
Turing Incomputable Computation

Michael Stephen Fiske

Aemea Institute, San Francisco, California, U.S.A.
mf@aemea.org

Abstract

A new computing model, called the active element machine (AEM), is presented that
demonstrates Turing incomputable computation using quantum random input. The AEM
deterministically executes a universal Turing machine (UTM) program η with random ac-
tive element firing patterns. These firing patterns are Turing incomputable when the AEM
executes a UTM having an unbounded number of computable steps. For an unbounded
number of computable steps, if zero information is revealed to an adversary about the
AEM’s representation of the UTM’s state and tape and the quantum random bits that
help determine η’s computation and zero information is revealed about the dynamic con-
nections between the active elements, then there does not exist a “reverse engineer” Turing
machine that can map the random firing patterns back to the sequence of UTM instruc-
tions. This casts a new light on Turing’s notion of a computational procedure. In practical
terms, these methods present an opportunity to build a new class of computing machines
where the program’s computational steps are hidden. This non-Turing computing behavior
may be useful in cybersecurity and in other areas such as machine learning where multiple,
dynamic interpretations of firing patterns may be applicable.

1 Introduction

Recent cyberattacks have demonstrated that current approaches to the malware problem (e.g.,
detection) are inadequate. This is not surprising as malware detection is Turing undecidable
[6]. Further, some recent malware implementations use NP problems to encrypt and hide the
malware [17]. Two goals guide an alternative approach: (a) Program execution should hide
computational steps in order to hinder “reverse engineering” efforts by malware hackers; (b)
New computational models should be explored that make it more difficult to hijack the purpose
of program execution. The methods explained here pertain to (a).

Turing incomputable ([4], [7], [8]) computation is created using quantum random input.
A new computing machine, called the active element machine (AEM), is presented that uses
quantum randomness ([42], [43]) to deterministically execute a universal Turing machine (UTM)
program η (table 2) with random firing interpretations. The active element machine computing
model was introduced in [18], is summarized in section 2 and is further described in subsection
7.2 of the appendix. Furthermore, the active element firing patterns – computing the execution
of the UTM program – are Turing incomputable when the UTM computation is non-halting or
when the UTM computation is executed repeatedly on an unbounded number of computable
initial configurations that halt.

The incomputability of the firing patterns depends on two quantum randomness axioms.

1. No bias. A single outcome xi of a bit sequence (x1x2 . . .) generated by quantum random-
ness is unbiased: P (xi = 1) = P (xi = 0) = 1

2 .

2. History has no effect on the next event. Each outcome xi is independent of the history.
No correlation exists between previous or future outcomes. P (xi = 1 | x1 = b1, . . . ,
xi−1 = bi−1) = 1

2 and P (xi = 0 | x1 = b1, . . . , xi−1 = bi−1) = 1
2 for each bi ∈ {0, 1}.

66 A. Voronkov (ed.), Turing-100 (EPiC Series, vol. 10), pp. 66–91

Turing Incomputable Computation Michael Fiske

Let Ω = {(b1b2 . . .) : bi ∈ {0, 1}} be the space of infinite sequences of 0’s and 1’s represent-
ing infinite quantum random bit sequences. From these two axioms, in [4] Calude and Szovil
conclude that if a quantum system producing the quantum randomness runs under ideal condi-
tions to infinity, then the resulting infinite sequence of 0’s and 1’s (i.e., sequence in Ω) is Turing
incomputable. In other words, no Turing machine can exactly reproduce this infinite sequence
of 0’s and 1’s. In this context, no Turing machine can reproduce an unbounded number of the
aforementioned active element firing patterns.

The following definition helps clarify the one-way nature of the random AEM firing patterns.

Definition 1. Turing machine map back. Let g : N → {0, 1} and f : N → {0, 1, . . . ,m}
be functions. A Turing machine maps g back to function f if conditions A and B hold. A)
The initial Turing machine tape has g(k) stored on tape square k for each k. B) The Turing
machine begins execution at tape square 1 and after a finite number of steps writes f(1) on
tape square 1. For each k, the Turing machine visits tape square k and after a finite number of
steps, it writes f(k) on tape square k and then moves to tape square k + 1.

If zero information is revealed to an adversary about the AEM’s representation of the UTM’s
state and tape and the quantum random bits that help determine η’s computation and zero
information is revealed about the dynamic connections between the active elements, then there
does not exist a “reverse engineer” Turing machine that can map the random firing patterns
back to the sequence of UTM instructions when the UTM executes an unbounded number
of computable steps. Overall, using quantum randomness, a finite active element machine can
deterministically execute any Turing machine with active element firing patterns that are Turing
incomputable. This casts a new light on the notion of a computational procedure ([5], [45]). In
[29], Lewis and Papadimitriou discuss the Church-Turing notion of an algorithm (computational
procedure):

The principle that Turing machines are formal versions of algorithms and that no computational
procedure will be considered as an algorithm unless it can be presented as a Turing machine is
known as Church’s thesis or the Church-Turing Thesis. It is a thesis, not a theorem, because it
is not a mathematical result: It simply asserts that a certain informal concept corresponds to a
certain mathematical object. It is theoretically possible, however, that Church’s thesis could be
overthrown at some future date, if someone were to propose an alternative model of computation
that was publicly acceptable as fulfilling the requirement of finite labor at each step and yet was
provably capable of carrying out computations that cannot be carried out by any Turing machine.

The works of [14], [22], [23], [27] and [40] describe methods of hypercomputation that cur-
rently have no physical realization. In [11] Davis provides counterarguments to the physical
realizability of hypercomputation. In [10] he calls hypercomputation “a myth” and appears
to dismiss random number generators as a means to enhance the computing power of Turing
machines.

The computing power of Turing machines provided with a random number generator was studied
in the classic paper [12]. It turned out that such machines could compute only functions that are
already computable by ordinary Turing machines.

In [12], de Leeuw et al. explain that their results depend on the definitions of the machines
chosen and the tasks these machines perform.

The following question will be considered in this paper: Is there anything that can be done by a
machine with a random element but not by a deterministic machine?

The question as it stands is, of course, too vague to be amenable to mathematical analysis. In
what follows, it must be delimited in two respects. A precise definition of the class of machine to
be considered must be given and an equally precise definition must be given of the tasks which
they are to perform. It is clear that the nature of our results will depend strongly on these two
choices and therefore our answer is not to be interpreted as a complete solution of the originally
posed informal question.

67

Turing Incomputable Computation Michael Fiske

What are relevant differences? In [12], the Turing machine reads a random infinite sequence
of 0’s and 1’s off the tape – called a probabilistic machine – but the Turing machine program
does not change as a consequence of this random input. (A definition of Turing machine
program is in section 7.1 of the appendix.) In this paper, during AEM program execution, the
Meta command changes the AEM architecture (program) based on the quantum random input,
which changes the AEM program’s computing behavior. In particular, at each computational
step of the UTM, the random input helps determine the element parameters and connection
parameters of the active elements that collectively compute η; and the Meta command helps
dynamically change these parameters based on the random input.

Another AEM example with random input also illustrates the differences. In [18], section
7 describes a method – using a finite AEM program, a quantum random input and the Meta

command – for recognizing a non-Turing binary language L ⊂ {0, 1}∗. After the AEM has
received enough random input, then the AEM can determine whether, for example, if the
string 011001 is in the binary language L recognized by the AEM. In other words, the random
input helps determine the binary language L and the Meta command helps dynamically build
the appropriate AEM that recognizes L.

A physical realization of the methods shown here can be implemented using a quantum
random generator device [43] with a USB plug connected to a laptop computer executing a
finite active element machine program. It is important to note that this physical realization of
incomputable firing patterns is a scientific thesis – not a mathematical proof, as this realization
depends on quantum theory.

In a cryptographic system, Claude Shannon [38] defines the notion of perfect secrecy.

Perfect Secrecy is defined by requiring of a system that after a cryptogram is intercepted by the
enemy the a posteriori probabilities of this cryptogram representing various messages be identically
the same as the a priori probabilities of the same messages before the interception.

Perfect secrecy here means that zero information is released about the state and the tape
contents of the universal Turing machine, the quantum random bits that help determine how η
is computed and the dynamic connections of the active element machine. Formally, let f1,j f2,j
. . . fm,j represent the random firing pattern computing η during the jth computational step
and assume an adversary can only eavesdrop on f1,j f2,j . . . fm,j . Let q denote the current
state of the UTM, ak a UTM alphabet symbol and qk a UTM state. Perfect secrecy means
that probabilities P (q = qk | f1,j = b1 . . . fm,j = bm) = P (q = qk) and P (Tk = ak | f1,j = b1
. . . fm,j = bm) = P (Tk = ak) for each bi ∈ {0, 1} and each Tk which represents the contents of
the kth tape square.

In [28], Kocher et al. present differential power analysis. Differential power analysis ob-
tains information about cryptographic computations executed by register machine hardware,
by statistically analyzing the electromagnetic radiation leaked by the hardware during its com-
putation. If a quantum active element computing system is built so that its internal components
remain close to perfectly secret, then it could be extremely challenging for an adversary to carry
out cyberattacks such as differential power analysis.

1.1 Brief Summary of Prior Computing Models

In [45], the Turing Machine is introduced. A brief review is in the appendix. In [44], Sturgis
and Shepherdson show the computational equivalence of the register machine. The works [9],
[29], [30], [31], [33] and [41] cover computability theory. Alternative models influenced by
neurophysiology are discussed by McCulloch and Pitts in [32], Rosenblatt in [37], Minsky and
Papert in [34], Rall in [35], Hertz et al. in [21] and Hopfield in [24], [26] and [25]. In [20] Halang

68

Turing Incomputable Computation Michael Fiske

et al. describe some advantages of using time. Important work on quantum computing models
is presented in [1], [2], [13], [15], [16], [19], [30], [31] and [39].

2 An Informal Summary of the Active Element Machine

A formal introduction to the active element machine is in section 7.2. An AEM is composed
of computational primitives called active elements. There are three kinds of active elements:
Input, Computational and Output active elements. Input active elements process information
received from the environment or another active element machine. Computational active ele-
ments receive pulses from the input active elements and other computational active elements
and transmit new pulses to computational and output active elements. The output active ele-
ments receive pulses from the input and computational active elements. Every active element
is active in the sense that each one can receive and transmit pulses simultaneously.

Each pulse has an amplitude and a width, representing how long the pulse amplitude lasts
as input to the active element receiving the pulse. If active element Ei simultaneously receives
pulses with amplitudes summing to a value greater than Ei’s threshold and Ei’s refractory
period has expired, then Ei fires. When Ei fires, it sends pulses to other active elements. If Ei

fires at time t, a pulse reaches element Ek at time t + τik where τik is the transmission time
from element Ei to Ek.

The AEM programming language has 5 commands and 2 special keywords. (See 7.3.) Con-
sider element command (Element (Time 2) (Name L) (Threshold -3) (Refractory 2) (Last 0)). At
time 2, if active element L does not exist, then it is created. Element L has its threshold set
to −3, its refractory period set to 2, and its last time fired set to 0. After time 2, element L

exists indefinitely with threshold = −3, refractory = 2 until a new element command whose
name value L is executed at a later time; in this case, the parameter values specified in the new
command are updated.

A connection command sets the pulse parameters between two elements. Consider command

(Connection (Time 2) (From C) (To L) (Amp -7) (Width 6) (Delay 3)) . At time 2, the connection
from active element C to active element L has its amplitude set to −7, its pulse width set to
6, and transmission time set to 3. A Fire command fires an input active element in order to
communicate program input to the AEM. (Fire (Time 3) (Name C)) causes element C to fire at
time t = 3.

A Program command enables one command to execute multiple commands. The execution
of (Q (Args 0 E L)) based on the following program definition

(Program Q (Args t x y)

(Element (Time t) (Name x) (Refractory 7) (Threshold 8) (Last 0))

(Connection (Time t) (From x) (To y) (Amp 5) (Width 3) (Delay 4))

)

creates element E and a connection from E to L at time t = 0.

The Meta command (Meta (Name E) (Window 1 5) (C (Args a b))) causes command C to exe-
cute with arguments a and b each time that element E fires during the time window [1, 5]. The
keyword dT denotes an infinitesimal amount of time that helps coordinate almost simultaneous
events. dT > 0 and dT is less than every positive rational number. The keyword clock evaluates
to an integer, which is the current time of the AEM clock.

69

Turing Incomputable Computation Michael Fiske

3 AEM Interpretations of Boolean Functions

In this section, the same boolean function is computed by two or more distinct active element
firing patterns, which can be executed at two distinct times or by two different circuits in the
AEM. The use of level sets helps design distinct AEM firing patterns that can compute the
same boolean function. These firing patterns can be generated using quantum randomness.

The following procedure uses a finite active element program and a quantum system to either
fire input element I or not fire I at time t = n where n is a natural number {0, 1, 2, 3, . . . }.
This random sequence of 0’s and 1’s can be generated by quantum systems discussed in [3], [42]
or [43].

Procedure 1. Randomness generates an AEM, representing a real number in [0, 1]

A random sequence of bits creates active elements named 0, 1, 2, . . . that store the binary
representation b0b1b2 . . . of real number x ∈ [0, 1]. If input element I fires at time t = n, then
bn = 1; thus, create active element n so that after t = n, element n fires every unit of time
indefinitely. If input element I doesn’t fire at time t = n, then bn = 0 and active element n is
created so that it never fires. The following program real exhibits this behavior.
(Program real (Args t)

(Connection (Time t) (From I) (To t) (Amp 2) (Width 1) (Delay 1))

(Connection (Time t+1+dT) (From I) (To t) (Amp 0))

(Connection (Time t) (From t) (To t) (Amp 2) (Width 1) (Delay 1)))

(Element (Time clock) (Name clock) (Threshold 1) (Refractory 1) (Last -1))

(Meta (Name I) (real (Args clock)))

Suppose the sequence of random bits begins with 1, 0, 1, Thus, input element I fires
at times 0, 2, At time 0, the following commands are executed.
(Element (Time 0) (Name 0) (Threshold 1) (Refractory 1) (Last -1))

(real (Args 0))

The execution of (real (Args 0)) causes three connection commands to execute.
(Connection (Time 0) (From I) (To 0) (Amp 2) (Width 1) (Delay 1))

(Connection (Time 1+dT) (From I) (To 0) (Amp 0))

(Connection (Time 0) (From 0) (To 0) (Amp 2) (Width 1) (Delay 1))

At time 0, input element I sends a pulse with amplitude 2 to element 0. Thus, element 0 fires at
time 1. At time 1+dT, a moment after time 1, the connection from input element I to element
0 is removed. At time 0, a connection from element 0 to itself with amplitude 2 is created.
Element 0 continues to fire indefinitely, indicating that b0 = 1.

(Element (Time 1) (Name 1) (Threshold 1) (Refractory 1) (Last -1)) is created at time 1.
Since element 1 has no connections into it and threshold 1, it never fires. Thus b1 = 0.

3.1 Active Element Firing Patterns

This subsection explains how a firing pattern can be used to compute a boolean function
f : {0, 1}2 → {0, 1}. These methods can be extended to f : {0, 1}n → {0, 1}. In the next
section, the level set methods described here are combined with procedure 1 so that a quantum
random firing pattern computes the boolean functions representing the execution of universal
Turing machine program η.

Active elements X0, X1, X2 and X3 are designed so that each Xi either fires or doesn’t fire
during window W = [a, b]. After one of the 16 firing patterns is randomly generated, level sets
f−1{0} and f−1{1} are used to compute f : {0, 1}2 → {0, 1}. Element P represents the output
of f . The goal is for P to fire during windowW if and only if P receives a unique firing pattern
from elements X0, X1, X2 and X3. This goal motivates the following definition.

70

Turing Incomputable Computation Michael Fiske

Definition 2. Number of Firings during a Window
Let X denote the set of active elements {X0, X1, . . . , Xn−1} that determine a firing pattern

during window of time W. Then |(Xk,W)| = the number of times that element Xk fired during

W. Thus, define the number of firings during window W as |(X,W)| =
∑n−1

k=0 |(Xk,W)|.

Observe that |(X,W)| = 0 for firing pattern 0000 and |(X,W)| = 2 for firing pattern 0101.
To isolate a firing pattern so that element P only fires if this unique firing pattern occurs, set
the threshold of element P = 2|(X,W)| − 1. The element command for P is
(Element (Time a-dT) (Name P) (Threshold 2| (X, W) | − 1) (Refractory b-a) (Last 2a-b))

Each connection from Xk to P is based on whether Xk is supposed to fire or not fire during
W. If Xk is supposed to fire during W, the following connection is established.
(Connection (Time a-dT) (From X_k) (To P) (Amp 2) (Width b-a) (Delay 1))

If Xk is not supposed to fire during W, then the following connection is established.
(Connection (Time a-dT) (From X_k) (To P) (Amp -2) (Width b-a) (Delay 1)) The firing pattern is
already known because it is determined based on a random source of bits received by input
elements, as explained in procedure 1.

Example 1. Computing ⊕ with Firing Pattern 0010
Firing pattern 0010 computes exclusive-or A⊕B = (A ∨B) ∧ (¬A ∨ ¬B).

An AEM program is designed such that A ⊕ B = 1 if and only if the firing pattern for
X0, X1, X2, X3 is 0010. If A ⊕ B = 1 then P fires. If A ⊕ B = 0 then P doesn’t fire.
Choose window W = [2, 3]. The following commands connect elements A and B to elements
X0, X1, X2, X3.

(Connection (Time 0) (From A) (To X_0) (Amp 2) (Width 2) (Delay 2))

(Connection (Time 0) (From B) (To X_0) (Amp 2) (Width 2) (Delay 2))

(Element (Time 0) (Name X_0) (Threshold 3) (Refractory 1) (Last 1))

(Connection (Time 0) (From A) (To X_1) (Amp -2) (Width 2) (Delay 2))

(Connection (Time 0) (From B) (To X_1) (Amp -2) (Width 2) (Delay 2))

(Element (Time 0) (Name X_1) (Threshold -1) (Refractory 1) (Last 1))

(Connection (Time 0) (From A) (To X_2) (Amp 2) (Width 2) (Delay 2))

(Connection (Time 0) (From B) (To X_2) (Amp 2) (Width 2) (Delay 2))

(Element (Time 0) (Name X_2) (Threshold 1) (Refractory 1) (Last 1))

(Connection (Time 0) (From A) (To X_3) (Amp 2) (Width 2) (Delay 2))

(Connection (Time 0) (From B) (To X_3) (Amp 2) (Width 2) (Delay 2))

(Element (Time 0) (Name X_3) (Threshold 3) (Refractory 1) (Last 1))

There are four cases for A⊕B shown below.

1. 1⊕ 0. Element A fires at time t = 0 and element B doesn’t fire at t = 0.

2. 0⊕ 1. Elements A doesn’t fire at t = 0 and element B fires at time t = 0.

3. 1⊕ 1. Element A fires at time t = 0 and element B fires at t = 0.

4. 0⊕ 0. Elements A and B both don’t fire at t = 0.

To isolate firing pattern 0010, set the threshold of P to 2|(X,W)|−1 = 1. The element command
for P is (Element (Time 2-dT) (Name P) (Threshold 1) (Refractory 1) (Last 1)). To make P fire if
and only if firing pattern 0010 occurs during W, use the commands

71

Turing Incomputable Computation Michael Fiske

(Connection (Time 2-dT) (From X_0) (To P) (Amp -2) (Width 1) (Delay 1))

(Connection (Time 2-dT) (From X_1) (To P) (Amp -2) (Width 1) (Delay 1))

(Connection (Time 2-dT) (From X_2) (To P) (Amp 2) (Width 1) (Delay 1))

(Connection (Time 2-dT) (From X_3) (To P) (Amp -2) (Width 1) (Delay 1))

For cases 1 and 2, (1⊕ 0 and 0⊕ 1) only X2 fires. A moment before X2 fires at t = 2 (i.e.,
−dT), the amplitude from X2 to P is set to 2. At time t = 2, a pulse with amplitude 2 is sent
from X2 to P , so P fires at time t = 3 since its threshold = 1. In other words, 1 ⊕ 0 = 1 or
0⊕ 1 = 1 has been computed. For case 3, (1⊕ 1), X0, X2 and X3 fire. Thus, two pulses each
with amplitude = −2 are sent from X0 and X3 to P . And one pulse with amplitude 2 is sent
from X2 to P . Thus, P doesn’t fire. In other words, 1⊕ 1 = 0 has been computed. For case 4,
(0⊕ 0), X1 fires. One pulse with amplitude = −2 is sent to X2. Thus, P doesn’t fire. In other
words, 0⊕ 0 = 0 has been computed.

As shown in table 1, any of the sixteen boolean functions can be mapped to one of the
sixteen firing patterns by an appropriate AEM program using level sets to separate elements
of the domain {(0, 0), (1, 0), (0, 1), (1, 1)}. Each active element Xk in the firing pattern sep-
arates these members based on the (amplitude from A to Xk, amplitude from B to Xk,
threshold of Xk, element Xk) quadruplet. For example, the quadruplet (0, 2, 1, X1) separates
{(1, 1), (0, 1)} from {(1, 0), (0, 0)} with respect to X1. Recall that A = 1 means A fires and
B = 1 means B fires. Then X1 will fire with inputs {(1, 1), (0, 1)} and X1 will not fire with

inputs {(1, 0), (0, 0)}. The separation rule is expressed as (0, 2, 1, X1) ↔ {(1,1),(0,1)}
{(1,0),(0,0)} The sep-

aration rule (0,−2,−1, X2) ↔ {(1,0),(0,0)}
{(1,1),(0,1)} indicates that X2 has threshold −1 and amplitudes

0 and −2 from A and B respectively. Further, X2 will fire with inputs {(1, 0), (0, 0)} and will
not fire with inputs {(1, 1), (0, 1)}.

Table 1: Functions fk : {0, 1} × {0, 1} → {0, 1}
Boolean Function AEM Separation Rule(s)

f1(A,B) = 1 (0, 0,−1, Xk)↔ {(0,0),(1,0),(0,1),(1,1)}
∅

f2(A,B) = 0 (0, 0, 1, Xk)↔ ∅
{(0,0),(1,0),(0,1),(1,1)}

f3(A,B) = A (2, 0, 1, Xk)↔ {(1,1),(1,0)}
{(0,1),(0,0)}

f4(A,B) = B (0, 2, 1, Xk)↔ {(1,1),(0,1)}
{(1,0),(0,0)}

f5(A,B) = ¬A (−2, 0,−1, Xk)↔ {(0,1),(0,0)}
{(1,1),(1,0)}

f6(A,B) = ¬B (0,−2,−1, Xk)↔ {(1,0),(0,0)}
{(1,1),(0,1)}

f7(A,B) = A ∧B (2, 2, 3, Xk)↔ {(1,1)}
{(1,0),(0,1),(0,0)}

f8(A,B) = A ∨B (2, 2, 1, Xk)↔ {(1,0),(0,1),(1,1)}
{(0,0)}

f9(A,B) = A→ B (−4, 2,−3, Xk)↔ {(0,0),(0,1),(1,1)}
{(1,0)}

f10(A,B) = A← B (2,−4,−3, Xk)↔ {(0,0),(1,0),(1,1)}
{(0,1)}

f11(A,B) = A↔ B (2,−4,−3, Xk) and (−4, 2,−3, Xj) with j 6= k

72

Turing Incomputable Computation Michael Fiske

Boolean Function AEM Separation Rule(s)

f12(A,B) = ¬(A ∨B) (−2,−2,−1, Xk)↔ {(0,0)}
{(1,0),(0,1),(1,1)}

f13(A,B) = ¬(A ∧B) (−2,−2,−3, Xk)↔ {(1,0),(0,1),(0,0)}
{(1,1)}

f14(A,B) = A⊕B (2, 2, 1, Xk) and (−2,−2,−3, Xj) with j 6= k

f15(A,B) = A < B (−2, 4, 3, Xk)↔ {(0,1)}
{(0,0),(1,0),(1,1)}

f16(A,B) = A > B (4,−2, 3, Xk)↔ {(1,0)}
{(0,0),(0,1),(1,1)}

For each Xj , use one of the separation rules to map the level set fk
−1{1} or alternatively map

the level set fk
−1{0} to one of the sixteen firing patterns represented by X0, X1, X2, X3.

4 Random Firing Interpretations Execute a UTM

A universal Turing Machine (UTM) is a Turing machine that can mimic the computation of any
Turing Machine by reading the other Turing Machine’s description and input from the UTM’s
tape. Table 5 in the appendix shows Minsky’s universal Turing machine described in [33]. A
boolean representation of Minsky’s UTM is shown in table 2.

The elements of {0, 1}2 are denoted as A = {00, 01, 10, 11}. The tape symbols in Minsky’s
UTM alphabet correspond to elements in A as follows: 0 ↔ 00, 1 ↔ 01, y ↔ 10 and A ↔ 11.
The states of Minsky’s UTM correspond to the elements of Q as follows: q1 ↔ 001, q2 ↔ 010,
q3 ↔ 011, q4 ↔ 100, q5 ↔ 101, q6 ↔ 110, q7 ↔ 111 and the halting state H ↔ 000. In regard
to tape head moves, L ↔ 0 and R ↔ 1 in {0, 1}. Symbol h indicates that the tape head does
not move, which occurs when the UTM has halted.

An active element machine is designed to compute the universal Turing Machine program η
shown in table 2. Following the methods in 3.1, multiple AEM firing interpretations are created
that compute η. The three boolean variables U,W,X are concatenated to represent the current
state of the UTM. The two boolean variables Y,Z represent the current tape symbol. Observe
that η = (η0η1η2, η3η4, η5). The level sets of η3 are shown below.

η3
−1(UWX,Y Z){1} = {(111, 00), (110, 00), (110, 01), (110, 10), (101, 00), (101, 01), (101, 10), (100, 00), (100, 10)

(011, 01), (011, 10), (010, 11), (010, 01), (010, 00)}
η3
−1(UWX,Y Z){0} = {(111, 01), (111, 10), (111, 11), (110, 11), (101, 11), (100, 01), (100, 11), (011, 00), (011, 11)

(010, 10), (001, 00), (001, 01), (001, 10), (001, 11), (000, 01), (000, 10), (000, 11), (000, 00)}

Table 2: Boolean Universal Turing Machine program η = (η0η1η2, η3η4, η5)

10 00 01 11

001 (001, 00, 0) (001, 00, 0) (010, 01, 0) (001, 01, 0)
010 (001, 00, 0) (010, 10, 1) (010, 11, 1) (110, 10, 1)
011 (011, 10, 0) (000, 00, h) (011, 11, 0) (100, 01, 0)
100 (100, 10, 0) (101, 10, 1) (111, 01, 0) (100, 01, 0)
101 (101, 10, 1) (011, 10, 0) (101, 11, 1) (101, 01, 1)
110 (110, 10, 1) (011, 11, 0) (110, 11, 1) (110, 01, 1)
111 (111, 00, 1) (110, 10, 1) (111, 01, 1) (010, 00, 1)

State set Q = {001, 010, 011, 100, 101, 110, 111}. Alphabet A = {10, 00, 01, 11}.

73

Turing Incomputable Computation Michael Fiske

The level sets of ηk : {0, 1}3 × {0, 1}2 → {0, 1} where k ∈ {0, 1, 2, 4, 5} are shown below.
η0
−1(UWX,Y Z){1} = {(111, 10), (111, 01), (111, 00), (110, 11), (110, 10), (110, 01), (101, 11), (101, 10), (101, 01)

(100, 11), (100, 10), (100, 01), (100, 00), (011, 11) (010, 11)}
η0
−1(UWX,Y Z){0} = {(111, 11), (110, 00), (101, 00), (011, 10), (011, 01), (011, 00), (010, 10), (010, 01), (010, 00)

(001, 11), (001, 10), (001, 01), (001, 00), (000, 11), (000, 10), (000, 01), (000, 00)}

η1
−1(UWX,Y Z){1} = {(111, 11), (111, 10), (111, 01), (111, 00), (110, 11), (110, 10), (110, 01), (110, 00), (101, 00)

(100, 01), (011, 10), (011, 01), (010, 11), (010, 01), (010, 00), (001, 01)}
η1
−1(UWX,Y Z){0} = {(101, 11), (101, 10), (101, 01), (100, 11), (100, 10), (100, 00), (011, 11), (011, 00), (010, 10)

(001, 11), (001, 10), (001, 00), (000, 11), (000, 10), (000, 01), (000, 00)}

η2
−1(UWX,Y Z){1} = {(111, 10), (111, 01), (110, 00), (101, 11), (101, 10), (101, 01), (101, 00), (100, 01), (100, 00)

(011, 10), (011, 01), (010, 10), (001, 11), (001, 10), (001, 00)}
η2
−1(UWX,Y Z){0} = {(111, 11), (111, 00), (110, 11), (110, 10), (110, 01), (100, 11), (100, 10), (011, 11), (011, 00)

(010, 11), (010, 01), (010, 00), (001, 01), (000, 11), (000, 10), (000, 01), (000, 00)}

η4
−1(UWX,Y Z){1} = {(111, 01), (110, 11), (110, 01), (110, 00), (101, 11), (101, 01), (100, 11), (100, 01), (011, 11)

(011, 01), (010, 01), (001, 11), (001, 01)}
η4
−1(UWX,Y Z){0} = {(111, 11), (111, 10), (111, 00), (110, 10), (101, 10), (101, 00), (100, 10), (100, 00), (011, 10)

(011, 00), (010, 11), (010, 10), (010, 00), (001, 10), (001, 00), (000, 11), (000, 10), (000, 01), (000, 00)}

η5
−1(UWX,Y Z){1} = {(111, 11), (111, 10), (111, 01), (111, 00), (110, 11), (110, 10), (110, 01), (101, 11), (101, 10)

(101, 01), (100, 00), (010, 11), (010, 01), (010, 00)}
η5
−1(UWX,Y Z){0} = {(110, 00), (101, 00), (100, 11), (100, 10), (100, 01), (011, 11), (011, 10), (011, 01), (010, 10)

(001, 11), (001, 10), (001, 01), (001, 00), (000, 11), (000, 10), (000, 01), (000, 00)}

The level set η5
−1(UWX,Y Z){h} = {(011, 00)} is the special case when the UTM halts (i.e.,

η(011, 00) = (000, 00, h)). When the UTM halts, the AEM reaches a halting firing pattern H.

The next example copies one element’s firing state to another element’s firing state. This
program helps assign the value of a random bit to an active element and perform other functions
in the UTM. When the following copy program is called, active element b fires if a fired during
the window of time [s, t). Further, a connection is set up from b to b so that b will keep firing
indefinitely. This enables b to store active element a’s firing state.

Example 2. Copy Program
An AEM program copies active element a’s firing state to element b.

(Program copy (Args s t b a)

(Element (Time s-1) (Name b) (Threshold 1) (Refractory 1) (Last s-1))

(Connection (Time s-1) (From a) (To b) (Amp 0) (Width 0) (Delay 1))

(Connection (Time s) (From a) (To b) (Amp 2) (Width 1) (Delay 1))

(Connection (Time s) (From b) (To b) (Amp 2) (Width 1) (Delay 1))

(Connection (Time t) (From a) (To b) (Amp 0) (Width 0) (Delay 1)))

Procedure 2. Computing Turing Program η with Random Firing Patterns
Procedure 2 describes the computation of η with random AEM firing patterns.

Consider function η3 : {0, 1}5 → {0, 1}. The following scheme is used to represent boolean
values 1 and 0 with the firing of active elements. If active element U fires during window W,
then this corresponds to input U = 1 in η3; if active element U doesn’t fire during window W,
then this corresponds to input U = 0 in η3. When U fires, W doesn’t fire, X fires, Y doesn’t
fire and Z doesn’t fire, this corresponds to computing η3(101, 00). The value 1 = η3(101, 00) is
the underlined bit in (011, 10, 0), which is located in row 101, column 00 of table 2.

Procedure 1 and the separation rules in table 3 are synthesized so that η3 is computed using
a dynamic interpretation determined by quantum random bits. This creates random active
element firing patterns that compute η3.

74

Turing Incomputable Computation Michael Fiske

The firing activity of element P3 represents the output value of η3(UWX,Y Z). Fourteen
random bits are created from quantum randomness (See [42], [43]). These random bits create
a corresponding random firing pattern of active elements R0, R1, . . . R13. Meta commands
dynamically build active elements and connections based on the separation rules in table 3
and the firing activity of elements R0, R1, . . . R13. These dynamically created elements and
connections determine the firing activity of element P3 based on the firing activity of elements
U,W,X, Y and Z. This procedure is described below.

Table 3: AEM Separation Rules for Level Set η3
−1{1}

Firing Pattern Element (U,Di) (W,Di) (X,Di) (Y,Di) (Z,Di) θDi

111 00 D0 2 2 2 −2 −2 5
110 00 D1 2 2 −2 −2 −2 3
110 01 D2 2 2 −2 −2 2 5
110 10 D3 2 2 −2 2 −2 5
101 00 D4 2 −2 2 −2 −2 3
101 01 D5 2 −2 2 −2 2 5
101 10 D6 2 −2 2 2 −2 5
100 00 D7 2 −2 −2 −2 −2 1
100 10 D8 2 −2 −2 2 −2 3
011 01 D9 −2 2 2 −2 2 5
011 10 D10 −2 2 2 2 −2 5
010 00 D11 −2 2 −2 −2 −2 1
010 01 D12 −2 2 −2 −2 2 3
010 11 D13 −2 2 −2 2 2 5

Step 2.1 A quantum source creates fourteen random bits a0, a1, . . . and a13. These bit
values are stored in elements R0, R1, . . . , R13. If ak = 1, then Rk fires; if ak = 0, Rk doesn’t
fire.

Step 2.2 Set up dynamical connections from active elements U,X,W, Y, Z to elements
D0, D1, . . . , D13, which depend on meta commands that use the firing pattern from elements
R0, R1, . . . R13.

For D0, look at the first row and first column of table 3. The firing pattern 111 00 means
that D0 dynamically separates this pattern with respect to the other firing patterns of UWX
Y Z. The separation is dynamic based on whether element R0 fires or doesn’t fire. If R0 fires,
then D0 fires when the firing pattern for UWX Y Z is 111 00; for all other firing patterns
for UWX Y Z, then D0 doesn’t fire. If R0 doesn’t fire, then D0 doesn’t fire when the firing
pattern for UWX Y Z is 111 00; for all other firing patterns for UWX Y Z, then D0 fires.
In a similar way, D1 dynamically separates the firing pattern 110 00 for UWX Y Z based on
whether element R1 fires. Observe that every firing pattern in the first column is in the level
set of η3

−1{1}.
The firing pattern 111 00 corresponds to the η instruction (111, 00), whose output (110, 10, 1)

is shown in the last row and second column of table 2. The amplitudes from U,W,X, Y, Z to
D0 are labeled by the headers (U,Di), (W,Di), (X,Di), (Y,Di) and (Z,Di), respectively. D0’s
threshold 5 is in the first row under the header θDi .

(Program set_dynamic_C (Args s t f xk a w tau rk)

(Connection (Time s-dT) (From f) (To xk) (Amp -a) (Width w) (Delay tau))

(Meta (Name rk) (Window s t)

(Connection (Time t) (From f) (To xk) (Amp a) (Width w) (Delay tau))))

75

Turing Incomputable Computation Michael Fiske

(Program set_dynamic_E (Args s t xk h r L rk)

(Element (Time s-2dT) (Name xk) (Threshold -h) (Refractory r) (Last L))

(Meta (Name rk) (Window s t)

(Element (Time t) (Name xk) (Threshold h) (Refractory r) (Last L))))

(set_dynamic_E (Args s t D0 5 1 s-2 R0)) (set_dynamic_C (Args s t U D0 2 1 1 R0))

(set_dynamic_C (Args s t W D0 2 1 1 R0)) (set_dynamic_C (Args s t X D0 2 1 1 R0))

(set_dynamic_C (Args s t Y D0 -2 1 1 R0)) (set_dynamic_C (Args s t Z D0 -2 1 1 R0))

At time s-dT, set_dynamic_C initializes the amplitudes of the connections to AUD0
= −2,

AWD0
= −2, AXD0

= −2, AY D0
= 2, AZD0

= 2. If R0 fires, then the meta command in
set_dynamic_C, causes the connection command to execute at time t, which flips the sign
of each of the amplitudes to AUD0 = 2, AWD0 = 2, AXD0 = 2, AY D0 = −2, AZD0 = −2.
Similarly, set_dynamic_E initializes the threshold of D0 to θD0 = −5. If R0 fires, then the
meta command causes the element command to execute at time t, which flips the sign of the
threshold of D0. In this case, θD0

= 5.
Similarly, for elements D1, . . . , D13, set_dynamic_E and set_dynamic_C dynamically set

the element parameters and the connections from U,X,W, Y, Z to D1, . . . , D13 based on the
rest of the quantum random firing pattern R1, . . . R13 and the appropriate parameter values
shown in table 3.

Step 2.3 Set up connections to active elements G0, G1, G2, . . . G14 which represent the
number of elements in {R0, R1, R2, . . . R13} that are firing. If 0 are firing, then only G0 is firing.
Otherwise, if k > 0 elements in {R0, R1, R2, . . . R13} are firing, then only G1, G2, G3 . . . Gk are
firing.

(Program firing_count (Args G a b h)

(Element (Time a-2dT) (Name G) (Threshold h) (Refractory b-a) (Last 2a-b))

(Connection (Time a-dT) (From R0) (To G) (Amp 2) (Width b-a) (Delay 1))

(Connection (Time a-dT) (From R1) (To G) (Amp 2) (Width b-a) (Delay 1))

. . .

(Connection (Time a-dT) (From R13) (To G) (Amp 2) (Width b-a) (Delay 1))

)

(firing_count (Args G0 a b -1)) (firing_count (Args G1 a b 1)) . . .

(firing_count (Args G13 a b 25)) (firing_count (Args G14 a b 27))

Step 2.4 Element P3 represents the output of η3. Initialize P3’s threshold based on
meta commands that use the firing activity from elements G0, G1, G2, . . . G13. Since t + dT <
t + 2dT < · · · < t + 15dT, the meta commands set the threshold for P3 to −2(14 − k) + 1
where k is the number of firings. For example, if nine of the randomly chosen bits are high,
then G9 will fire, so the threshold of P3 is set to −9. If five of the random bits are high, then
the threshold of P3 is set to −17. Each element of the level set η3

−1{0} creates a firing pattern
of D0, . . . D13 equal to the complement of the random firing pattern R0R1 . . . R13 (i.e., Dk fires
if and only if Rk does not fire).

(Program set_P_threshold (Args G P s t a b theta kdT)

(Meta (Name G) (Window s t)

(Element (Time t+kdT) (Name P) (Threshold theta) (Refractory b-a) (Last t-b+a))))

(set_P_threshold (Args G0 P3 s t a b -27 dT))

(set_P_threshold (Args G1 P3 s t a b -25 2dT))

76

Turing Incomputable Computation Michael Fiske

. . .

(set_P_threshold (Args G13 P3 s t a b -1 14dT))

(set_P_threshold (Args G14 P3 s t a b 1 15dT))

Step 2.5 Set up dynamical connections from D0, D1, D2, . . . , D13 to P3 based on the
random bits stored by R0, R1, . . . R13. These connections are based on meta commands that
use the firing pattern from elements R0, R1, . . . R13.

(Program set_from_Xk_to_Pj (Args s t Xk Pj a w tau Rk)

(Connection (Time s-dT) (From Xk) (To Pj) (Amp -a) (Width w) (Delay tau))

(Meta (Name Rk) (Window s t)

(Connection (Time t) (From Xk) (To Pj) (Amp a) (Width w) (Delay tau))))

(set_from_Xk_to_Pj (Args s t D0 P3 2 b-a 1 R0)) . . .

(set_from_Xk_to_Pj (Args s t D13 P3 2 b-a 1 R13))

Similar procedures use random firing patterns on elements {A0, . . . , A14}, {B0, . . . , B15},
{C0, . . . , C14}, {E0, . . . , E12}, and {F0, . . . , F13} to compute η0, η1, η2, η4, and η5, respectively.
The outputs of η0, η1, η2, η4, and η5 are represented by active elements P0, P1, P2, P4 and P5,
respectively. In subsection 7.5 of the appendix, the level set rules for η0, η1, η2, η4, and η5 are
shown, respectively in tables 6, 7, 8, 9 and 10.

The firing activity of element Pk represents a single bit that helps determine the next state
or next tape symbol during a UTM computational step. If an eavesdropper is able to listen to
the firing activity of P0, P1, P2, P3, P4 and P5, which collectively represent the computation of
η(UXW,Y Z), then this leaking of information could be used to reconstruct some or all of the
UTM tape contents. This weakness can be rectified as follows. For each UTM computational
step, the AEM uses six additional quantum random bits b0, b1, b2, b3, b4, b5. For P3, if random
bit b3 = 1, then the dynamical connections from D0, D1, . . . D13 to P3 are chosen as described
above. However, if random bit b3 = 0, then the amplitudes of the dynamical connections from
D0, D1, . . . D13 to P3 and the threshold of P3 are multiplied by −1. This causes P3 to fire when
η3(UXW,Y Z) = 0 and P3 doesn’t fire when η3(UXW,Y Z) = 1.

This cloaking of P3’s firing activity can be coordinated with a meta command based on
the value of b3 so that P3’s firing is appropriately interpreted to dynamically change the active
elements and connections that update the UTM tape contents and state after each computa-
tional step. This cloaking procedure can also be used for element Pk and random bit bk where
k ∈ {0, 1, 2, 4, 5}. Furthermore, the same methods can be used to cloak the active element firing
patterns that represent the UTM’s state and tape contents. In particular, these methods may
help cloak the firing pattern representing the halting state H.

Besides representing and computing the program η with quantum random firing patterns,
there are other useful functions computed by active elements executing the UTM. Assume that
these connections and the active element firing activity are kept perfectly secret as they represent
the state and the tape contents of the UTM tape contents. Alternatively, the active elements
representing the UTM tape contents and state may be cloaked similar to the description for
cloaking elements P0, P1, . . . , P5.

• Three active elements (q 0), (q 1) and (q 2) store the current state of the UTM.

• There are a collection of elements to represent the tape head location k where k is an
integer.

77

Turing Incomputable Computation Michael Fiske

• A marker active element L locates the leftmost tape square and a separate marker active
element R locates the rightmost tape square. Any tape symbols outside these markers
are assumed to be blank (i.e., 0). If the tape head moves beyond the leftmost tape
square, then L’s connection is removed and updated one tape square to the left and the
machine is reading a 0. If the tape head moves beyond the rightmost tape square, then
R’s connection is removed and updated one tape square to the right and the machine is
reading a 0.

• There are a collection of elements that represent the tape contents of the UTM. For each
tape square k inside the marker elements, there are two elements named (S k) and (T k)
whose firing pattern determines the alphabet symbol at tape square k. For example, if
elements (S 5) and (T 5) are not firing, then tape square 5 contains alphabet symbol 0.
If element (S −7) is firing and element (T −7) is not firing, then tape square −7 contains
alphabet symbol y. If element (S −4) is not firing and element (T −4) is firing, then tape
square −4 contains alphabet symbol 1. If elements (S 13) and (T 13) are both firing,
then tape square 13 contains alphabet symbol A.

• Representing alphabet symbol 0 with two active elements that are not firing is convenient
because if the tape head moves beyond the initial tape contents of the UTM, then the
meta command can add two elements that are not firing to represent the contents of the
new square.

The copy program helps construct useful functionality in the UTM. The following program
helps copy a new alphabet symbol to the tape.
(Program copy_symbol (Args s t b0 a0 b1 a1)

(copy (Args s t b0 a0)) (copy (Args s t b1 a1)))

The following program enables a new state to be copied.
(Program copy_state (Args s t b0 a0 b1 a1 b2 a2)

(copy (Args s t b0 a0)) (copy (Args s t b1 a1)) (copy (Args s t b2 a2)))

The sequence of steps by which the UTM is executed with an AEM are described below.

1. Tape contents are initialized and the marker elements L and R are initialized.

2. The tape head is initialized to tape square k = 0 and the current machine state is initial-
ized to q2. In other words, (q 0) is not firing (q 1) is firing and (q 2) is not firing.

3. (S k) and (T k) are copied to ain and the current state (q 0), (q 1), (q 2) is copied to qin.

and m represents the tape head move.

4. If qout = H, then the UTM halts: the AEM reaches a firing pattern that stores the current
tape contents indefinitely and keeps the tape head fixed at tape square k where the UTM
halted.

5. Otherwise, the firing pattern of the three elements representing qout are copied to (q 0),
(q 1), (q 2). aout is copied to the current tape square represented by (S k), (T k).

6. If m = L, then first determine if the tape head has moved to the left of the tape square
marked by L. If so, then have L remove its current marker and mark tape square k − 1.
In either case, go back to step 3 where (S k − 1) and (T k − 1) are copied to ain.

78

Turing Incomputable Computation Michael Fiske

7. If m = R, then first determine if the tape head has moved to the right of the tape square
marked by R. If so, then have R remove its current marker and mark tape square k + 1.
In either case, go back to step 3 where (S k + 1) and (T k + 1) are copied to ain.

First, a simple lemma is proved. This lemma will help show that for a non-halting
UTM computation the firing activity of the elements computing η (i.e.,{A0, . . . , A14, P0},
{B0, . . . , B15, P1}, {C0, . . . , C14, P2}, {D0, . . . , D13, P3}, {E0, . . . , E12, P4} and {F0, . . . , F13, P5}
) is incomputable.

Lemma 4.1. Let γ : N→ {0, 1} be an incomputable function. For each k such that 1 ≤ k ≤ m
assume the boolean function Bk : {0, 1}n → {0, 1}n is invertible. Let h : N → {1, . . . ,m}
be a computable function. Define function g : N → {0, 1} where (g(1), g(2), . . . , g(n))
= Bh(1)(γ(1), γ(2), . . . , γ(n)) and where (g(n + 1), g(n + 2), . . . , g(2n)) = Bh(2)(γ(n + 1),
γ(n+ 2), . . . , γ(2n)), and for the jth n-tuple in {0, 1}n (g(jn+ 1), g(jn+ 2), . . . , g((j + 1)n))
= Bh(j)(γ(jn+ 1), γ(jn+ 2), . . . , γ((j + 1)n)),

Then g is an incomputable function.

Proof. By reductio ad absurdum, suppose g is a computable function. Then g(1), g(2), . . . , g(m)
are computable. Since h(1) is computable and each Bk is invertible and boolean, B−1h(1) is

computable. Then B−1h(1)(g(1), g(2), . . . , g(n)) is computable which equals (γ(1), . . . , γ(n)). This

completes the base case that γ is computable. Repeating this computation j − 1 times, by
induction, γ(1), . . . , γ((j − 1)n) are computable. For the inductive step, g(jn + 1), g(jn + 2),
. . . , g((j + 1)n) is computable. Since h(j) is computable, then B−1h(j) is computable. Thus,

B−1h(j)(g(jn+ 1), g(jn+ 2), . . . , g((j + 1)n)) is computable which equals (γ(jn+ 1), γ(jn+ 2),

. . . , γ((j + 1)n)). The induction principle implies that γ(i) is computable for every natural
number i which is a contradiction.

Definition 3. Representing the firing activity of the active elements computing η

Consider the jth computational step of the UTM. For k such that 1 ≤ k ≤ 15, let fk,j = 1
if element Ak−1 fires during this jth step and fk,j = 0, otherwise. Let f16,j represent the firing
activity of P0. For k such that 17 ≤ k ≤ 32, let fk,j = 1 if element Bk−17 fires during this
jth step and fk,j = 0, otherwise. Let f33,j represent the firing activity of P1. For k such that
34 ≤ k ≤ 48, let fk,j = 1 if element Ck−34 fires during this jth step and fk,j = 0, otherwise.
Let f49,j represent the firing activity of P2. For k such that 50 ≤ k ≤ 63, let fk,j = 1 if element
Dk−50 fires during this jth step and fk,j = 0, otherwise. Let f64,j represent the firing activity
of P3. For k such that 65 ≤ k ≤ 77, let fk,j = 1 if element Ek−65 fires during this jth step and
fk,j = 0, otherwise. Let f78,j represent the firing activity of P4. For k such that 79 ≤ k ≤ 92, let
fk,j = 1 if element Fk−79 fires during this jth step and fk,j = 0, otherwise. Let f93,j represent
the firing activity of P5.

Definition 4. Unbounded number of computable UTM steps

If the UTM execution does not halt, then fk,j is defined for every natural number j. If
the UTM execution halts on a finite or infinite number of tape inputs, then the definition of
f1,j , . . . , f93,j can be extended as follows. Suppose the first tape input halts after m1 steps.
Before the second UTM execution starts, it is assumed that the UTM’s tape contents are
initialized using a computable method. For the first computational step, j = m1+1. Inductively,
if the kth UTM execution halts after mk steps, then it is assumed that the UTM’s tape contents

79

Turing Incomputable Computation Michael Fiske

are initialized using a computable method. On the first step of the k + 1th UTM execution
j = m1 +m2 + . . .mk + 1.

For an unbounded number of computable UTM steps, define the function g : N → {0, 1}
where g(93(j−1)+r+1) = f(r+1),j and 0 ≤ r < 93. In other words, g(1) = g(93(1−1)+1) = f1,1
g(2) = f2,1 . . . g(93) = f93,1 g(94) = f1,2 and so on.

Theorem 4.2. If an unbounded number of computable UTM steps are executed by the AEM
according to Procedure 2 and the two quantum randomness axioms hold, then g is an incom-
putable function.

Proof. It suffices to show that the sequence (f1,1, f2,1, . . . f93,1, f1,2, f2,2, . . . , f93,2, . . . , f1,j ,
. . . f93,j , . . .) in Ω is Turing incomputable. The proof covers the computation of η3. Simi-
lar steps, described below, can be verified for η0, η1, η2, η4 and η5. Lemma 4.1 is applied and
the proof is completed.

The function γ in 4.1 is defined based on the firing activity of R0, R1, . . . , R13 discussed in
steps 2.1 and 2.2 and quantum random bit b3. From [4], the two quantum randomness axioms
imply that γ is Turing incomputable. (Alternatively, it can be shown that the two quantum
randomness axioms induce a Lebesgue probability measure on Ω. The computable sequences in
Ω have Lebesgue measure zero because they are countable. Thus, any infinite quantum random
sequence is incomputable with probability = 1).

From definition 3, g represents the firing activity of elements A0, . . . , A14, B0, . . . , B15,
C0, . . . , C14, D0, . . . , D13, E0, . . . , E12, F0, . . . , F13 and of output elements P0, P1, P2, P3, P4, P5.
g corresponds to function g in lemma 4.1. The elements D0, . . . , D13 are discussed in steps
2.1 and 2.2. For each computational step of the UTM, table 4 shows how the AEM maps
the firing activity of R0, R1, . . . , R13, b3 to the firing activity of D0, D1, . . . , D13, P3. This is
verified by checking the program definitions of set_dynamic_C and set_dynamic_E in step 2.2.
For example, if the current UTM instruction is (111, 00) – i.e., in state 111 and reading tape
symbol 00 – then this corresponds to boolean function B(111,00) shown in the first row of table 4.
B(111,00) defines the mapping of R0, R1, . . . , R13, b3 to the firing activity of D0, D1, . . . , D13, P3.
Each boolean function Bk in table 4 is invertible because Bk ◦Bk equals the identity.

The final verification is that h : N → {1, 2, . . . , 15} is computable. First, identify 1 with
instruction (111, 00), 2 with instruction (110, 00), . . . , 14 with instruction (010, 11) and 15 with
η3
−1{0}. Let (q, Tk) be the current state and tape symbol of the UTM at the jth computational

step. Define h(j) = (q, Tk) if η3(q, Tk) = 1. Otherwise, define h(j) = η3
−1{0}. Since h can be

computed based on the computation of the UTM, h is computable. In the other case, where
the UTM execution halts one or more times, definition 4 assumes that the initialization of the
UTM tape contents is computable, so h is computable.

Theorem 4.3. If an adversary can only eavesdrop on the firing activity of (f1,1, f2,1, . . . f93,1,
. . . , f1,j , . . . f93,j , . . .) then the AEM execution, described in Procedure 2, of the UTM is perfectly
secret. In other words, P (q = qk) = P (q = qk | f1,j = b1 . . . fm,j = bm) and P (Tk = ak) =
P (Tk = ak | f1,j = b1 . . . fm,j = bm) for each bi ∈ {0, 1}, where q is the current state of the
UTM and Tk is the contents of the kth tape square.

Proof. The proof is a straightforward consequence of the two quantum randomness axioms, the
boolean functions in table 4 characterizing the firing activity of f1,1 . . . , f1,j , . . . f93,j , . . . and
the definition of conditional probability.

Let event Q correspond to q = qk. Let event B correspond to f1,j = b1. Then event
B corresponds to f1,j = 1 − b1. The two quantum randomness axioms imply P (Rk = 0)

80

Turing Incomputable Computation Michael Fiske

Table 4: Boolean functions Bk : {0, 1}15 → {0, 1}15 for η3
Boolean Function Definition

B(111,00)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y0 = x0. When k 6= 0, yk = 1− xk. p3 = b3.
B(110,00)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y1 = x1. When k 6= 1, yk = 1− xk. p3 = b3.
B(110,01)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y2 = x2. When k 6= 2, yk = 1− xk. p3 = b3.
B(110,10)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y3 = x3. When k 6= 3, yk = 1− xk. p3 = b3.
B(101,00)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y4 = x4. When k 6= 4, yk = 1− xk. p3 = b3.
B(101,01)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y5 = x5. When k 6= 5, yk = 1− xk. p3 = b3.
B(101,10)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y6 = x6. When k 6= 6, yk = 1− xk. p3 = b3.
B(100,00)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y7 = x7. When k 6= 7, yk = 1− xk. p3 = b3.
B(100,10)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y8 = x8. When k 6= 8, yk = 1− xk. p3 = b3.
B(011,01)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y9 = x9. When k 6= 9, yk = 1− xk. p3 = b3.
B(011,10)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y10 = x10. When k 6= 10, yk = 1−xk. p3 = b3.
B(010,00)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y11 = x11. When k 6= 11, yk = 1−xk. p3 = b3.
B(010,01)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y12 = x12. When k 6= 12, yk = 1−xk. p3 = b3.
B(010,11)(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) y13 = x13. When k 6= 13, yk = 1−xk. p3 = b3.
Bη3−1{0}(x0, x1, . . . , x13, b3) = (y0, y1, . . . , y13, p3) yk = 1− xk for each k. p3 = 1− b3.

xk = 1 if element Rk fires. If b3 = 1, P3 fires iff (UWX,Y Z) ∈ η3−1{1}.
xk = 0 if element Rk doesn’t fire. If b3 = 0, P3 fires iff (UWX,Y Z) ∈ η3−1{0}.

= P (Rk = 1) = 1
2 ; from table 4, this implies P (B) = P (B) = 1

2 . Now P (B) P (Q | B) =

P (Q ∩ B). Also, P (Q) = P (Q ∩ B) + P (Q ∩ B). Then P (Q) = 1
2P (Q | B) + 1

2P (Q | B)

because P (B)P (Q | B) = P (Q ∩ B). Lastly, P (Q | B) = P (Q | B) because P (Rk = 0)
= P (Rk = 1) = P (B) = P (B) = 1

2 and from the properties of the boolean functions in table 4.
Thus, P (Q) = P (Q | B) which means that P (q = qk) = P (q = qk | f1,j = b1). Similar steps
can be repeated to show that P (q = qk) = P (q = qk | f1,j = b1 . . . fm,j = bm) and P (Tk = ak)
= P (Tk = ak | f1,j = b1 . . . fm,j = bm).

It is worth mentioning that if the system reveals information about the dynamic connections
from Rk to Dk or the quantum random bits generated or firing activity of elements Rk or those
elements representing the UTM tape or state, then the perfect secrecy doesn’t hold.

Corollary 1. Consider an unbounded number of computable steps generated by the AEM in
procedure 2, where the sequence of UTM instructions is I1, I2, . . . , Ik, . . . , and Ik ∈ Q × A as
defined in table 2. Define function f : N → Q × A as f(k) = Ik. If an adversary can only
eavesdrop on g (the firing activity computing η), then there does not exist a Turing machine
that can map g back to f .

Proof. This corollary follows from definition 1 and the work in lemma 4.1 and theorems 4.2 and
4.3.

5 Summary

By using a finite AEM program and the meta command, and executing procedure 2, any Turing
machine program – with a computable unbounded execution – can be executed with AEM
firing patterns that are Turing incomputable. For an unbounded number of computable UTM
execution steps, when appropriate parameters of the AEM execution are not revealed to an
adversary, then there does not exist a Turing machine that can map g (i.e., the active element

81

Turing Incomputable Computation Michael Fiske

firing patterns computing η) back to the sequence of universal Turing machine instructions
executed by the AEM.

6 Acknowledgements

I would like to thank Wolfgang Halang, Michael Jones, Don Knuth, David Lewis, A. Mayer,
Lutz Mueller, Don Saari and Mario Stipc̆ević for their helpful advice.

References

[1] P. Benioff. The computer as a physical system: A microscopic quantum mechanical Hamiltonian
model of computers as represented by Turing machines. Journal of Statistical Physics, 22:563–591,
1980.

[2] P. Benioff. Quantum mechanical Hamiltonian models of Turing machines that dissipate no energy.
Physics Review Letter, 48:1581–1585, 1980.

[3] Cristian S. Calude, Michael J. Dinneen, Monica Dumitrescu, and Karl Svozil. Experimental
Evidence of Quantum Randomness Incomputability. Physics Review A, 82(022102):1–8, 2010.

[4] Cristian S. Calude and Karl Svozil. Quantum randomness and value indefiniteness. Advanced
Science Letters, 1(2):165–168, 2008.

[5] Alonzo Church. An Unsolvable Problem of Elementary Number Theory. American Journal of
Mathematics, 58:345–363, 1936.

[6] Fred Cohen. Computer Viruses Theory and Experiments. Computers and Security, 6(1):22–35,
February 1987.

[7] S. Barry Cooper. The Incomputable Alan Turing. In Turing 2004: A celebration of his life and
achievements. Electronic Workshops in Computing, June 2004.

[8] S. Barry Cooper and Piergiorgio Odifreddi. Incomputability in Nature. Plenum Publishers, 2003.

[9] Martin Davis. Computability and Unsolvability. Dover Publications, 1982.

[10] Martin Davis. The Myth of Hypercomputation. Springer-Verlag, 2004.

[11] Martin Davis. Why there is no such discipline as hypercomputation. Applied Mathematics and
Computation, 178(1):4–7, July 2006.

[12] K. de Leeuw, E.F. Moore, C.E. Shannon, and N. Shapiro. Computability of Probabilistic Machines.
Princeton University Press, 1956.

[13] David Deutsch. Quantum theory, the Church-Turing principle and the universal quantum com-
puter. Proceedings of London Mathematical Society. Series A, 400(1818):97–117, 1985.

[14] Gábor Etesi and István Németi. Non-Turing computations via Malament-Hogarth spacetimes.
International Journal of Theoretical Physics, 41(2):341–370, 2002.

[15] Richard Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21:467–488, 1982.

[16] Richard Feynman. Quantum mechanical computers. Foundations of Physics, 16:507–531, 1986.

[17] Eric Filiol. Malicious Cryptology and Mathematics. Intech, 2012.

[18] Michael Stephen Fiske. The Active Element Machine. In Proceedings of Computational Intelli-
gence. Autonomous Systems: Developments and Trends, volume 391, pages 69–96. Springer-Verlag,
2011.

[19] L.K. Grover. Quantum mechanics helps in searching for a needle in a haystack. Physics Review
Letters, 79:325–328, 1997.

[20] Wolfgang Halang and Boudewijn Hoogeboom. The concept of time in the specification of real-time
systems. Kluwer Academic Publishers, 1992.

82

Turing Incomputable Computation Michael Fiske

[21] John Hertz, Anders Krogh, and Richard G. Palmer. Introduction To The Theory of Neural Com-
putation. Addison-Wesley, Redwood City, California, 1991.

[22] Mark Hogarth. Does general relativity allow an observer to view an eternity in a finite time?
Foundations of Physics Letters, 5(2):173 – 181, 1992.

[23] Mark Hogarth. Non-Turing Computers and Non-Turing Computability. In Proceedings of the
Biennial Meeting of the Philosophy of Science Association, volume 1, pages 126 – 138. University
of Chicago Press, 1994.

[24] John J. Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the National Academy of Sciences, 79:2554 – 2558, 1982.

[25] John J. Hopfield. Pattern recognition computation using action potential timing for stimulus
representation. Nature, 376:33 – 36, 1995.

[26] John J. Hopfield and D.W. Tank. Neural computation of decisions in optimization problems.
Biological Cybernetics, 52:141 – 152, 1985.

[27] Tien Kieu. Quantum Algorithm for Hilbert’s Tenth Problem. http://arxiv.org/abs/quant-ph/
0110136, 2001.

[28] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential Power Analysis. In Advances in
Cryptology - Crypto 99 Proceedings. Lecture Notes in Computer Science, volume 1666. Springer-
Verlag, 1999.

[29] Harry R. Lewis and Christos H. Papadimitriou. Elements Of The Theory Of Computation.
Prentice-Hall, 1981.

[30] Yuri Manin. A Course in Mathematical Logic. Springer-Verlag, 1977.

[31] Yuri Manin. Computable and Uncomputable (in Russian). Sovetskoye Radio, Moscow, 1980.

[32] Warren S. McCulloch and Walter Pitts. A logical calculus immanent in nervous activity. Bulletin
of Mathematical Biophysics, 5:115 – 133, 1943.

[33] Marvin Minsky. Computation: Finite and Infinite Machines. Prentice-Hall (1st edition), Engle-
wood Cliffs, New Jersey, 1967.

[34] Marvin Minsky and Seymour A. Papert. Perceptrons. MIT Press, Cambridge, Massachusetts,
1969.

[35] Wilfrid Rall. The Theoretical Foundation of Dendritic Function. Selected Papers of Wilfrid Rall
with Commentaries. Edited by Idan Segev, John Rinzel, and Gordon Shepherd. MIT Press, Cam-
bridge, Massachusetts, 1995.

[36] Abraham Robinson. Non-standard Analysis. Princeton University Press (Revised Edition), Prince-
ton, New Jersey, 1996.

[37] Frank Rosenblatt. Two theorems of statistical separability in the perceptron. In Proceedings of
a Symposium on the Mechanization of Thought Processes, pages 421 – 456, London, 1959. Her
Majesty’s Stationary Office.

[38] Claude Shannon. Communication Theory of Secrecy Systems. http://netlab.cs.ucla.edu/

wiki/files/shannon1949.pdf, 1949.

[39] Peter W. Shor. Algorithms for quantum computation: discrete log and factoring. In Proceedings
of the 35th Annual IEEE Symposium on Foundations of Computer Science, pages 2 – 22, 1994.

[40] Hava Siegelmann. Computation Beyond the Turing Limit. Science, 268(5210):545 – 548, April
1995.

[41] Robert Soare. Computability and Recursion. Bulletin of Symbolic Logic, 2:284 – 321, 1996.

[42] André Stefanov, Nicolas Gisin, Olivier Guinnard, Laurent Guinnard, and Hugo Zbinden. Optical
quantum random number generator. Journal of Modern Optics, 47(4):595 – 598, 2000.

[43] Mario Stipc̆ević and B. Medved Rogina. Quantum random number generator based on photonic
emission in semiconductors. Review of Scientific Instruments, 78:1 – 7, 2007.

[44] H. E. Sturgis and J. C. Shepherdson. Computability of Recursive Functions. Journal Assoc.

83

http://arxiv.org/abs/quant-ph/0110136
http://arxiv.org/abs/quant-ph/0110136
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf
http://netlab.cs.ucla.edu/wiki/files/shannon1949.pdf

Turing Incomputable Computation Michael Fiske

Computing Machines, 10:217–255, 1963.

[45] Alan M. Turing. On Computable Numbers, with an Application to the Entscheidungsproblem.
Proceedings of the London Mathematical Society. Series 2, 42(3 and 4):230–265, 1936.

7 Appendix

7.1 Turing Machine

Define a Turing Machine, where the program definition η is explicitly represented as a function
instead of quintuples ([9], [45]).

Definition 5. Turing Machine

A Turing machine is a triple (Q,A, η) where

• Q is a finite set of states that does not contain a unique halting state, represented as H.

• When machine execution begins, the machine is in an initial state s and s ∈ Q.

• A is a finite set of alphabet symbols that are read from and written to the tape.

• L and R represent advancing the tape head to the left or right square, respectively.

• η is a function where η : Q × A → Q × A × {L,R} ∪ {H} × A × {h}. η acts as the
program for the Turing machine. For each q in Q and α in A, η(q, α) = (r, β, x) describes
how machine (Q,A, η) executes one computational step. When in state q and scanning
alphabet symbol α on the tape:

– Machine (Q,A, η) changes to state r.

– Machine (Q,A, η) rewrites alphabet symbol α as symbol β on the tape.

– If x = L, then machine (Q,A, η) moves its tape head one square to the left on the
tape and is subsequently scanning the symbol in this square.

– If x = R, then machine (Q,A, η) moves its tape head one square to the right on the
tape and is subsequently scanning the symbol in this square.

– If x = h, machine (Q,A, η) enters the halting state H and the machine stops exe-
cuting.

Definition 6. Turing Machine Tape
The Turing machine tape T is represented as a function T : Z→ A where Z is the integers.

The tape T is M -bounded if there exists a bound M > 0 such that T (k) = T (j) whenever
|k|, |j| ≥ M . The Turing machine definitions in [9] and [45] assume the initial tape, before
program execution begins, is M -bounded and the tape contains only blank symbols, denoted
here as #, outside the bound. The symbol on the kth square of the tape is T (k).

Definition 7. Configuration with Tape Head Location

Let (Q,A, η) be a Turing machine with tape T. A configuration is an element of the set
C = (Q ∪ {H}) × Z × {T : T is tape with range A}. If (q, k, T) is a configuration, then k is
called the tape head location.

84

Turing Incomputable Computation Michael Fiske

Consider the configuration (p, 2, . . .##αβ## . . .). The 1st coordinate indicates that the
Turing machine is in state p. The 2nd coordinate indicates that its tape head is currently
scanning tape square 2, denoted as T (2). The 3rd coordinate indicates that tape square 1
contains symbol α, tape square 2 contains symbol β, and all other tape squares contain the #
symbol. The underlining of β indicates that the tape head is currently scanning tape square 2.

Definition 8. Turing Machine Computational Step

Given Turing machine (Q,A, η) in current configuration (q, k, T) such that T (k) = α. After
the execution of one computational step, the new configuration is determined by one and only
one of the three cases.

1. (r, k − 1, S) if η(q, α) = (r, β, L) for non-halting state r.

2. (r, k + 1, S) if η(q, α) = (r, β,R) for non-halting state r.

3. (H, k, T) if η(q, α) = (H, α, h) for halting state H.

In cases (1) and (2) the new tape S(j) = T (j) whenever j 6= k and S(k) = β. In case (3) the
machine execution halts. Sometimes (q, α) is called a Turing machine instruction.

If the machine is currently in configuration (q0, k0, T0) and over the next n steps the sequence
of machine configurations (points) is (q0, k0, T0), (q1, k1, T1), (q2, k2, T2), . . . , (qn, kn, Tn), then
this execution sequence is sometimes called the next n computational steps.

Table 5: Minsky Universal Turing Machine with Program η from [33]

y 0 1 A

q1 (q1, 0, L) (q1, 0, L) (q2, 1, L) (q1, 1, L)
q2 (q1, 0, L) (q2, y, R) (q2, A, R) (q6, y, R)
q3 (q3, y, L) (H, 0, h) (q3, A, L) (q4, 1, L)
q4 (q4, y, L) (q5, y, R) (q7, 1, L) (q4, 1, L)
q5 (q5, y, R) (q3, y, L) (q5, A, R) (q5, 1, R)
q6 (q6, y, R) (q3, A, L) (q6, A, R) (q6, 1, R)
q7 (q7, 0, R) (q6, y, R) (q7, 1, R) (q2, 0, R)

State set Q = {q1, q2, q3, q4, q5, q6, q7}. Alphabet A = {y, 0, 1, A}. Halt state H.

7.2 Active Element Machine Architecture

Define the extended integers as Z = {m+ kdT : m, k ∈ Z and dT is a fixed infinitesimal}. For
more on infinitesimals, see keyword 1 and reference [36].

Definition 9. Machine Architecture
Γ, Ω, and ∆ are index sets that index the input, computational, and output active elements,

respectively. Depending on the machine architecture, the intersections Γ ∩ Ω and Ω ∩ ∆ can be
empty or non-empty. A machine architecture, denoted as M(I, E ,O), consists of a collection
of input active elements, denoted as I = {Ei : i ∈ Γ}; a collection of computational active
elements E = {Ei : i ∈ Ω}; and a collection of output active elements O = {Ei : i ∈ ∆}.

Each computational and output active element, Ei, has the following components and prop-
erties:

85

Turing Incomputable Computation Michael Fiske

• A threshold θi

• A refractory period ri where ri > 0.

• A collection of pulse amplitudes {Aki : k ∈ Γ ∪ Ω}.

• A collection of transmission times {τki : k ∈ Γ ∪ Ω}, where τki > 0 for all k ∈ Γ ∪ Ω.

• A function of time, Ψi(t), representing the time active element Ei last fired. Ψi(t) =
sup{s : s < t and gi(s) = 1}, where gi(s) is the output function of active element Ei and
is defined below. The sup is the least upper bound and is always defined here, whence Ψi

is well-defined.

• A binary output function, gi(t), representing whether active element Ei fires at time t.
The value of gi(t) = 1 if

∑
Aki(t) > θi where the sum ranges over all k ∈ Γ ∪ Ω and

t ≥ Ψi(t) + ri. In all other cases, gi(t) = 0. For example, gi(t) = 0, if t < Ψi(t) + ri.

• A set of firing times of active element Ek within active element Ei’s integrating window,
Wki(t) = {s : active element Ek fired at time s and 0 ≤ t − s − τki < ωki}. Let |Wki(t)|
denote the number of elements in the set Wki(t). If Wki(t) = ∅, then |Wki(t)| = 0.

• A collection of input functions, {φki : k ∈ Γ ∪ Ω}, each a function of time, and each
representing pulses coming from computational active elements, and input active elements.
The value of the input function is computed as φki(t) = |Wki(t)|Aki(t).

• The refractory periods, transmission times and pulse widths are positive integers; and
pulse amplitudes and thresholds are integers. These parameters are a function of time
(i.e., θi(t), ri(t), Aki(t), ωki(t), τki(t)). Time t is an element of the extended integers Z.

Input active elements that are not computational have the same characteristics as compu-
tational elements, except they have no inputs φki coming from elements in this machine. Input
elements are assumed to be externally firable. An external source such as the environment or
an output element from another distinct machine M(I ′, E ′,O′) can cause an input element to
fire. An input element can fire at any time after its refractory period has expired. An element
can be an input and computational element. Similarly, an element can be an output and com-
putational element. Alternatively, when an output element, Ei, is not a computational element,
where i ∈ ∆− Ω, then Ei does not send pulses to elements in this machine.

If gi(s) = 1, this means active element Ei fired at time s. The refractory period, ri, is the
amount of time that must elapse after active element Ei just fired before Ei can fire again.
The transmission time, τki, is the amount of time it takes for active element Ei to find out
that active element Ek has fired. The pulse amplitude, Aki, represents the strength of the pulse
that active element Ek transmits to active element Ei after active element Ek has fired. After
this pulse reaches Ei, the pulse width ωki represents how long the pulse lasts as input to active
element Ei. If Aki = 0, then there is no connection from active element Ek to active element
Ei.

7.3 Active Element Machine Programming Language

This subsection describes a programming language for the active element machine. There are
five types of commands Element, Connection, Fire, Program and Meta.

Syntax 1. AEM Program
In Backus-Naur form, an AEM program is defined as follows.

86

Turing Incomputable Computation Michael Fiske

<AEM_program> ::= <cmd_sequence>

<cmd_sequence> ::= "" | <AEM_cmd><cmd_sequence> | <program_def><cmd_sequence>
<AEM_cmd> ::= <element_cmd> | <fire_cmd> | <meta_cmd> | <cnct_cmd> | <program_cmd>

Syntax 2. AEM Symbols and Extended Integer Expressions

<ename> ::= <int> | <symbol>
<symbol> ::= <char_symbol><str_tail> | (<ename> . . . <ename>)

<str_tail> ::= "" | <char_symbol><str_tail> | 0<str_tail> | <pos_int><str_tail>
<char_symbol> ::= <letter> | <special_char>
<letter> ::= <lower_case> | <upper_case>
<lower_case> ::= a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y | z
<upper_case> ::= A | B | C | D | E | F | G | H | I | J | K | L | M | N | O | P | Q | R | S | T | U | V | W | X | Y | Z
<special_char> ::= _

The following rules represent the extended integers, addition and subtraction.

<int> ::= <pos_int> | <neg_int> | 0

<neg_int> ::= - <pos_int>

<pos_int> ::= <non_zero><digits>

<digits> ::= <numeral> | <numeral><digits>

<non_zero> ::= 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

<numeral> ::= "" | <non_zero> | 0

<aint> ::= <aint><math_op><d> | <d><math_op><aint> | <d>

<math_op> ::= + | -

<d> ::= <int> | <symbol_string> | <infinitesimal>

<infinitesimal> ::= dT

Command 1. Element

An Element command specifies the time when an active element is created or its parameter
values are updated. This command has the following Backus-Naur syntax.

<element_cmd> ::= (Element (Time <aint>) (Name <ename>) (Threshold <int>)

(Refractory <pos_int>) (Last <int>))

The keyword Time tags the time value s (extended integer) at which the element is created
or updated. If the name symbol value is E, the keyword Name tags the name E of the active
element. The keyword Threshold tags the threshold θE(s) assigned to E. Refractory tags the
refractory value rE(s). The keyword Last tags the last time fired value ΨE(s).

Command 2. Connection

A Connection command creates or updates a connection from one active element to another
active element. This command has the following Backus-Naur syntax.

<cnct_cmd> ::= (Connection (Time <aint>) (From <ename>) (To <ename>)

[(Amp <int>) (Width <pos_int>) (Delay <pos_int>)])

The keyword Time tags the time value s at which the connection is created or updated. The
keyword From tags the name F of the active element that sends a pulse with these updated
values. The keyword To tags the name T of the active element that receives a pulse with these
updated values. The keyword Amp tags the pulse amplitude value AFT (s) that is assigned to

87

Turing Incomputable Computation Michael Fiske

this connection. The keyword Width tags the pulse width value ωFT (s). The keyword Delay

tags the transmission time τFT (s).
When the AEM clock reaches time s, F and T are name values that must be the name

of an element that already has been created or updated before or at time s. Not all of the
connection parameters need to be specified in a connection command. If the connection does
not exist beforehand and the Width and Delay values are not specified appropriately, then the
amplitude is set to zero and this zero connection has no effect on the AEM computation. The
connection exists indefinitely with the same parameter values until a new connection is executed
at a later time between From element F and To element T.

Command 3. Fire

The Fire command has the following Backus-Naur syntax.

<fire_cmd> ::= (Fire (Time <aint>) (Name <ename>))

The Fire command fires the active element indicated by the Name tag at the time indicated by
the Time tag. This command can be used to fire input active elements.

Command 4. Program

The Program combines a sequence of commands into a single command. It has the following
definition syntax.

<program_def> ::= (Program <pname> [(Cmds <cmds>)] [(Args <args>)] <cmd_sequence>)

<pname> ::= <ename>

<cmds> ::= <cmd_name> | <cmd_name><cmds>

<cmd_name> ::= Element | Connection | Fire | Meta | <pname>

<args> ::= <symbol> | <symbol><args>

The Program command has the following execution syntax.

<program_cmd> ::= (<pname> [(Cmds <cmds>)] [(Args <args_cmd>)])

<args_cmd> ::= <ename> | <ename><args_cmd>

Keyword 1. dT

The keyword dT represents a positive infinitesimal amount of time.

If m and n are integers and 0 ≤ m < n, then mdT < ndT. Furthermore, dT > 0 and dT

is less than every positive rational number. Similarly, -dT < 0 and -dT is greater than every
negative rational number. The infinitesimal dT helps coordinate almost simultaneous events
that are non-commutative or indeterminate. For example, element A could be about to receive
a pulse from element B at the same time that a connection between them is removed.

Keyword 2. clock

The keyword clock evaluates to an integer, which is the current active element machine
time. clock is an instance of <ename>.

If the current AEM time is 5, then command
(Element (Time clock) (Name clock) (Threshold 1) (Refractory 1) (Last -1)) executes as
(Element (Time 5) (Name 5) (Threshold 1) (Refractory 1) (Last -1))

After (Element (Time clock) (Name clock) (Threshold 1) (Refractory 1) (Last -1)) is cre-
ated, then at each time step this command is executed with the current time of the AEM. If
this command is in the original AEM program before the clock starts at 0, then the following
sequence of elements named 0, 1, 2, . . . are created.
(Element (Time 0) (Name 0) (Threshold 1) (Refractory 1) (Last -1))

(Element (Time 1) (Name 1) (Threshold 1) (Refractory 1) (Last -1))

(Element (Time 2) (Name 2) (Threshold 1) (Refractory 1) (Last -1)) . . .

88

Turing Incomputable Computation Michael Fiske

Command 5. Meta

The Meta command causes a command to execute when an element fires within a window
of time. This command has the following execution syntax.

<meta_cmd> ::= (Meta (Name <ename>) [<win_time>] <AEM_cmd>)

<win_time> ::= (Window <aint> <aint>)

To understand the behavior of the meta command, consider the execution of

(Meta (Name E) (Window l w) (C (Args t a))

where E is the name of the active element. The keyword Window tags an interval, which is called
a window of time. l is an integer, which locates one of the boundary points of the window of
time. Usually, w is a positive integer, so the window of time is [l, l+w]. If w is a negative
integer, then the window of time is [l+w, l].

The command C executes each time that E fires during the window of time, which is either
[l, l+w] or [l+w, l], depending on the sign of w. If the window of time is omitted, then
command C executes at any time that element E fires.

In regard to the meta command, the following assumption is analogous to the Turing machine
tape being unbounded as Turing program execution proceeds. (See Definitions 5 and 6.) During
execution of a finite active element program, an active element can fire and due to one or more
meta commands, new elements and connections can be added to the machine. As a consequence,
at any time the active element machine only has a finite number of computing elements and
connections but the number of elements and connections can be unbounded as a function of
time as the active element program executes.

7.4 Active Element Machine Computation

In section 3, the firing patterns of active elements represent the computation of a boolean
function. Firing representations, machine computation and interpretation are defined below.

Definition 10. Firing Representation

Consider active element Ei’s firing times in the interval of time W = [t1, t2]. Let s1 be
the earliest firing time of Ei lying in W , and sn the latest firing time lying in W . Then Ei’s
firing sequence F (Ei,W) = [s1, . . . , sn] = {s ∈ W : gi(s) = 1} is called a firing sequence of the
active element Ei over the window of time W . From active elements {E1, E2, . . . , En}, create
the tuple (F (E1,W), F (E2,W), . . . , F (En,W)), which is called a firing representation of the
active elements {E1, . . . , En} within the window of time W .

As Ei’s refractory period is a positive integer and t1 and t2 are finite, observe that s1 and
sn are well-defined and the set F (Ei,W) is finite. At the machine level of interpretation, firing
representations (firing patterns) express the input to, the computation of, and the output of
an active element machine. At a more abstract level, firing representations can represent a
sequence of symbols, a spatio-temporal pattern, or even a family of program instructions.

Definition 11. Sequence of Firing Representations

Let W1, . . . ,Wn be a sequence of time intervals. Let F(E ,W1) = (F (E1,W1), F (E2,W1),
. . . , F (En,W1)) be a firing representation of active elements E = {E1, . . . , En} over the in-
terval W1. In general, let F(E ,Wk) = (F (E1,Wk), F (E2,Wk), . . . F (En,Wk)) be a firing
representation over the interval of time Wk. From these, a sequence of firing representations,
[F(E ,W1),F(E ,W2), . . . , F(E ,Wn)] is created.

89

Turing Incomputable Computation Michael Fiske

Definition 12. Machine Computation
Let [F(E ,W1),F(E ,W2), . . . ,F(E ,Wn)] be a sequence of firing representations. Suppose

[F(E , S1), F(E , S2), . . . ,F(E , Sm)] is some other sequence of firing representations. Sup-
pose machine architecture M(I, E ,O) has input active elements I fire with the pattern
[F(E , S1), F(E , S2), . . . ,F(E , Sm)] and consequently M’s output active elements O fire ac-
cording to [F(E ,W1), F(E ,W2), . . . ,F(E ,Wn)]. In this case, the machine M computes
[F(E ,W1),F(E ,W2), . . . ,F(E ,Wn)] from [F(E , S1),F(E , S2), . . . ,F(E , Sm)].

An active element machine is an interpretation between two sequences of firing representa-
tions if the machine computes the output sequence from the input sequence.

7.5 Active Element Machine Level Set Rules

Table 6: AEM Separation Rules for Level Set η0
−1{1}

Firing Pattern Element (U,Ai) (W,Ai) (X,Ai) (Y,Ai) (Z,Ai) θAi

111 10 A0 2 2 2 2 −2 7
111 01 A1 2 2 2 −2 2 7
111 00 A2 2 2 2 −2 −2 5
110 11 A3 2 2 −2 2 2 7
110 10 A4 2 2 −2 2 −2 5
110 01 A5 2 2 −2 −2 2 5
101 11 A6 2 −2 2 2 2 7
101 10 A7 2 −2 2 2 −2 5
101 01 A8 2 −2 2 −2 2 5
100 11 A9 2 −2 −2 2 2 5
100 10 A10 2 −2 −2 2 −2 3
100 01 A11 2 −2 −2 −2 2 3
100 00 A12 2 −2 −2 −2 −2 1
011 11 A13 −2 2 2 2 2 7
010 11 A14 −2 2 −2 2 2 5

Table 7: AEM Separation Rules for Level Set η1
−1{1}

Firing Pattern Element (U,Bi) (W,Bi) (X,Bi) (Y,Bi) (Z,Bi) θBi

111 11 B0 2 2 2 2 2 9
111 10 B1 2 2 2 2 −2 7
111 01 B2 2 2 2 −2 2 7
111 00 B3 2 2 2 −2 −2 5
110 11 B4 2 2 −2 2 2 7
110 10 B5 2 2 −2 2 −2 5
110 01 B6 2 2 −2 −2 2 5
110 00 B7 2 2 −2 −2 −2 3
101 00 B8 2 −2 2 −2 −2 3
100 01 B9 2 −2 −2 −2 2 3
011 10 B10 −2 2 2 2 −2 5
011 01 B11 −2 2 2 −2 2 5
010 11 B12 −2 2 −2 2 2 5
010 01 B13 −2 2 −2 −2 2 3
010 00 B14 −2 2 −2 −2 −2 1
001 01 B15 −2 −2 2 −2 2 3

90

Turing Incomputable Computation Michael Fiske

Table 8: AEM Separation Rules for Level Set η2
−1{1}

Firing Pattern Element (U,Ci) (W,Ci) (X,Ci) (Y,Ci) (Z,Ci) θCi

111 10 C0 2 2 2 2 −2 7
111 01 C1 2 2 2 −2 2 7
110 00 C2 2 2 −2 −2 −2 3
101 11 C3 2 −2 2 2 2 7
101 10 C4 2 −2 2 2 −2 5
101 01 C5 2 −2 2 −2 2 5
101 00 C6 2 −2 2 −2 −2 3
100 01 C7 2 −2 −2 −2 2 3
100 00 C8 2 −2 −2 −2 −2 1
011 10 C9 −2 2 2 2 −2 5
011 01 C10 −2 2 2 −2 2 5
010 10 C11 −2 2 −2 2 −2 3
001 11 C12 −2 −2 2 2 2 5
001 10 C13 −2 −2 2 2 −2 3
001 00 C14 −2 −2 2 −2 −2 1

Table 9: AEM Separation Rules for Level Set η4
−1{1}

Firing Pattern Element (U,Ei) (W,Ei) (X,Ei) (Y,Ei) (Z,Ei) θEi

111 01 E0 2 2 2 −2 2 7
110 11 E1 2 2 −2 2 2 7
110 01 E2 2 2 −2 −2 2 5
110 00 E3 2 2 −2 −2 −2 3
101 11 E4 2 −2 2 2 2 7
101 01 E5 2 −2 2 −2 2 5
100 11 E6 2 −2 −2 2 2 5
100 01 E7 2 −2 −2 −2 2 3
011 11 E8 −2 2 2 2 2 7
011 01 E9 −2 2 2 −2 2 5
010 01 E10 −2 2 −2 −2 2 3
001 11 E11 −2 −2 2 2 2 5
001 01 E12 −2 −2 2 −2 2 3

Table 10: AEM Separation Rules for Level Set η−15 {1}
Firing Pattern Element (U,Fi) (W,Fi) (X,Fi) (Y, Fi) (Z,Fi) θFi

111 11 F0 2 2 2 2 2 9
111 10 F1 2 2 2 2 −2 7
111 01 F2 2 2 2 −2 2 7
111 00 F3 2 2 2 −2 −2 5
110 11 F4 2 2 −2 2 2 7
110 10 F5 2 2 −2 2 −2 5
110 01 F6 2 2 −2 −2 2 5
101 11 F7 2 −2 2 2 2 7
101 10 F8 2 −2 2 2 −2 5
101 01 F9 2 −2 2 −2 2 5
100 00 F10 2 −2 −2 −2 −2 1
010 11 F11 −2 2 −2 2 2 5
010 01 F12 −2 2 −2 −2 2 3
010 00 F13 −2 2 −2 −2 −2 1

91

	Introduction
	Brief Summary of Prior Computing Models

	An Informal Summary of the Active Element Machine
	AEM Interpretations of Boolean Functions
	Active Element Firing Patterns

	Random Firing Interpretations Execute a UTM
	Summary
	Acknowledgements
	Appendix
	Turing Machine
	Active Element Machine Architecture
	Active Element Machine Programming Language
	Active Element Machine Computation
	Active Element Machine Level Set Rules

