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Abstract

Nowadays, remote sensing data taken from artificial satellites require high space com-
munications bandwidths as well as high computational processing burdens due to the
vertiginous development and specialisation of on-board payloads specifically designed for
remote sensing purposes. Nevertheless, these factors become a severe problem when con-
sidering nanosatellites, particularly those based in the CubeSat standard, due to the strong
limitations that it imposes in volume, power and mass. Thus, the applications of remote
sensing in this class of satellites, widely sought due to their affordable cost and easiness
of construction and deployment, are very restricted due to their very limited on-board
computer power, notwithstanding their Low Earth Orbits (LEO) which make them ideal
for Earth’s remote sensing. In this work we present the feasibility of the integration of
an NVIDIA GPU of low mass and power as the on-board computer for 1-3U CubeSats.
From the remote sensing point of view, we present nine processing-intensive algorithms
very commonly used for the processing of remote sensing data which can be executed
on-board on this platform. In this sense, we present the performance of these algorithms
on the proposed on-board computer with respect with a typical on-board computer for
CubeSats (ARM Cortex-A57 MP Core Processor), showing that they have acceleration
factors of average of 14.04× ∼14.72× in average. This study sets the precedent to perform
satellite on-board high performance computing so to widen the remote sensing capabilities
of CubeSats.
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1 Introduction

On-board processing is fundamental for a space system because it controls the whole operation
of the mission’s systems. On-board computer subsystems must have the following features:
availability, flexibility, processing capacity, data managing as well as reliability [31]. In order
to build a processing system with characteristics, it is fundamental to consider the hardware,
the instructions set of the architecture (ISA), the communications system’s topology, as well as
the software to manage and control the satellite [31].

In the beginning of the aerospace industry, on-board processing was required modular in
order to tackle the many functions of subsystems of the space mission. IBM systems of the
1960s were successful modular architectures that were used in many NASA missions like the
first Saturns [31]. This on-board computer has evolved, and nowadays, several modern process-
ing architectures like microcontrollers, microprocessors and very large scale integrated circuits
(VLSI) like FPGA have been used [27]. Along these technological advancements, the internal
network to monitor the satellite’s tasks has been evolved [14].

Nevertheless, it is a well known fact that the computing power of typical on-board computers
is strongly limited by the volume, power and mass of nanosatellites, particularly of those built
under the CubeSat standard [9]. Although recent advancements in the development of proces-
sors for on-board nanosatellite missions have been achieved, current processors are not able to
deliver computing performance for the processing and post-processing of payload’s information,
as the whole operation of the satellite relies on the on-board computer.

Currently, leading processors used as on-board computers in most nanosatellite missions are
microcontrollers or 32-bit based processors as those from the ARM or ATVEL families. For
instance, one of the best performance processors that could also be found in a dual-processor
configuration is the novel ARM Cortex-A32 MP Core Processor. Nevertheless, these processors
have a computing power of the order of 1-4 GFLOP/s. This is the reason why in most on-board
systems auxiliary computing units can be found. For instance, an IMU dedicated to process
the input of sensors to govern the attitude of the satellite; a common process-demanding task.

In this work, we study the feasibility of usage of an NVIDIA Jetson TX1 embedded system
as an on-board system to fully drive the operations of the satellite, which delivers 1 TFLOP/s of
processing power in the dedicated graphic unit, which is an unprecedented computing power in
micro and nanosatellites. As the algorithms meant to be executed in the GPU must be codified
in CUDA C language, this allows the usage of several optimised libraries for GPU, making it
a powerful and versatile option for several applications, reducing post processing signal data
values and rates. We present performance studies on the acceleration factor of nine very used
algorithms in remote sensing implemented in this system. Although our tests were performed
with a commercial component, our calculations on the power, size and mass of the considered
module show that it is feasible to be implemented in a 1U CubeSat remote sensing mission.

2 Materials and methods

In what follows, information about the used platform as well as about the data processing
algorithms considered in this work.

2.1 NVIDIA Jetson TX1

Graphic processing units (GPUs) have been installed alongside multi-core architectures to speed
up a huge range of science and engineering application in order to reduce their computing time.
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With the introduction of CUDA (Compute Unified Device Architecture), the power of NVIDIA
GPUs for scientific and engineering applications was unleashed by extensions to C language
[19]. Nevertheless, using low level tools as CUDA C is a complex task because it requires a
high knowledge of the GPU architecture to obtain the best speed-up benefits. The integration
of GPUs as on-board processing units in space missions, particularly in nanosatellites, has
been hindered by three causes: 1) the aforementioned use of low level tools, 2) the high power
requirements of GPUs, and 3) the fact that GPUs have not been specifically designed for space
environment.

In this sense, and considering the constraints of the CubeSat standard [9], we study the
feasibility of the NVIDIA Jetson TX1 embedded system to completely undertake the operations
of a 1U CubeSat satellite with remote sensing mission. The technical specifications of the
mentioned platform can be observed in Table 1. The power subsystem of a 1U CubeSat typically
delivers 5W of DC. In this sense, it might not be able to provide the current required to fully
drive the NVIDIA Jetson TX1 module. On the other side, the mechanical specifications (see
Table 1) are fully within the CubeSat standards [9], therefore, its integration within a 1U
CubeSat mission is fully feasible.

Table 1: Specifications of the NVIDIA Jetson TX1 module.

GPU: 256-core NVIDIA Maxwell Electrical: 5.5 V-19.6 V DC, under 10W
Memory: 4 GB 64-bit LPDDR4 Mechanical: 87 mm x 50 mm, 88 g

In what remains of the section, we present nine algorithms that are commonly used in the
processing of data arising from remote sensing payloads which we test in the proposed platform
to assess the acceleration factor they could obtain, in order to evaluate the feasibility of they
to be executed on-board.

2.2 Data Processing Methods

2.2.1 Kriging method (KM)

Kriging method is an advanced interpolation procedure aimed to generate an estimated surface
from a set of scattered points. The method fits a mathematical function to the specified points,
or to the points within an specific radius to determine the output value for each location. This
algorithm assumes that the distance or direction among the sample points indicates an spatial
correlation which can be used to generate a surface with adequate variations. Thus, kriging is
suitable when there is a directional influence in the spatially correlated distance within the data.
In order for kriging method to weigh measured surrounding values to calculate a prediction of
a location with no measurements, a geostatistical estimator is used [25].

2.2.2 Empirical Mode Decomposition (EMD)

EMD algorithm produces smooth envelopes defined by local extreme of a sequence and subse-
quent subtraction of the mean of these envelopes from an initial sequence. It requires to identify
all the local extreme connected by cubic spline lines to produce the upper and lower envelopes
[11].

This adaptive analysis method is adequate to process non-steady and non-linear time series.
The final purpose of EMD is to divide the series in modes, the so called Intrinsic Mode Functions
(IMFs) in the time domain, which is the main difference between EMD and other analysis
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methods for time series such as Fourier transform, and wavelet decomposition. For further
information on EMD, the reader is referred to [8].

2.2.3 Gray Level Co-occurrence Matrix (GLCM)

In Digital Image Processing (DIP), analysis of textures gives important information about the
physical features of an object [3]. One successful method to analyse textures is the Gray Level
Co-occurrence Matrix (GLCM), which measures the frequency in which different combinations
of values in the pixels of an image occur [3]. In this way, the analysis of the GLCM classifies
texturally each neighbourhood associated to a pixel within the image [1]. Thus, it allows to
recognise and cluster different regions in the figure. This textural approach is easy to compute
and is widely used, particularly in the classification of satellite images [3, 17]. Nevertheless, its
main drawback is its very intensive computational burden.

2.2.4 High efficiency video compression (HEVC)

One of the main limitations of CubeSats are the impossibility of being equipped with payloads to
obtain high resolution real-time video due to their very limited RF communications bandwidths
[16]. The evident solution is to implement video compression algorithms to dramatically reduce
the size of transmitted information, which is unfeasible because algorithms to highly compress
video are of very high processing burden [10].

To be executed on-board a CubeSat mission, these algorithms must provide high visual
quality with very high compression levels [10]. Examples of these algorithms are H264 AVC,
Dirac, VP8 and HEVC [10]. In this work we asses the performance of HEVC (High Efficiency
Video Codding), which provides codding efficiency, easy integration, high resilience to data
losses, as well as high implementability in parallel architectures [26]. Recently, a high parallel
design of HEVC decoding in heterogeneous architectures has been presented. Experimental
results show important acceleration factors of the algorithm in GPU against CPU parallel
implementation (44.99× and 8.44× for 4K and 8K video respectively) [30].

2.2.5 Encryption algorithm (AES, Advanced Encryption Standard)

Encryption of payload’s information is sometimes fundamental when transmitting data, partic-
ularly when it comes to reserved information like national security. In this work we assess the
performance of the Advanced Encryption Standard (AES) to encrypt high volumes of informa-
tion using cryptographic keys of 256 bits [15]. Due to the high burden of the algorithm, much
work on its parallelisation in different architectures has been performed. In this sense, [5] has
shown that the algorithm itself benefits more from parallelisation in GPU than in CPU, mainly
because the later ones are optimised for serial processing, the use of large cache sizes as well as
their complex instructions sets [5].

2.2.6 Artificial Laser-based Vision (ALV)

Artificial Vision allows the transformation images in to numerical and symbolic data for their
further processing. In [24, 16], an on-board artificial vision system able to locate an Earth’s
reference point by taking a picture of a laser beam pointing directly to the CubeSat is proposed.
This, as part of a PAT (Pointing, Acquisition and Tracking) system [23], to establish an optical
laser-based high-bandwidth communications system. In order to be able to do so, a very high
resolution camera is required which would deliver very large images, [21] such images are to
be processed in segmentation [28, 13], parametrisation [6] and interpretation stages [7]. The
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outcome is the computation of a centroid, which will allow to set the PAT for tracking and fine
pointing [20]. As CubeSats usually orbit in Low Earth Orbits (LEOs), which ranging from 300
to 700 km above the sea level and the sighting time is of the order of 3 to 5 minutes, the ALV
algorithm ought to analyse several very high resolution images in real-time to be able locate
efficiently the ground station and to establish optical link and transfer information.

2.2.7 Genetic algorithms to enhance features in remote sensing images (GAs)

In the new area of evolutionary computing, Genetic Algorithms (GAs) are optimisation methods
based on the natural process of evolution which holds two principles: the survival of the fittest,
as well as the generation of new elements with novel characteristics through the crossover
operation. Countless are the applications in which GAs have succeeded. In the field of DIP,
they have been of aid in the optimisation of the values of parameters for different algorithms.
This is the case of the specific design of filters applied to the image processing, which are
targeted to enhance determined features of interest. This is a process that can be performed
on-board and in real time for pattern recognition of multiple targets in high resolution images
acquired by the satellite’s payload.

In this work we reproduce the algorithm of [18], which consists in a convolution operation
of a specific 2D structure and the original image, where the GA is aimed to find the elements
of the 2D kernel which enhances specific features of the image when the convolution filter is
applied.

2.2.8 Artificial Neural Networks (ANN) and Principal Component Analysis (PCA)
for objects classification in remote sensing images

Objects recognition and classification are some of the most important tasks in DIP. One of the
cornerstones of object recognition is the Principal Component Analysis (PCA), an statistical
technique developed to dimensional reduction, and later used to identify and classify human
faces in images [29]. In this sense, PCA has been successfully applied in several recognition
tasks in very different environments.

Nevertheless, with the rise of the field of Artificial Intelligence (AI), the methods of the
later have succeeded in boosting the efficiency of classical algorithms as PCA. Particularly,
Artificial Neural Networks (ANN) have proved to be efficient in the process of classification of
objects. An ANN is a mathematical model inspired in the biological behaviour of neurons and
in the brain’s structure; thus, it consists of a number of connected nodes through directional
connections [12].

It has been noted that a hybrid ANN/PCA algorithm constitutes a good framework to the
classification problem. In [4], it has been successfully applied to solve the problem of massive
classification of galaxy structures in large image data-sets. In this work we reproduce such
paradigm with a convolutional ANN and PCA to perform real-time object recognition and
classification in a set of high-resolution images, which would benefit a CubeSat space mission
to analyse on-board large sets of images taken with high-resolution payloads.

2.2.9 3D non-steady heat diffusion (HD, Heat Diffusion)

Finally, although not a remote sensing focused algorithm, it is important to note that the
satellite heavily relies in the thermal subsystem which protects the satellite from the aggressive
temperatures in the space environment. Nevertheless, CubeSats only possess passive thermal
subsystems due to the restrictive standard [9]. It would be very beneficial for the mission to
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be able to compute the heat diffusion microscopically in the satellite in real time to improve
on-board thermal solutions. To do so, it is necessary to solve the dimensional non-steady heat

transport equation, ∂T
∂t = C

(
∂T 2

∂x2 + ∂T 2

∂y2 + ∂T 2

∂z2

)
, where T is the temperature field. For its

discrete solution, we pose a 3D Finite Differences in Time Domain (FDTD) method of second
order in space and time which yields an explicit scheme, along with the Courant condition to
conserve its stability [22]. The domain is a 1U 3D CubeSat made from Aluminium 6061, and
Dirichlet boundary conditions were imposed to simulate space conditions.

3 Results

In order to provide a reliable benchmarking of the performance of the presented algorithms,
they were programmed in two ways: in CUDA C and in standard C language, for them to
be executed in both the NVIDIA Jetson TX1 embedded system, as well as in a standard
CubeSat microprocessor, the 64-bit Quad-core ARM Cortex-A57 MP Core Processor. It must
be mentioned that we used this microprocessor because it is incorporated within the NVIDIA
Jetson TX1 module. Nevertheless, current CubeSat missions feature ARM processors with less
computing power than this one.

In order to compare the performance of the algorithms in the mentioned platforms, we use
the acceleration factor metric which shows the factor by which the algorithm is accelerated in
the NVIDIA Jetson TX1 with respect to the ARM Cortex-A57. The results of the performed
benchmarking are shown in Figure 1.
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Figure 1: Acceleration factors for each of the algorithms presented in Section 2.2, where the
used acronyms can be consulted. Blue bars represent the lowest obtained time while violet ones
represent the highest execution time obtained.
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From Figure 1 it can be observed that the algorithms are accelerated an average of 14.04×
∼14.72×. It is important to note that the algorithms have a similar acceleration factor, which
implies that despite the fact that these algorithms are very different from each other, they do
not cause a significant change in their execution in the aforementioned platform. In the case of
Heat Diffusion (HD), the low acceleration factor is explained considering that the algorithm is
intensive in the accesses of memory, thus reducing the usage of processor.

On the other hand, as discussed in Section 2.1, the main problem could be the required
current to drive the NVIDIA Jetson TX1 with a 100% burden. In our experiments, the peak
current taken by the module was 8.91 W, so it is fully feasible to power a 2U or 3U CubeSat
with this embedded system (as each unit provides 5W). For a 1U CubeSat mission, the NVIDIA
Jetson TX1 could be installed provided that the computational burden is not too high or that
it is used selectively.

4 Conclusions

In this work we propose to use the NVIDIA Jetson TX1 embedded system as an on-board com-
puter to bring high performance computing to CubeSat nanosatellites whit the aim to perform
on-board real-time computing to process remote sensing payload’s data. The mechanical (power
and size) features of the proposed platform satisfy the restrictive CubeSat standard [9], while
the electrical feasibility is demonstrated for 2U and 3U CubeSat missions. It should be noted
that these results coincide with those recently reported by [2] for a TX2 module of the same
manufacturer. the author finds that such module is likewise susceptible to be implemented in
small satellites and CubeSats.

On the side of the performance results, it is important to mention that the platform
was benchmarked against the included-with-the-module ARM Cortex-A57 MPCore Processor,
which outtakes the computing power of common leading on-board processors for CubeSats cur-
rently in use. In this sense, the results show that the computing power offered by the proposed
platform is higher than the average of 14.04× ∼14.72× in acceleration factor obtained with
this processor. This study sets the precedent to open GPU-based high performance parallel
processing in CubeSat satellites for pattern recognition in remote sensing missions.

5 Future work

Besides the implementation of the referred module in a real CubeSat structure and the spatial
validation tests it must undergo, an important direction is to investigate the feasibility and
performance in the recently launched NVIDIA Jetson Nano module. This module is lighter,
smaller, and has lower electrical requirements than the TX1 module, with the drawback of
having less computing power (see Table 2). In this sense, the NVIDIA Jetson Nano module
might pose as the on-board computer ideal for 1U CubeSat missions.

Table 2: Specifications of the NVIDIA Jetson Nano module.

GPU: 128-core NVIDIA Maxwell Electrical: 5 V DC, 5 W-10 W
Memory: 4 GB 64-bit LPDDR4 Mechanical: 69.6 mm x 45 mm, 49.7 g
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[24] Torres-San Miguel CR Santiago-Garćıa LA, Medina I. Desarrollo de un prototipo para localización
basado en un algoritmo de visión artifical para cubesats. Technical report, Instituto Politécnico
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