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Abstract

When checking answers coming from automatic provers, or when skeptically integrating
them into proof assistants, a major problem is the wide variety of formats of certificates,
which forces to write lots of different checkers. In this paper, we propose to use the extended
resolution as a common format for every propositional prover. To be able to do this, we
detail two algorithms transforming proofs computed respectively by tableaux provers and
provers based on BDDs into this format. Since this latter is already implemented for SAT
solvers, it is now possible for the three most common propositional provers to share the
same certificates.

1 Introduction

Different theorem provers can communicate to benefit from each other capabilities. It is the case
for instance when automatic theorem provers, which can prove efficiently even hard problems,
cooperate with interactive theorem provers, well known for their trustworthiness. The powerful
Isabelle [23] tactic sledgehammer [22] implements such an interaction, by calling in parallel
various kinds of automatic provers to solve Isabelle goals.

To take advantage of efficiency without compromising soundness, the cooperation must be
skeptical : in addition to a yes/no answer, the automatic prover must return a proof witness
that can be checked or reconstructed in the proof assistant. In the sledgehammer tactic, this is
for instance the case for the SMT solver Z3 whose proof witnesses are reconstructed to produce
Isabelle theorems [4].

In addition to the fact that most automatic provers do not give (detailed enough) proof
witnesses and thus must be taken at face value, the ones that do provide such witnesses all
implement their own formats to prove the validity or the unsatisfiability of a given formula. It
thus requires much effort to write a checker for a new prover, even when some already exist for
other tools.

Besson et al. [3] proposed a format for the particular case of SMT solvers which was argued
to be both easy to generate and easy to check. This affirmation was actually backed up: the
competitive SMT solver veriT [5] is able to return a variant of these proof witnesses at small
cost, which can then be efficiently checked in Coq [1, 2]. The propositional part of this format
is based on extended resolution [28], into which theory reasoning can be plugged.

The aim of this work is to promote extended resolution as a common format for certificates
about propositional logic, based on several observations:

• on a theoretical point of view, extended resolution is known to p-simulate most existing
proof systems [29, 24];

• on a practical point of view, we can efficiently translate reasoning performed by some
proofs systems in extended resolution (see eg. [20] for DPLL with backjumping and [26]
for clausal BDDs) and efficiently check such certificates [1, 2];
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• this format is easily extendable beyond propositional logic, like theory reasoning as already
implemented for SMT solvers [3, 2] or quantifiers [10].

The work presented here extends this scheme with two other families of provers: the method
of analytic tableaux [27, 9] and the reduced ordered binary decision diagrams [6] (BDDs in short).
To do so, we detail two algorithms translating the proofs found by each of these provers into a
proof in extended resolution which is polynomial in the length of the original proof.

The objective is to have a common proof format in order to share checkers and thus save a lot
of human work. The work presented in this paper can be used to instrument already existing
provers in order to return certificates in the concrete format of [3] – which corresponds to
extended resolution – and thus directly plugged into checkers understanding it like SMTCoq [2].
As such, we could check with great confidence answers coming from these provers without having
to write new code in an interactive theorem prover; this could then be extended into tactics in
order to enjoy tableaux and BDDs automation inside Coq without compromising soundness.

SAT solver Clausal BDDs Tableau prover Reduced Ordered BDDs

SMTCoq

EXTENDED RESOLUTION

Moreover, to add safe propositional automation into another interactive prover than Coq,
one single checker would be sufficient.

Note that the goal of this paper is to give two new algorithms to generate certificates, but
not to explain how to efficiently check them after: this has already been detailed in previous
work [1, 2].

The paper is organized as follows. After explaining the extended resolution proofs (Section 2)
and their already existing applications to SAT and SMT, we present in Section 3 the method
of analytic tableaux and the algorithm to deduce a resolution certificate from a tableau proof.
The same approach is applied to the BDD method in the following section (Section 4). We
finally discuss related and future work in Section 5 before concluding.

2 Extended resolution

Extended resolution [28] is an extension of the well known resolution proof system [25] with
the possibility to add new variables representing larger terms, giving more compact proofs
than standard resolution. We first recall its definition and present our notations, before giving
examples of applications.

2.1 Definitions

We are given a countable set of propositional variables V. A literal l is a variable v (in which
case it is called a positive literal) or its negation v̄ (in which case it is called a negative literal).
A clause C is a disjunction of literals, written l1∨· · ·∨ ln when it is nonempty and � otherwise.
A conjunctive normal form (CNF in short) S is a set of clauses seen as their conjunction.

A valuation ρ : V → {>,⊥} is a total function mapping variables to one of the values true or
false. Given a valuation ρ, it is possible to define the interpretation of literals, clauses and CNFs
(respectively written |l|ρ, |C|ρ and |S|ρ) in the standard way. We say that a CNF S is satisfiable
if there exist a valuation ρ such that |S|ρ = >; otherwise, we say that S is unsatisfiable.
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The resolution rule is a deduction rule that builds a new clause from two existing clauses:

v ∨ C v̄ ∨D
C ∨D

where v does not appear in C nor D, and no variable appears with one polarity in C and the
other in D. The variable v is called the resolution variable. A comb tree of resolutions is a
resolution chain. This rule is refutationally complete: a CNF S is unsatisfiable if and only if the
empty clause can be derived by applications of the resolution rule starting with the clauses of
S.

Extended resolution extends the resolution rule with additional rules without premisses that
introduce new clauses containing fresh variables implicitly representing terms of propositional
logic.

A typical use consists in folding and unfolding logical connectives: to express that a fresh
variable x represents f1 ? · · · ? fn where ? is a connective, the rules are the tautological clauses
stating that x⇔ f1 ? · · · ? fn. Such rules are used for instance to transform a Boolean problem
into an equisatisfiable one in CNF [28, 3].

In the remaining of this paper, we are going to use these rules that fold and unfold connec-
tives for all the connectives. In this section we give the examples of the ∧,⇒ and ite (if . . . then
. . . else . . . ) connectives; the same method applies for all the others (one may refer to [28, 3]
for more details).

Example 2.1. A fresh variable x can represent the conjunction x1 ∧ x2 by introducing the
following three rules:

x̄ ∨ x1 x̄ ∨ x2 x ∨ x̄1 ∨ x̄2

respectively stating that x implies x1, x implies x2, and x1 and x2 together imply x.
Similarly, a fresh variable y can represent the implication y1 ⇒ y2 by introducing the

following three rules:

ȳ ∨ ȳ1 ∨ y2 y ∨ y1 y ∨ ȳ2

and a fresh variable z can represent the branching ite(z1, z2, z3) (stating “if z1 then z2 else z3”)
by introducing the following four rules:

z̄ ∨ z1 ∨ z3 z̄ ∨ z̄1 ∨ z2 z ∨ z1 ∨ z̄3 z ∨ z̄1 ∨ z̄2

2.2 Applications

Introduced to establish lower bounds on the minimal length of proofs, extended resolution was
shown to bypass resolution since it has the same power as the Extended Frege Systems [8, 29],
the most powerful known proof systems. It is also known to provide short proofs to problems
hard for resolution like Haken’s pigeon-hole formulae [7].

The clauses learned during conflict analysis performed by modern SAT solvers can be easily
derived by a resolution tree [20], and thus state-of-the-art SAT solvers like zChaff [14] or Min-
iSat [12] are instrumented to return resolution proofs for unsatisfiable problems. The extension
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allows to define certificates for more complex proof systems like clausal BDDs [26] or the Boolean
part of SMT solvers [3] (which do not require their inputs to be in CNF). Even if such a proof
witness can be rather huge, it takes a negligible cost to output it compared to finding that
a formula is unsatisfiable. On the other side, it can be efficiently checked, for instance inside
proof assistants [1, 2].

Extended resolution is thus a good candidate as a common proof format for propositional
reasoning. It has already been widely studied and implemented for SAT solvers. In the re-
maining of this paper, we focus on two other popular propositional proof methods: the method
of analytic tableaux and full BDDs and show that we can as well translate their reasoning into
certificates based on extended resolution.

3 Certificates for the method of analytic tableaux

The method of analytic tableaux [27, 9] is a decision procedure for various kinds of logic.
Applied to propositional logic, it can establish the unsatisfiability of any quantifier-free formula
without requiring it to be in some normal form, contrary to SAT solvers. The popularity of this
method comes from the fact that it can be extended to a large spectrum of standard features
like quantifiers or modal logic. Its efficiency and simplicity make it largely used in applications
requiring great confidence: it is for instance at the heart of the widely used blast tactic of the
Isabelle proof assistant [21].

After presenting the method for propositional logic and theoretical results concerning its
power, we explain how to deduce certificates based on extended resolution from tableaux proofs.

3.1 The method

A refutation tableau is a tree whose nodes are labeled with propositional formulas such that:

• a decomposition rule is applied at each node; and

• every branch from the root to a leaf contains at least a formula and its negation – in this
case, we say that a branch is closed.

It is established that a formula F is unsatisfiable if and only if there exists a refutation
tableau of root F . Tableaux thus give a complete method to establish the unsatisfiability of
propositional formulas.

A decomposition rule splits a formula labeling a node above in the tree (not necessarily
the current node) into one or more sub-formulas, depending on the head symbol. It can be
generically described by the node:

t1 ? · · · ? tn

f1 . . . . . . fp

where ? can be any connective, p 6 n, and any fj can be either ti or t̄i for some i, depending
on ?.

We give examples of these decomposition rules for the ∧, ∨ and ⇒ connectives.

Example 3.1. A conjunction can be projected into any of its direct sub-terms:

t1 ∧ · · · ∧ tn

ti
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An n-ary disjunction decomposes into n branches:

t1 ∨ · · · ∨ tn

t1 . . . . . . tn

Similarly, an implication decomposes into 2 branches:

t⇒ u

t̄ u

The following example proves the unsatisfiability of (a⇒ b) ∧ a ∧ b̄.

Example 3.2. A refutation tableau proving the unsatisfiability of (a⇒ b) ∧ a ∧ b̄ is:

(a⇒ b) ∧ a ∧ b̄

a⇒ b

a

b̄

ā b

(1)

(2)

(3)

(4)

(5) (6)

The first extra-edge (1) simply states the initial formula as the root. Edges (2) to (4) decompose
it as a conjunction. Edges (5) and (6) decomposes the implication a⇒ b. Finally, the backwards
dashed arrows illustrate the closure of each branch.

We theoretically know that resolution p-simulates analytic tableaux on CNF formulas (The-
orem 5.1 of [29]). The converse is not true: on some classes of problems, resolution can
build exponentially smaller proofs than tableaux. To our knowledge, there is no link between
extended resolution and full analytic tableaux.

3.2 From refutation tableaux to extended resolution

In this section, we describe a generic algorithm to transform any refutation tableau proving
the unsatisfiability of f into a proof of the empty clause in extended resolution starting from
f , without requiring f to be in normal form (contrary to [29]). It produces a proof tree
whose number of nodes is linear in the number of nodes in the original tableau proof.

3.2.1 The algorithm on an example

To understand the idea of the algorithm, we first conduct it step by step on Example 3.2.
First, we assign fresh variables to each (non-strict) sub-formula of the initial formula which

is not a literal. In our example, we thus add two fresh variables: f , a⇒ b and g , f ∧ a ∧ b̄.
Second, we build a piece of a proof tree for each edge in the tableau in the following way:

(1) We initiate the process by stating that the fresh variable assigned to the initial formula
holds: g.
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(2) This step is the first projection of g, which can be derived from (1) in extended resolution:

ḡ ∨ f
(1)

g

f

(3) - (4) Similarly, these steps are the second and third projections of g:

ḡ ∨ a
(1)

g

a

ḡ ∨ b̄
(1)

g

b̄

(5) This step corresponds to decomposing f which has been obtained at step (2). This is
the resolution of what has been obtained at (2) with the rule of extended resolution to
decompose an implication:

f̄ ∨ ā ∨ b
(2)

f

ā ∨ b

(6) This step is obtained when closing the left branch of the tree: it is a resolution between
the piece of tree labeling the edge above a (3) and the the piece of tree labeling the edge
above ā (5):

(3)

a

(5)

ā ∨ b
b

Finally, we consider the closure of the last branch, as a resolution between the piece of tree
labeling the edge above b̄ (4) and the the piece of tree labeling the edge above b (6):

(4)

b̄

(6)

b

�

Putting everything together, we obtain the following proof of the empty clause from g:

ḡ ∨ f g

f f̄ ∨ ā ∨ b
ā ∨ b

g ḡ ∨ a
a

b

g ḡ ∨ b̄
b̄

�

3.2.2 Formal description

Algorithm As we explained, the first step is to assign fresh variables to each (non-strict)
sub-formula of the initial formula which is not a literal, and to define the very simple piece of
certificate – which is a clause containing only one literal – stating that the initial formula holds.

The second step consists in successively labeling the edges with pieces of certificates, from
top to bottom and from left to right. We consider the generic rule decomposing a connective ?:
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t1 ? · · · ? tn

f1 . . . . . . fp

(0)

(1) (p)

where (0) has already been computed. We explain how to compute (1) to (p). The label of the
left edge, (1), is a resolution between (0) and the rule of extended resolution which corresponds
to the decomposition of ?. Then, for i ∈ J2; pK, (i) is the resolution between the two pieces of
certificates leading to the two formulas that finally close the branch directly on the left. For
instance, on the following tableau shape, (2) is the resolution between (3) and (4).

a ? b

(0)

(1) (2)

(3)

(4)

Finally, we obtain the empty clause by a resolution between the two pieces of certificates
leading to the two formulas that close the last branch.

Remarks The correctness of this algorithm mainly relies on the following invariant: a piece
of certificate labeling an edge above the formula f proves a clause containing f . This ensures
that the resolutions performed are always possible.

For each edge in the tableau proof, the corresponding piece of certificate contains at most
two nodes: a resolution and possibly a rule of extended resolution. The final step adds a
resolution to the final proof. It entails that the number of nodes in the obtained proof is linear
in the number of nodes in the tableau proof.

4 Certificates for reduced ordered binary decision dia-
grams

A reduced ordered binary decision diagram is a normalized decision tree of a propositional
formula. BDDs enjoy the property to be canonical [18]: two equivalent formulas have the same
BDD – up to the order of the variables, as we will see below. As a result, it provides a decision
procedure for the unsatisfiability of propositional formulas [6], which consists in progressively
building the BDD of the formula, and check that the result is the false BDD.

This method is rather popular since it is very efficient for certain classes of SAT problems,
and well suited for circuit generation and simplification [11, 13]. Its efficiency mostly relies on
the choice of a good order for the variables, which is an active research area [19].

After presenting the method for propositional logic and theoretical results concerning its
power, we explain how to deduce certificates based on extended resolution from BDD proofs.
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4.1 The method

A BDD is a directed acyclic graph whose nodes have either zero or two children and are labeled
with propositional variables with respect to a given order. The idea is that, for every variable
whose value has an influence on the formula, we construct the two sub-BDDs obtained by
successively putting this variable to ⊥ and >: this is called the Shannon expansion of the
variable.

Example 4.1. The BDD corresponding to (a⇒ (b∨ c))∧ (a∨ b∨ c) with the ordering a > b > c
is:

b

c

0 1

It is established that two equisatisfiable formulas have the same BDD up to the order of
the variables. It entails that every unsatisfiable formula has the 0 BDD. BDDs thus give
a complete method to establish the unsatisfiability of a formula F : it is sufficient to build the
BDD of F and check that it is 0.

The difficulty is that the naive algorithm to compute the BDD of a formula is equivalent to
computing a truth table, and thus impossible to run in practice. The idea to cope with this
issue is to build the BDD little by little and simplify it at the same time.

To build the BDD corresponding to a formula F , we thus start with the BDDs corresponding
to the variables appearing in the formulas, and we alternate between two phases:

1. building the BDD associated to a sub-formula of F of which every sub-formula has already
been treated;

2. simplifying the obtained BDD.

The first step consists in recursively running through the BDDs concerned by the connec-
tive, until we reach the leaves. The following example presents the rules corresponding to the
implication.

Example 4.2. Given two BDDs, their implication can be constructed using the following rules:

a a a

Γ1 Γ2 ∆1 ∆2 Γ1 ⇒ ∆1 Γ2 ⇒ ∆2

⇒  

a

∆

a

Γ1 Γ2 Γ1 ⇒ ∆ Γ2 ⇒ ∆

⇒  

0⇒ ∆ 1 1⇒ ∆ ∆ Γ⇒ 0 ¬Γ Γ⇒ 1 1

The second rule applies when the top variable of ∆ is smaller than a. The symmetric rule when
this variable is greater than a is similar.

The second step is an application of the following two rules, respectively called merge and
elim, until the BDD is normalized:
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a a

Γ Γ Γ

 
merge

a

Γ

Γ 
elim

This step is the key point to avoid building exponential BDDs.
We give as an example the proof of unsatisfiability of (a⇒ b) ∧ a ∧ b̄.

Example 4.3. The following steps build the proof of unsatisfiability of (a⇒ b) ∧ a ∧ b̄:
a a

a

a

b

b

b

b

0

0

0

0

0

0

0

1

1

1

1

 

 

  

 

 

imp

neg
and

and

elim elim

We already theoretically know that extended resolution p-simulates BDDs (Corollary 1 of
[24]).

4.2 From BDDs to extended resolution

In this section, we describe a generic algorithm to transform any BDD proof of unsatisfiability
into a proof of the empty clause in extended resolution, without requiring the initial for-
mula to be in normal form. It produces a proof tree whose number of nodes is polynomial
in the number of nodes in the length of the whole BDD proof.

Peltier [24] proved that extended resolution p-simulates BDDs, and this proof of course con-
tains an algorithm to transform a BDD proof into a proof in extended resolution. We propose
here a variant which is more implementation-oriented. Some ideas remain the same, but con-
trary to [24], we build the clauses corresponding to extended rules on demand (and not at the
beginning), which changes the way we handle connectives. The construction remains polyno-
mial.

The idea is the following:

• we define how a set of clauses can represent a BDD: it mainly consists in labeling all the
nodes with names, and expressing the Shannon expansion in terms of clauses a la Tseitin;

• starting from the variables, we progressively build both the BDD and the resolution proof:
for each step of the building of a BDD, we explain how to transform a set of clauses
representing the initial BDD into a set of clauses representing the final BDD, by applying
the rules of extended resolution;

• in the end, since we obtain the 0 BDD, we have built a close proof in extended resolution of
the negation of the original formula. It only remains to resolve with the original formula.

This algorithm thus builds two kinds of objects:
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• the sets of clauses representing the intermediate BDDs: it is not mandatory to actually
construct them, but the fact that they represent the intermediate BDDs is the invariant
making this algorithm correct;

• the resolution proof produced little by little to switch between these sets of clauses: this
is the final output of the algorithm.

This time we do not first present the algorithm on an example, since the proof which is
obtain (even for a simple formula like a ∧ ā) is rather huge and unreadable; it is in fact easier
to understand each step in the general case.

4.2.1 Algorithm

A set of clauses representing a BDD relates connected nodes by clauses.
First, all the nodes have been given fresh names. Then, for each internal node, we add to

the set four clauses corresponding to the Shannon expansion that this node represent:

a

Γ1 Γ2

PΓ

PΓ1 PΓ2

adds the four clauses P̄Γ ∨ a ∨ PΓ1 ;PΓ ∨ a ∨ P̄Γ1 ; P̄Γ ∨ ā ∨ PΓ2 ;PΓ ∨ ā ∨ P̄Γ2 to the set.
Finally, we add one clause a leaf depending on its value: 0P0 adds the clause P̄0 and 1P1

adds the clause P1.

Example 4.4. • The set of clauses associated to the BDD 0P0 is {P̄0}.

• The BDD of a variable a is:

a

0 1

Pa

P0 P1

The corresponding set of clauses is {P̄a∨a∨P0;Pa∨a∨ P̄0; P̄a∨ ā∨P1;Pa∨ ā∨ P̄1; P̄0;P1}.

• We come back to Example 4.1 and give the names Pb to the node labeled with b, Pc to
the node labeled with c, P0 to the node labeled with 0 and P1 to the node labeled with
1. The set of clauses associated to this BDD is {P̄b ∨ b ∨ Pc;Pb ∨ b ∨ P̄c; P̄b ∨ b̄ ∨ P1;Pb ∨
b̄ ∨ P̄1; P̄c ∨ c ∨ P0;Pc ∨ c ∨ P̄0; P̄c ∨ c̄ ∨ P1;Pc ∨ c̄ ∨ P̄1; P̄0;P1}.

All these clauses correspond to the rules for the ite, > or ⊥ connectives in extended resolu-
tion, and are thus provable in extended resolution.

As we said, the algorithm consists in starting with the BDDs of the variables and the cor-
responding sets of clauses, and then successively apply the connectives, merge and elim rules
both on the BDDs and on the set of clauses. In the end, we will obtain the BDD 0PΓ , and thus
a proof in extended resolution of P̄Γ, where PΓ is the fresh variable associated to the initial
formula. We will finally conclude by resolving with it.

It thus remains to explain how we transform sets of clauses representing BDDs into a set of
clauses representing the BDD obtained after an application of a connective or the merge and
elim rules. In this paper, we focus on the connectives, since the simplification rules are handled
like in [24] (and it is roughly the same ideas as for connectives).
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To handle a connective f ? g, we prove by induction on the sum of the number of nodes in
Γ and ∆ that we can at the same time:

(a) transform the sets of clauses associated to Γ and ∆ into a set of clauses representing Γ ?∆;

(b) generate the extended rules corresponding to Γ ?∆;

where Γ is the BDD corresponding to f and ∆ is the BDD corresponding to g. Only the first
item is needed for the final algorithm to work, but the second item is required in the proof by
induction. This is how we avoid to first transform the formula into a set of clauses, like in [24].

We show the proof in the case of the implication: this both variant and covariant connective
illustrates well the process.

Base cases We consider only the base case 0PΓ
⇒ ∆P∆

 1PΓ⇒∆
since the others are

similar.
We first define the name PΓ⇒∆ by extended resolution:

P̄Γ⇒∆ ∨ P̄Γ ∨ P∆

(1)
PΓ⇒∆ ∨ PΓ

(2)
PΓ⇒∆ ∨ P̄∆

(3)

This already fulfills step (b).
The set of clauses representing 0 is {P̄Γ}, obtained by extended resolution on the connective

⊥. By resolving it with (2), we obtain a proof of PΓ⇒∆, which fulfills step (a).

Inductive cases The inductive cases correspond to the following labeling:

a a a

Γ1 Γ2 ∆1 ∆2 Γ1 ⇒ ∆1 Γ2 ⇒ ∆2

⇒  

PΓ

PΓ1 PΓ2

P∆

P∆1 P∆2

PΓ⇒∆

PΓ1⇒∆1
PΓ2⇒∆2

a

∆

a

Γ1 Γ2 Γ1 ⇒ ∆ Γ2 ⇒ ∆

⇒  

PΓ

PΓ1 PΓ2

P∆

PΓ⇒∆

PΓ1⇒∆ PΓ2⇒∆

We are going to concentrate only on the first one; the second one is similar (with even fewer
resolutions).

The induction hypothesis for (b) gives us: P̄Γ1⇒∆1
∨ P̄Γ1

∨ P∆1
(1)

PΓ1⇒∆1
∨ PΓ1

(2)
PΓ1⇒∆1 ∨ P̄∆1 (3)

and

 P̄Γ2⇒∆2
∨ P̄Γ2

∨ P∆2
(4)

PΓ2⇒∆2 ∨ PΓ2 (5)
PΓ2⇒∆2 ∨ P̄∆2 (6)

The induction hypothesis for (a) is:
P̄Γ ∨ a ∨ PΓ1

(7)
PΓ ∨ a ∨ P̄Γ1

(8)
P̄Γ ∨ ā ∨ PΓ2

(9)
PΓ ∨ ā ∨ P̄Γ2 (10)

and


P̄∆ ∨ a ∨ P∆1

(11)
P∆ ∨ a ∨ P̄∆1

(12)
P̄∆ ∨ ā ∨ P∆2

(13)
P∆ ∨ ā ∨ P̄∆2 (14)

We first define (b) by extension: P̄Γ⇒∆ ∨ P̄Γ ∨ P∆ (15)
PΓ⇒∆ ∨ PΓ (16)
PΓ⇒∆ ∨ P̄∆ (17)
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and then (a) by resolution:
P̄Γ⇒∆ ∨ a ∨ PΓ1⇒∆1

(resolution of 15, 8, 11, 2, 3)
PΓ⇒∆ ∨ a ∨ P̄Γ1⇒∆1

(resolution of 17, 12, 1, 7, 16)
P̄Γ⇒∆ ∨ ā ∨ PΓ2⇒∆2

(resolution of 15, 10, 13, 5, 6)
PΓ⇒∆ ∨ ā ∨ P̄Γ2⇒∆2

(resolution of 17, 14, 4, 9, 16)

4.2.2 Remarks

As proved in [24], the whole algorithm – together with the transformation of the merge and
elim rules – builds a proof whose number of nodes is polynomial in the length of the original
BDD proof.

As we said, the correctness of this algorithm relies on the fact that the intermediate sets
of clauses always represent the intermediate BDDs, in order to obtain in the end a proof of the
negation of the initial formula.

We think that the new presentation for connectives makes this algorithm easier to im-
plement: the functions combining BDDs for each connective just have to return the clauses
generated by the (b) step in addition to the (a) step, instead of somehow looking into a large
set initially computed.

5 Discussion

5.1 Related works

Lots of related works were already presented throughout the paper.
To our knowledge, this is the first transformation of full propositional tableaux (and not

only clausal tableaux) into extended resolution, and this is the first work aiming at providing
certificates that can be checked by an external tool (instead of a theoretical comparison of
two proof systems). The Isabelle tableau prover [21] gives witnesses, but encoded directly into
Isabelle proofs, and thus not applicable to systems not based on Higher-Order Logic.

The BDD algorithm highly relies on [24], but in an implementation perspective (as we argued
in Section 4.2.2). [26] presented an implementation of a translator from clausal BDDs into
extended resolution, but this is limited to CNF formulas, and requires to treat lots of particular
cases whereas our algorithm is more generic.

Even if this work relies on different previous works for the different parts, this is a first
attempt to unify certificates for three major paradigms for propositional proving: DPLL with
backjumping, the method of tableaux, and BDDs.

Other proof formats for certificates in propositional logic have been proposed. The format
based on extended resolution used in [26] called TraceCheck (which is in particular returned
by the SAT solver BooleForce) is very close to ours, and thus could be directly used by our
algorithms. The recent Reverse Unit Propagation format [15, 16] (RUP in short) gives shorter
proofs than resolution, but is currently restricted to inputs in CNF– whereas tableaux and BDD
provers deal with the full propositional logic without requiring preprocessing.

5.2 Future works

Obviously, the next step is to instrument existing provers in order to return these certificates,
and to evaluate the efficiency (in particular, it must not be costly to output and check the
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certificate compared to finding the proof). This could then be plugged into a certified checker
like SMTCoq [2], in order to check a posteriori the answers given by the automatic provers.

The tableaux and BDD algorithms we presented here are rather naive, and we need to
understand how the variants that are actually implemented by the provers enter into this
schema. Some improvements do not affect our algorithms, like the choice of the order of the
variables in BDDs, but others may require changes.

Our algorithms could also be extended with other features, in particular quantifiers: we
know how to extend our certificates with quantifiers [10], and they are well handled by tableaux
proofs. We would also like to deal with other logics than classical logic, like intuitionistic or
modal logic, for which tableaux are quite frequently used.

A broad spectrum study should also extend this work to other proof formats, like an exten-
sion of the RUP proofs [15] to full propositional logic, as well as other proof search paradigms,
like stochastic search algorithms.

Acknowledgments The author thanks Filip Marić who asked a question that motivated this
work, and the anonymous reviewers for their insightful comments.

6 Conclusion

In this paper, we presented two new algorithms to transform into certificates in extended
resolution the proofs computed by two major propositional provers: tableaux provers and BDDs.
Since this translation is already efficiently implemented for SAT solvers based on DPLL with
backjumping, this opens the way towards a common format for certificates for propositional
solvers for which we already have efficient certified checkers.
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