formulae.

• If t1, ..., tn are constants or variables and P is a n-ary predicate symbol, then P(t1, ..., tn) is a FOTL
formula.

• If φ and ψ are FOTL formulae and x is an individual variable then so are ¬φ , φ ∨ψ , ∃xφ , ♦φ ,gφ , φ U ψ .

Note we can obtain false, ∀, and the other Boolean operators via the usual equivalences, and the temporal
operators ‘ ’, ‘♦’ and ‘W ’ operators using the equivalences in Section 2.

A FOTL formula φ is called monodic (see [31]) if any subformulae of the form T φ , where T is one
of♦, , g(or φ1T φ2, where T is one of U or W ) contains at most one free variable.

Formulae in FOTL are interpreted in first-order temporal structures of the form M= 〈Di, Ii〉, where
Di is a non-empty set and Ii is an interpretation of predicate and constant symbols over Dn. We make
the expanding domains assumption, i.e., whenever n < m, Di ⊆ Dm. A (variable) assignment, a, is a
function from the set of individual variables to

⋃
i∈N Dn. We denote the set of all variable assignments

by V. For every moment of time n, there is a corresponding first-order structure, Mi = 〈Di, Ii〉; the
corresponding set of variable assignments Vn is a subset of the sets of all assignments,

Vi = {a|a(x) ∈ Di for every variable x}.

Intuitively, FOTL formulae are interpreted in sequences of such moments in time, M0,M1, ... with truth
values in different moments being connected via temporal operators.

The truth relation Mi |=a φ in a structure M, only for those assignments a that satisfy the condition
a ∈ Vn, is defined inductively in the usual way under the following understanding of the temporal
operators:

Mi |=a gφ iff Mi+1 |=a φ

Mi |=a φ iff for all m ∈ N , if (m≥ i) then Mm |=a φ

Mi |=a♦φ iff there exists m ∈ N such that (m≥ i) and Mm |=a φ

Mi |=a φ U ψ iff there existsm≤ i, and Mm |=a ψ, and for all j ∈ N ,
if (i≤ j < m) then Mi |=a φ

Mi |=a φ W ψ iff Mi |=a φ U ψ or Mi |=a φ

M is a model for a formula φ (or φ is true in M) if there exists an assignment a such that M0 |=a φ .
A formula is satisfiable if it has a model. A formula is valid if it is satisfied in any temporal structure
under any assignment.
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7.2 Divided Separated Normal Form (DSNF)
As for PTL, a normal form has been defined for FOTL. This was first defined in [8] and later used in
[37]. A temporal step clause is a formula either of the form p⇒ gl, where p is a proposition and l
is a propositional literal, or (P(x)⇒ gM(x)), where P(x) is a unary atom and M(x) is a unary literal.
We call a clause of the first type an (original) ground step clause, and of the second type an (original)
non-ground step clause. A monodic temporal problem in Divided Separated Normal Form (DSNF) is a
quadruple 〈U ,I ,S ,E 〉, where

1. the universal part, U , is given by a finite set of arbitrary closed first-order formulae;

2. the initial part, I , is, again, given by a finite set of arbitrary closed first-order formulae;

3. the step part, S , is given by a finite set of original (ground and non-ground) temporal step clauses,
the left-hand sides of step clauses are pairwise distinct; and

4. the eventuality part, E , is given by a finite set of clauses of the form♦L(x) (a non-ground even-
tuality clause) and♦l (a ground eventuality clause), where l is a propositional literal and L(x) is
a unary non-ground literal.

With each monodic temporal problem, we associate the formula

I ∧ U ∧ ∀xS ∧ ∀xE .

where in the above we denote the conjunction
∧

X for a finite set of formulae X simply as X .

Theorem 4 (see [8], Theorem 1). Any monodic first-order temporal formula φ can be transformed into
a monodic temporal problem P in DSNF with at most linear increase in the size of the problem such that
φ is satisfiable over expanding domains if, and only if, P is satisfiable over expanding domains.

7.3 Lift Specification
We can use the specification for multiple lifts from Section 3.3 to develop a specification in first-order
temporal logic. To remain monodic we must decide whether the variables relate to lifts or floors. Here
we select the latter. For example the first-order version of the clause (9) is as follows.

∀x(ati(x)∧ cai(x)∧up(x)⇒ g(ati+1(x)∧up(x)))

7.4 Temporal Resolution
Next we explain how clausal temporal resolution is extended to monodic FOTL [8, 37] Let P be a
monodic temporal problem, and let

Pi1(x) =⇒ gMi1(x), . . . ,Pik(x) =⇒ gMik(x) (60)

be a subset of the set of its step clauses. Then formulae of the form

Pi j(c) =⇒ gMi j(c), (61)

∃x
∧k

j=1 Pi j(x) =⇒ g∃x∧k
j=1 Mi j(x), (62)

are called derived step clauses where c ∈ const(P) and j = 1 . . .k.
Let {Φ1 =⇒ gΨ1, . . . ,Φn =⇒ gΨn} be a set of derived step clauses or original ground step

clauses. Then ∧n
i=1 Φi⇒ g∧n

i=1 Ψi
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is called a merged derived step clause.
Let A =⇒ gB be a merged derived step clause, let P1(x) =⇒ gM1(x), . . . , Pk(x) =⇒ gMk(x)

be a subset of the original step clauses, and let A (x) def
= A ∧

∧k
i=1 Pi(x), B(x) def

= B∧
∧k

i=1 Mi(x). Then

∀x(A (x) =⇒ gB(x))

is called a full merged step clause.
Next we define the temporal resolution rules for the expanding domain case where A ⇒ gB and

Ai⇒ gBi denote merged derived step clauses, ∀x(A (x)⇒ gB(x)) and ∀x(Ai(x)⇒ gBi(x)) denote
full merged step clauses, and U denotes the universal part of the problem.
Step resolution rule w.r.t. U :

A ⇒ gB
¬A where U ∪{B} |= false.

Initial termination rule w.r.t. U :

false if U ∪I |= false.

Eventuality resolution rule w.r.t. U :

∀x(A1(x)⇒ gB1(x)) . . . ∀x(An(x)⇒ gBn(x)) ♦L(x)
∀x
∧n

i=1¬Ai(x)

where i∈{1, . . . ,n}, the side conditions ∀x(U ∧Bi(x) =⇒ ¬L(x)) and ∀x(U ∧Bi(x) =⇒
n∨

j=1

(A j(x)))

are both valid

Ground eventuality resolution rule w.r.t. U :

A1⇒ gB1 . . . An⇒ gBn ♦l∧n
i=1¬Ai

where U ∧Bi |= ¬l and U ∧Bi |=
∨n

j=1 A j for all i ∈ {1, . . . ,n} are both valid.
Note that all the inference rules have side conditions which are first-order problems. In general,

these side conditions will therefore only be semi-decidable and in the case a side condition is false, it
may happen that the test of this side condition does not terminate. So, to ensure fairness we must make
sure that each such test cannot indefinitely block the investigation of alternative applications of inference
rules in a derivation. Let P = 〈U ,I ,S ,E 〉 be a monodic temporal problem, then the set of formulae

Pc = 〈U ,I ,S ,E ∪{♦L(c) |♦L(x) ∈ E ,c ∈ const(P)}〉

is termed the constant flooded form of P. Pc is satisfiability equivalent to P.

Theorem 5 (see [8, Theorem 10]). The rules of the calculus preserve satisfiability over expanding do-
mains. If a monodic temporal problem P is unsatisfiable over expanding domains, then any fair deriva-
tion from Pc successfully terminates.

Note the papers [8, 37] also describes how to extend this to constant domains.
The paper [37] provides a more machine-oriented clausal resolution calculus based on that in [8].

Two implementations of this calculus have been carried out TeMP [32] and TSPASS [39]. TeMP [32]
implements [8] using the kernel of the first order prover Vampire [42] to carry out step resolution in a
way similar to that described for TRP++. TSPASS [39] is also based on [8] but ensures that derivations
are fair and uses the first order prover SPASS [6] to carry out step resolution. TSPASS was developed
by Michel Ludwig and Ullrich Hustadt and is available for use at

http://www.csc.liv.ac.uk/~michel/software/tspass/
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8 Extensions and Conclusions
Finally we consider possible extensions to the specifications and provide concluding remarks.

8.1 Extensions
Fault Tolerant Lifts. Imagine we have a (monodic) FOTL specification of our lift system. What if
one or more lifts fail/break? Will we still be able to service the calls/requests? This would partially
address (L6), the part of the specification relating to lift emergencies. What if there are an unbounded
number of lifts? What if we do not know how many lifts actually fail, but know that there is only a finite
number of failures? And how can we verify all these? We could try apply techniques for fault tolerant
and infinite state verification such as [27, 28].

Uncertain Lifts. What if we are not certain exactly where a lift will move? We might specify this
using additional probabilistic operators, for example:

(at2∧up) ⇒ g(P17
20

at3∧P 3
20

at1)

following work such as [7].

Epistemic Lifts. What if our lifts know something about other floors/lifts? For example, maybe the
lift does not visit a floor it knows another lift is visiting (or is planning to visit)? How might we specify
this? We can extend our temporal specification with the S5n modalities typically used for logics of
knowledge [19] and then carry out some proof on such specifications, see for example [18, 12, 40, 17].

Autonomous Lifts. What if lifts are autonomous? What if they have goals and beliefs of their own
and can decide whether or not to move or open their doors1? Pressing a button to call a lift just sends
a request to the lift, which can then choose to add a new goal of getting to the requested floor. What if
there are multiple, conflicting goals? How can we specify such systems? How can we prototype them?
How can we verify their properties? Here can apply the work in, for example, [13, 22, 23, 26].

8.2 Concluding Remarks
Here we have presented several areas relating to temporal specification, verification and execution we
have been involved with. We have used the paper [3] to provide motivating examples or on which
we have based the specifications and properties to apply our techniques. There has been much other
work in this area we have not mentioned, for example, tableau calculi for PTL [30, 44, 43, 36] and
implementations such as [35, 1], and tableau for FOTL [38]. All of this shows, however, that the
field of temporal specification and verification remains vibrant, even after all these years since Howard
Barringer’s original lift specification.
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