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Abstract. Due to advancements in instrumentation and communication technologies, monitoring of 
water infrastructure is experiencing a significant growth worldwide and water managers are 
increasingly deploying monitoring equipment for decision-making purposes. Hydrological events and 
relevant datasets including rainfall data are of a complex nature and are potentially susceptible to errors 
from various sources. Hence, it is essential to develop efficient methods for the quality control of the 
acquired data. The present work introduces an artificial neural network-based approach for real-time 
quality control and infilling of rain gauge data. Available rainfall measurements from neighboring rain 
gauges are employed to train and develop the neural network model. Trained artificial neural network 
model was able to validate up to about 97% of the data using 95% confidence intervals. This finding 
suggests that artificial neural networks can be successfully implemented for erroneous data 
identification/correction and reconstruction of missing data points. Given its short processing time and 
reportedly superior performance to traditional quality control strategies, neural network methodology 
can be deployed as an efficient tool for the processing and control of large sets of timeseries with 
complex natures including precipitation data. 
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1 Introduction 
Flow monitoring and rainfall data are widely deployed by municipalities and engineering firms for a 
variety of purposes including analyses, design and operation of urban drainage systems. Also, 
increasing attention is being paid to real-time monitoring and performance assessment of collection 
systems which enables collection systems’ operation/maintenance optimization, infiltration/inflow 
(I/I)) tracking, and combined sewer overflow (CSO) assessments. As the cost of implementing 
monitoring networks is reduced due to technological advancement, the volume and availability of 
reliable real-time data will have an increasing and significant role in water resources management and 
engineering. However, flow and rainfall sensors are associated with measurement deficiencies and 
errors [1-3] which in many cases are inevitable.  Generated datasets may include faulty or missing data 
points that can diminish overall data quality and influence subsequent analyses and decisions that rely 
upon them. Moreover, manual data processing approaches are time consuming, costly, reliant on 
analysts’ experience, and also prone to human error and oversight. Insufficient existing conventional 
quality control (QC) methodologies along with the rapidly growing volume of generated data and real-
time applications, intensifies the necessity to develop efficient automated QC procedures for sensor-
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generated timeseries and provide end users with accurate and reliable real-time hydrometric data. The 
importance of accessibility to reliable precipitation data becomes more prominent when it comes to 
short-term monitoring of small catchments as is the case for I/I studies. I/I which is the entry of water 
originating from rainfall or groundwater sources into sanitary sewer systems, can impair the 
performance of the collection systems. I/I studies in many cases rely on the accuracy of single 
precipitation monitoring stations within a monitored catchment. 

2 Current Data Processing Approaches 
Conventional approaches for quality control of timeseries data typically rely on manual inspections or 
semi-automated simple statistical methodologies, including checks for outliers through comparison 
with temporal and spatial observations at that particular station and at neighboring stations such as tests 
for threshold/maximum values, flat line, spike, rate of change, etc. Moreover, traditional data processing 
methods are usually based on certain assumptions that are not necessarily valid and applicable given 
the actual properties of the data [3-7]. 
A number of researchers have focused on rain gauge data QC utilizing statistical approaches through 
cross checking with contemporary weather radar data, however radar precipitation data can also be 
associated with various types of errors arising from radar calibration, variation of the vertical reflectivity 
profile, bright band errors, attenuation, ground clutter, anomalous propagation, and wind drift errors 
[8]. In addition, radars are often reported to underestimate rainfall data (up to 50% underestimation has 
been reported [2,9,10]). Therefore, rain gauge data are normally assumed as ground truth in most quality 
control schemes and are used for the calibration and validation of radar data [10]. As an alternative 
approach, researchers have also tried to integrate manual QC procedures into a systematic algorithm, 
the so-called Case Based Reasoning (CBR). Aside from performing traditional data QC and correction, 
the CBR approach also identifies and proposes the most relevant or frequently used data correction 
methodology on the basis of previous similar incidents and respective operators’ judgment/decisions. 
Although such approaches are capable of adjusting on the basis of operators’ inputs, they are quite 
labour intensive and are reliant on traditional statistical methodologies. Various CBR tools such as 
gapIT, WaterQuality CBR, CBR Shell, myCBR, Free CBR, jCOLIBRI, and CASPIAN with various 
fields of applications are reported elsewhere [11-15]. 
More recent data mining approaches have recognized machine learning using artificial neural networks 
(ANNs) as a robust and efficient methodology for data analytics in various fields of practice including 
water data analytics [4,16]. Despite its versatility and successful applications in various QC fields, 
machine learning approaches have seldom been used as the main scheme for precipitation data 
processing. This lack of implementation in hydrometeorological arena offers further opportunities to 
develop and enhance ANN based QC approaches within the hydrometric data processing field. 
Moreover, limited work with the aim of QC of rain gauge data through concurrent use of neighboring 
gauge readings and radar precipitation data has been reported [3,18]. It is believed that such data can 
be employed as a valuable source for the fine tuning and optimization of neural networks QC 
procedures. ANN quality control algorithms can also be combined with traditional statistical detection 
and flagging of outliers in order to enhance the accuracy and robustness of the QC procedures. 

3 Objectives 
Given the shortcomings of traditional QC schemes, the existing project aims to develop a real-time 
machine learning algorithm for the automated detection/correction of erroneous data and reconstruction 
of missing values in a precipitation data collection and processing system using contemporary 
measurements at nearby gauges. The outcome of this research can bring about significant benefits 
through automation of data quality assurance and control (QA/QC) processes, resulting in the reduction 
of the time and cost associated with manual data procedures, and the enhancement of the quality and 
reliability of the generated data. This will subsequently support municipalities and other stakeholders 
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relying on large datasets being generated by water monitoring networks, resulting in better design and 
operational decisions for the benefit of urban populations and the receiving water environment. 

4 Available Database 
Available hydrometeorological database pertaining to the geographical area of study, the City of 
Toronto, Canada, was investigated and collected. Major available data sources include the following. 
- National Oceanic and Atmospheric Administration (NOAA): Radar hourly precipitation data from the 
KBUF S-band dual-polarimetric radar station located in Buffalo, New York, US is available by volume 
scan (Level III format) over the period of February 1996 to September 2017. 
- Environment Canada: Hourly precipitation data are available from various rain gauges in Toronto 
area. Hourly radar imagery from the King City C-band dual-polarization radar station located near King 
City, Ontario, Canada is also available for extraction. 
- The City of Toronto: The City’s rain gauge network consists of five 4-season and thirty nine 3-season 
gauges. Datasets from these gauges are available in 5-min intervals as of June 2015. 
- Toronto and Region Conservation Authority (TRCA): Precipitation data in 5-min intervals from 
various rain gauges within the City of Toronto is available as early as 2000’s up to 2017.  

5 Methodology 
In the present research, a rainfall estimation algorithm based on ANNs is developed that takes advantage 
of nearby rain gauge data. The following is a summary of the deployed methodology, which is also 
represented schematically in Figure 1. 

• Reference rain gauge stations neighboring the rain gauge of interest (target station) are selected 
on the basis of geographic proximity (distance/altitude differences), and contemporary 
availability of rainfall data. 

• ANN is calibrated (trained and validated) using pre-processed historical data available from 
reference rain gauges as model’s input and corresponding rainfall measurements at the target 
station as model’s target. 

• Trained ANN is used to estimate rainfall at the target station using measurements available at 
the respective reference stations. The estimated values will be used to quality control (error 
detection/correction) of suspicious observations or to fill the missing data. 

• Rainfall measurements at the target station are marked as validated if they fall within the 
confidence intervals obtained by means of neural networks for a desirable significance level a 
(e.g. 5%), implying that the prospective rainfall value is expected (with a probability of 1- a) 
to have fallen within the derived intervals. Average values estimated using the ANN model 
are used for data correction/infilling. In case owing to scattered/inaccurate/missing reference 
data, where an appropriate estimate to confirm the measurement at the target station cannot be 
proposed, target measurement are deemed suspicious, requiring further processing and human 
intervention. As such, depending on the outcomes of the quality control procedure, data is 
classified as “Valid”, “Corrected”, “Infilled”, or “Suspicious”. 

The ANN was developed using MATLAB (MathWorks, Inc., MA, USA). Feed-forward neural 
networks with backpropagation comprising of three layers (one input, one hidden, and one output layer) 
consisting of ten neurons in the hidden layer were used for the training and validation of data (see Figure 
2). Feed-forward, backpropagation networks are frequently used elsewhere for the analysis of 
precipitation data [4,16,19-21] and is reported to be the most common type of ANN models used in 
water resources applications [17]. The Levenberg–Marquardt algorithm was used to train the networks 
owing to its fast convergence capability and satisfactory implementation by various researchers in the 
water resources arena [16,22-24]. Sigmoid (Logsig) and linear (Purelin) transfer functions were used in 
the hidden and output layers, respectively. R (correlation coefficient), RMSE (root mean square error) 
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and mean absolute error were used to evaluate the performance of the model, and a sigmoid function 
was employed as the transfer function. 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Data pre-processing plays an important role in determining the performance and efficiency of the ANN 
models [16,18,24,25]. To ensure that model predictions are not influenced by the magnitude of data 
which are temporally and spatially distributed, rain gauge and data can be normalized into 
dimensionless values in the range of 0-1 using the following formula:  

                                                                                                                         (1) 

where, I, In, Imin, and Imax are, respectively, an input value, the respective normalized value, minimum 
value, and maximum value within a dataset. Suitable criteria (keeping the ratio of training samples to 
free variables greater than 30, stopping the training process as soon as the MSE is minimized, and the 
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Figure 2. Topology of ANN model with 
three layers deployed for training/testing  

Real-Time Quality Control and Infilling of Precipitation Data ... M. Moslemi and D. Joksimovic

1460



 

selection of appropriate values for rainfall threshold and inter-event periods) were also incorporated to 
prevent model overfitting, which can result in poor ANN model performance [19,26,27]. 

6 Case Study and Results 
The QC algorithm developed in this research project was applied to a timeseries of precipitation depth 
measurements in 5-min intervals observed by selected rain gauges within the City of Toronto operated 
by TRCA. A number of available rain gauges within the City of Toronto are illustrated in Figure 3. 
Selected reference stations (HY003, HY016, HY027) were used for the QC of rainfall data at the target 
station (HY008). The specifications of gauges are listed in Table 1. Reference stations are selected on 
the bases of the availability of data, proximity, and elevation. Historical dataset ranging from April 
2012 to December 2015 were used for modelling purposes. In order to eliminate redundant zero rainfall 
values in the input set, these data were consolidated by separating 5-min rainfall pulses using 
PCSWMM software (Computational Hydraulics International, Canada). As reported elsewhere [11,22], 
data aggregation can assist with reducing data size and noise. Therefore, in addition to including 5-min 
increments, in a separate set of modeling, data aggregated to hourly totals were employed. Datasets 
comprising of about 8,500 and 1,950 points were used in cases of 5-min and hourly ANN models, 
respectively. Seventy percent of data (in sequence) was used for ANNs training, whereas fifteen percent 
of data was used for validation phase and the remaining fifteen percent were used for testing purposes. 
Figure 4 illustrates the correlation between cumulative rainfall values derived using rainfall 
measurements in the input data set and respective model estimation at the target station (HY008). As it 
can be observed, model estimates closely correlate to actual measurements. Modeling results indicate 
that assuming 95% confidence intervals, 96.9% and 95.6% of data were automatically validated using 
5-min and hourly ANN models, respectively. RMSE and mean absolute error were respectively 
calculated to be 0.38 mm and 0.19 mm for the 5-min data. These parameters in case of using hourly 
totals were measured at 0.92 mm and 0.40 mm. Figure 5 indicates ANN models performances for 5-
min and hourly totals during modeling segments including training, validation, and testing. As it is 
evident the overall models R value were 0.78 and 0.93 for the 5-min and hourly data. 

 
Figure 3. The position of the target rain gauges (square) and respective reference stations (circles) 
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  Table 1. Specifications of rain gauge stations 

Station ID Operation period Equipment type Elevation 
(masl) 

HY003 3-season Tipping bucket 109 
HY008 4-season Ott Pluvio2 78 
HY016 3-season Tipping bucket 115 
HY027 3-season Tipping bucket 175 
HY071 3-season Tipping bucket 139 
HY085 3-season Tipping bucket 169 
HY094 3-season TB3 152 

 

 
Figure 4. Correlation between observed and estimated data at the reference station, HY008. Left: 5-

min totals, Right: Hourly aggregates 

7 Conclusion 
This study revealed that neural networks can be employed as an effective tool for the quality control 
and infilling of rainfall data. As discussed above, the proposed ANN algorithm was able to verify up to 
about 97% of data using 95% confidence intervals. It is believed that the developed methodology can 
provide a valuable tool for water practitioners engaged in small-scale rainfall/discharge monitoring 
studies, providing increased efficiency and enabling them to maximize the outcomes of such studies. It 
is believed that the performance of ANN model can be improved through integration of available radar 
data into rainfall QC procedure for the selection of reference stations (on the basis of storm direction) 
and also as an additional input parameter into the model and for the cross checking of estimated data. 
Moreover, conventional QC approaches such as tests for threshold/maximum values, flat line, spike, 
and rate of change can be incorporated into the ANN algorithm in order to enhance the performance 
and accuracy of the model. 
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Figure 5. ANN models performance. Left: 5-min totals, Right: Hourly aggregates (using normalized data) 
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