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Abstract

Classifying proteins into families is an important task when studying newly discovered
proteins. If we can identify the family a protein belongs to, we can predict features without
knowing the exact structure of such a protein. However, this grouping process is challeng-
ing. We propose a two-stage algorithm that classifies proteins into families by combining
a dimensionality reduction technique using a variational autoencoder with learned finger-
print representations using a Convolutional Neural Network (CNN). Our models use fewer
parameters than existing methods but perform better, with our variational autoencoder
achieving 94% accuracy in reconstructing the most common amino acid in a sequence
alignment, and the neural network provides 98-100% accuracy in classifying protein fami-
lies. We developed a software framework to access our algorithms. All code and data are
publicly available at https://github.com/ramindehghanpoor/CLI.

1 Introduction

Protein family classification for newly discovered protein sequences is a crucial step in bioinfor-
matics analysis. For example, an important application is finding the structure and functionality
of a new protein sequence [1, 2]. Protein structure is tightly linked to its function and determines
how it interacts with other proteins. If we know the structures of proteins, we can have higher
levels of understanding of how they function. Consequently, we can learn how to modify or con-
trol them. Predicting the structure of proteins is still an open, NP-hard problem in structural
biology that is still challenging even for state-of-the-art software and hardware. This is due to
the enormous size of the search space of protein structures and the fact that their structural
landscape is rugged [3]. Generally, experimentally detecting a protein structure is challenging.
The number of known protein sequences grows fast, but the number of known structures lags
behind [4]. Therefore, we need to look for other ways to model protein structures. It is almost
impossible to find crystal structures of all the protein sequences experimentally, and even the
best prediction models like AlphaFold are far from perfect [5]. But we may have the structures
of different proteins in the same family [2, 1]. This task is especially challenging when the
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sequence shares limited sequence similarity to any of the sequences in databases [6]. If we have
the protein structure, authors sometimes use the structural information to identify its family [7],
but as mentioned above, the structure is not always available. Hence, improving the accuracy
of methods that classify sequences into existing families is an area of active research [1, 2, 8, 9].
A protein family consists of proteins with the exact evolutionary origin. These proteins have
similar functionalities or similarities in sequence or structures [10]. The fact that proteins in
the same family have similar sequences and structures can help us predict the structures of
proteins for which their 3D structure has not been found experimentally yet.

Dimensionality Reduction

Working with a lower-dimensional dataset saves training time, computational resources, and
space and tackles the problem of over-fitting. We can divide dimensionality reduction methods
into the ones that work best for linear data and the ones that work well for nonlinear data. One
of the most famous linear dimensionality reduction techniques is Principal Component Analysis
(PCA) [11]. PCA builds new independent features as a linear combination of old features. PCA
tries to find the best linear subspace of the data that minimizes the error of estimating the data
by their projections on this subspace. Nonlinear methods can work significantly better with
complex nonlinear data, like protein sequences, than linear ones. Recently, there has been a
surge in the utilization of Autoencoders to reduce the dimensionality of nonlinear data.

Auto Encoders (AE): Autoencoders are unsupervised feed-forward artificial neural net-
works with two primary usages; compressing the data and regenerating new similar data from
the compressed one. Autoencoder networks have an odd number of layers that comprise three
key components: the encoder, the latent space (i.e., bottleneck), and the decoder [12]. These
networks have a particular architecture that forces the data to be encoded to a smaller dimen-
sion in the latent space and reconstruct a representation as close to the original input as possible
from the reduced data. Therefore, the first half of the network, i.e., the encoder, is a model
which maps the data from high to low-dimensional space. We train the network to minimize a
loss function, for example, the mean squared error, between the input and the output of the net-
work and to ignore the noise and keep the essential parts of the data. Autoencoders have many
applications in bioinformatics and specially protein studies like prediction of protein-protein
interaction [13, 14, 15], protein secondary structure prediction [16], protein function prediction
[17], protein dynamics studies [18] and many more.

Variational Auto Encoders (VAE): The loss function in a regular autoencoder is not
concerned with how the latent space is organized. Its only purpose is to encode and decode
with the minimum loss possible. Without regularizing the network, it’s more likely to have
an overfitting problem. A Variational Auto Encoder (VAE) [19], on the other hand, is a type
of autoencoder that incorporates the regularization factor in the training process to prevent
overfitting [20]. VAE learns a latent variable model, i.e., a distribution over the latent space,
rather than a single point. So instead of letting the network learn a random function, we
force it to learn the parameters of a probability distribution that models our data. First, the
network encodes the input as a normal distribution over the latent space and then samples
a point from this distribution. Next, the second part of the network decodes the sampled
point, the loss function calculates the reconstruction error, and the network backpropagates
the reconstruction error through the network. Using a distribution with some variance adds
a regularization to the latent space. The loss function of VAE is a combination of two loss
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Figure 1: An overview of the project. (A) amino acid sequence as the input data, (B) two other
features computed for secondary structure and solvent accessibility, (C) phase 1: dimensionality
reduction using a variational autoencoder, (D) phase 2: protein family classification using a 2D
convolutional neural network, and (E) protein family as the output data.

functions: a reconstruction loss, forcing the reconstructed data to be as close as possible to
the input, and a regularization loss (Kullback-Leibler divergence), forcing the distributions
returned by the encoder to be as close as possible to a standard normal distribution. VAEs
are described in detail in [19]. Some applications of VAE in protein studies include protein
structure prediction [21], generating protein variants and tertiary structures [22, 23], protein
conformational space exploration [24, 25], protein fold design [26], and many others.

This Contribution: We use three protein features to classify proteins into different families.
These features include the amino acid sequence, the predicted secondary structure, and the
predicted solvent accessibility of each amino acid. This work has two main phases. In the
first phase, we reduce the dimensionality of our high-dimensional features using a variational
autoencoder to create a compact representation of a protein family. In the second phase, we use
the dimensionality-reduced features to classify the family of the protein sequences using a CNN
multiclass classifier. A schema of our project phases is shown in Figure 1. We also developed an
open-source library to search and compare the compressed representation of different protein
sequences easily and efficiently (section 2.3).

2 DMaterials and Methods

2.1 Dataset

This section provides an overview of the dataset used in our study, a set of reviewed protein
sequences from the Uniprot database. We used the same family names as the ones used by
Zhang et al. [27]. 53 protein families have been fetched from the Uniprot database, with a
total number of 49,616 sequences with different lengths. We then removed any sequence with
fewer than 50 or greater than 1,200 amino acids. Any protein family with fewer than 500
sequences was removed. We then used ClustalW [28] to align the sequences in each protein
family. We performed two steps of preprocessing on the multiple sequence alignments. First, all
the columns with more than 99.5% gap were identified, and sequences causing those gaps were
removed (any sequence with non-gap characters in those columns). Second, the columns with
more than 75% gap were removed. This technique is often used to ensure consistency of good
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coverage across the alignment [29, 30]. After these preprocessing steps, our dataset resulted
in 47,234 sequences in 48 families with 522 to 3,475 sequences in each family. It is impossible
to use all the sequences of each family because of the bias in classifying families with more
sequences available. It is essential to have a balanced dataset for classification tasks [31, 32].
Therefore, 500 sequences were randomly selected from each family to have families of the same
size. Our dataset is a high-dimensional dataset since each sequence has a length of 143 to 1,092
residues (with gaps added).

We use three features of each protein sequence per family. The first feature is the amino
acid sequence with 21 possibilities for each position (20 amino acids plus a gap). The secondary
structures and solvent accessibility features are predicted using the SCRATCH software [33]. We
will evaluate and compare additional software tools to determine their efficacy and effectiveness
as part of our future work. The secondary structure feature can be either a gap, heliz, strand,
or other. The solvent accessibility feature has three possibilities: gap, exposed, and buried.
Since no ordinal relationships between the possibilities of each feature exist, we use the one-hot
encoding technique to convert these categorical features to binary variables.

So, for each input protein sequence with length L, we generate three matrices with the
following sizes to be used as the input for the variational autoencoder:

e [ x 21 for amino acid sequence
e [ x 4 for secondary structure sequence
e [ x 3 for solvent accessibility sequence

We set the ratio of the train, validation, and test sets in each dataset as 80%, 10%, and
10%, respectively.

2.2 Phase 1: Dimensionality reduction

The performance of machine learning algorithms can decrease with a very high-dimensional
dataset. Dimensionality reduction is a step in data preprocessing, which reduces the number
of features and passes only the important ones while trying to keep as much variation in the
initial dataset as possible. First, the network encodes the input to two latent spaces z_mean
(mean vector) and z_log_sigma (standard deviation vector). Then we randomly take a sample
from the latent normal distribution via

z = z_mean + (exp(z_log_-sigma) * €)

where € is a random normal tensor with mean = 0 and SD = 0.1. Our final latent space is
z, which is an array of 30 float numbers. We call it a fingerprint for a protein family. Our
VAE has seven layers: input, first intermediate, z_mean, z_log_sigma, z, second intermediate,
and output. The encoder is the first part of the network, which has five layers from input
to latent, and the decoder is the second part of the network, with three layers from latent
to output. All the layers are 1-dimensional vectors of float numbers. The input and output
size is equal to the length of the protein sequence times the number of binary variables in the
one-hot encoded feature for which we reduce the dimensionality. For instance, when we want
to use our variational autoencoder on the amino acid sequence feature, the input size equals
sequence length times 21. The size of the two intermediate layers is 128, and the size of z_mean,
z_log_sigma, and latent is 30. A schematic shape of our variational autoencoder is shown in
Figure 2. We use the ReLu activation function for intermediate layers, a linear activation
function for z_mean and z_log_sigma, and the sigmoid activation function for the output layer.
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Figure 2: Illustration of our variational autoencoder. The input layer contains the sequence
and other information, i.e. secondary structure and solvent accessibility. The encoding results
in a latent space of 30 floating point numbers that contain the reduced representation of the
proteins. The decoder reconstructs the data as closely as possible to the input data.

2.3 Phase 2: protein family classification

In this phase, we classify the family of a given protein sequence using the dimensionality-
reduced data obtained from Phase 1 (Subsection 2.2). This task is characterized as a multiclass
classification problem, in which several protein families are considered as potential classes.
Given a protein sequence as input, the aim is to accurately assign it to one of these families.
Convolutional Neural Networks (CNNs) are artificial neural networks, vastly used for various
classification tasks. They are often used to analyze and classify images [34, 35]. A sample image
can be a colorful picture with three channels of red, green, and blue, a gray-scale handwritten
digit with one channel, or any other matrix of numbers. Convolution means applying a filter
to an input. A CNN is made of multiple layers of neurons. A neuron calculates an activation
function on a weighted sum of its inputs plus a bias. Applying the same filter to different input
sections produces the feature map, revealing the detected features in the input. The network
iteratively learns the values of the filters in the training phase to find the best results. The
trained network can be used to make the family prediction of unseen data.

Properties of our CNN: Our CNN gets a matrix of three dimensionality-reduced features,
i.e., amino acid sequence, secondary structure, and solvent accessibility (subsection 2.1), and
has two 2D convolution blocks. Each block has a number of Conv2D filters with size = (7x7),
padding = ”same”, strides = 1, followed by batch normalization, dropout with rate = 0.3, and
ReLu activation. The first and second blocks have 20 and 120 filters, respectively. The output
of the second block flattens to a 1D array. The flattened array is fully connected to a dense
layer of a size equal to the number of protein families in our dataset, e.g., 500 for our second
dataset (details are in subsection 2.1), with the sigmoid activation function. Each output layer
neuron computes the probability that the target protein sequence belongs to the corresponding
protein family. We assign the protein family class with the highest probability to the protein
sequence. An overview of our CNN is shown in Figure 3.
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Figure 3: Illustration of our CNN. The input is a representation of a protein and the output is the
probability of the protein being classified into any of the families. Input, i.e. the dimensionality
reduced data, comes from the previous phase.

Software Framework: We developed a Python-based open-source library that allows us to
compare and search for protein families using our algorithms. This library can be installed
using a PyPI package with the following command: pip install compbiolab-CLI. After in-
stallation, users can find the protein family for a new sequence by comparing it with existing
sequences in the database. Our framework also supports measuring the distance of partial
sequences using a variety of different metrics such as the weighted and unweighted Minkowski
measures.

3 Results

3.1 Phase 1 — Variational Autoencoder

We use the amino acid sequences to measure the performance of our variational autoencoder.
Our goal is to determine whether the decoder can reconstruct the original input sequence
alignment. After training on the train set, we compare the network’s input and output for
data points in the test set. Our experiments indicate that the network can reconstruct 89%
of the input amino acids correctly. A second test compares the most common amino acid in
every column of the input sequence alignment with the output reconstructed alignment of the
variational autoencoder. For each sequence in a family, we use the variational autoencoder and
then the decoder to reconstruct all the sequences. We see that in 95% of the positions of the
dataset, the most common amino acid is the same in the original and reconstructed alignment.

As we see next, even in cases where the decoder did not reconstruct the same amino acid,
it could find a similar amino acid. We used BLOSUMSG62 scores to compare the reconstructed
amino acids as the output with the original sequences [36]. BLOSUMG62 is a scoring matrix that
models the substitution score for any pair of amino acids. This number shows the evolutionary
distance relationship between any pair of amino acids, and it gives us a similarity score for
them [37, 38]. Figure 4 (A) shows the average BLOSUMG62 score for substituting the original
amino acid for the reconstructed one for each position in one of the protein families in our
dataset (Enolase). Each bar represents one position in the protein sequence. Colors are based
on BLOSUMG62 scores, with green for higher and red for lower values. Figure 4 (B) is similar
to Figure 4 (A), but it compares the most common amino acid in the input and output of the
variational autoencoder network.
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Figure 4: (A) Amino acid reconstruction performance using average BLOSUM62 score for all
the sequences of one protein family (Enolase). Each bar shows the average BLOSUMG62 score
per position in the protein sequence. (B) Comparing the most common amino acid in the
original dataset with the most common amino acid of the reconstructed alignment using the
BLOSUMG62 score for the Enolase protein family. In 95% of the cases, the reconstructed amino
acid is equal to the most common one in the alignment position.

In the next step, since the space of all fingerprints is a 30-dimensional vector space, we
tested how different the fingerprints of other families are from one another by using k-means
clustering with 10-fold cross-validation. We separate the train and test datasets and calculate
the accuracy of the clustering model on the test dataset. Our analysis shows that our variational
autoencoder creates unique and distinguishable fingerprints (the latent spaces for each family)
for each protein family with 100% accuracy. This indicates that our variational autoencoder
perfectly extracts the most important and informative information from the data into a compact
representation of 30 floats as fingerprints. It also makes it easy to compare families of different
sizes and sequences since they are all represented by vectors of the same length.

3.2 Phase 2 — classification

Performance metrics: We use four metrics to evaluate the performance of our model for
each protein family — F1 score, Precision, Recall, and Accuracy, defined as follows:

e TP (True Positive): The number of sequences from family x, predicted as x.

e TN (True Negative): The number of sequences from a family other than x, not predicted
as x.

e FP (False Positive): The number of sequences from a family other than x, predicted as x.
o FN (False Negative): The number of sequences from family x, not predicted as x.

e Recall (or Sensitivity) for family x, shows the ratio of correctly predicted sequences for
all the sequences of family x: Recall = (T%?N)

e Precision for family x, shows the ratio of correctly predicted sequences for all the sequences
TP

predicted as x: Precision = TP1FP)
e F'l_score is the harmonic mean of precision and recall for each family. This score considers

both of them in a balanced way: F1_score = (2xficcallxPrecision)
(Recall+Precision)
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Table 1: Performance comparison of protein family classification

Protein family name F1 ([27]) Precision ([27]) Recall ([27])  Accuracy
Class-II aminoacyl-tRNA synthetase family 1.0000 (0.995) 1.0000 (1.000) 1.00 (0.991) 1.0000
Class-I aminoacyl-tRNA synthetase 1.0000 (0.985) 1.0000 (0.987) 1.00 (0.982) 1.0000
Methyltransferase superfamily 1.0000 (0.939) 1.0000 (0.938) 1.00 (0.939) 1.0000
Class I-like SAM-binding methyltransferase 0.9901 (0.941) 0.9804 (0.940) 1.00 (0.932) 0.9996
Protein kinase 1.0000 (0.970) 1.0000 (0.973) 1.00 (0.965) 1.0000
TRAFAC class translation factor GTPase 1.0000 (0.993) 1.0000 (0.994) 1.00 (0.992) 1.0000
ABC transporter 1.0000 (0.995) 1.0000 (1.000) 1.00 (0.991) 1.0000
G-protein coupled receptor 1 family 0.9899 (0.971) 1.0000 (0.987) 0.98 (0.955) 0.9996
Radical SAM 1.0000 (0.983) 1.0000 (0.997) 1.00 (0.970) 1.0000
TRAFAC class TrmE-Era-EngA-EngB-Septin-like GTPase  1.0000 (0.980) 1.0000 (0.979) 1.00 (0.977) 1.0000
Cytochrome b family 1.0000 (0.978)  1.0000 (0.982) 1.00 (0.993) 1.0000
MurCDEF family 1.0000 (0.989)  1.0000 (0.984) 1.00 (0.995) 1.0000
Cytochrome P450 1.0000 (0.986) 1.0000 (1.000) 1.00 (0.974) 1.0000
EPSP synthase 1.0000 (0.984)  1.0000 (0.969) 1.00 (1.000) 1.0000
Transferase hexapeptide repeat 1.0000 (0.977)  1.0000 (0.955) 1.00 (1.000) 1.0000
Universal ribosomal protein uS2 1.0000 (0.994) 1.0000 (0.994) 1.00 (0.994) 1.0000
Universal ribosomal protein uL2 0.9899 (0.994) 1.0000 (0.994) 0.98 (0.994) 0.9996
GHMP kinase 1.0000 (0.961)  1.0000 (0.954) 1.00 (0.967) 1.0000
Universal ribosomal protein uS3 1.0000 (0.984) 1.0000 (1.000) 1.00 (0.979) 1.0000
Heat shock protein 70 1.0000 (0.990)  1.0000 (1.000) 1.00 (0.979) 1.0000
Prokaryotic/mitochondrial release factor 0.9901 (1.000) 0.9804 (1.000) 1.00 (1.000) 0.9996
Enolase 1.0000 (0.986)  1.0000 (0.993) 1.00 (0.979) 1.0000
Short-chain dehydrogenases/reductases (SDR) 0.9899 (0.941) 1.0000 (0.948) 0.98 (0.934) 0.9996
Universal ribosomal protein uLi1 1.0000 (0.975) 1.0000 (0.846) 1.00 (0.975) 1.0000
MnmG 1.0000 (0.992)  1.0000 (0.992) 1.00 (0.992) 1.0000
Krueppel C2H2-type zinc-finger protein 1.0000 (0.975) 1.0000 (0.958) 1.00 (0.993) 1.0000
Methylthiotransforase 1.0000 (0.996)  1.0000 (1.000) 1.00 (0.991) 1.0000
Universal ribosomal protein uS4 1.0000 (0.979) 1.0000 (1.000) 1.00 (0.958) 1.0000
NAD-dependent DNA ligase 1.0000 (0.996)  1.0000 (0.993) 1.00 (1.000) 1.0000
TRAFAC class OBG-HflX-like GTPase 0.9899 (0.990) 1.0000 (0.987) 0.98 (0.993) 0.9996
Universal ribosomal protein uL3 1.0000 (0.992) 1.0000 (1.000) 1.00 (0.985) 1.0000
SHMT 1.0000 (0.992)  1.0000 (0.984) 1.00 (0.992) 1.0000
Adenylosuccinate synthetase 1.0000 (0.984) 1.0000 (1.000) 1.00 (0.969) 1.0000
SecA 1.0000 (1.000)  1.0000 (1.000) 1.00 (1.000) 1.0000
Class-IIT pyridoxal-phosphate-dependent 1.0000 (0.982) 1.0000 (0.973) 1.00 (0.991) 1.0000
FKBP-type PPlase 1.0000 (0.939)  1.0000 (0.931) 1.00 (0.947) 1.0000
RNA polymerase alpha chain 1.0000 (0.967) 1.0000 (0.992) 1.00 (0.944) 1.0000
Tetrahydrofolate dehydrogenase/cyclohydrolase 0.9901 (0.986) 0.9804 (0.986) 1.00 (0.986) 0.9996
EF-Ts 1.0000 (0.988)  1.0000 (0.984) 1.00 (0.992) 1.0000
Universal ribosomal protein ulL4 0.9901 (0.988) 0.9804 (0.975) 1.00 (1.000) 0.9996
Polyribonucleotide nucleotidyltransferase 1.0000 (0.996) 1.0000 (1.000) 1.00 (0.992) 1.0000
Glycosyltransferase 28 1.0000 (0.969) 1.0000 (0.964) 1.00 (0.973) 1.0000
RuvB 1.0000 (0.987)  1.0000 (0.991) 1.00 (0.982) 1.0000
Fmt family 1.0000 (0.979) 1.0000 (0.991) 1.00 (0.967) 1.0000
RecA family 1.0000 (0.965)  1.0000 (0.986) 1.00 (0.945) 1.0000
IPP transferase family 1.0000 (0.989) 1.0000 (1.000) 1.00 (0.979) 1.0000
Average 0.9983 (0.977) 0.9983 (0.976)  0.9983 (0.977) _ 0.9999

The numbers mentioned inside the parentheses are the performance results from [27]. The authors of [27] did
not provide accuracy results.

e Accuracy is the ratio of correct predictions for all the predictions for each family:

A _ (TP+TN)
CCUracy = rpITNIFPLFN)

Performance results: We calculate the Precision, Recall, Accuracy, and F1_score for each
protein family and also the average values. Table 1 shows the classification performance for 12
randomly selected protein families. The table compares the F1 score, precision, and recall of

o4



Classifying Protein Families with Learned Compressed Representations Dehghanpoor et al.

our model and [27] for each protein family. The accuracy values from [27] are not available. The
results show our model performs better than the model used in [27] on average. The average
F1_score, Precision, and Recall for our model are all 0.9983, and for their model are 0.977, 0.976,
and 0.977, respectively. Zhang et al. [27] compared the performance of their model with other
state-of-the-art methods mentioned in [39], which include LSTM, biLSTM, GRU, CNN (Three
layers), and SVM. They showed that their model outperforms the best methods. Therefore, we
can conclude that our model outperforms these methods.

4 Conclusions

We present a variational autoencoder and a convolutional neural network that work together to
classify proteins into families using their amino acid sequences. Our pipeline does not require
the structure of the proteins or other information, which makes it easier and faster to use. We
use the sequence alignment, predicted secondary structure, and predicted solvent accessibility
as inputs to our variational autoencoder to generate a small informative fingerprint. The CNN
model then predicts protein families using the compressed fingerprint representation. The
results show our variational autoencoder can generate completely distinguishable fingerprints
for the families. The CNN model can classify proteins with an average accuracy of 99.99%,
which offers better performance than existing methods. Our next step is to test our model on
several other datasets and also to create neural network models to predict protein contact maps
and binding interfaces using the fingerprints generated by our variational autoencoder. We
present open-source tools to use our algorithms and hope that this will spur further advances
for automatic protein classification from the community. Our next steps involve comparing our
model with transformers like ProBERTA [40] and ESM-1b [41], and including metrics, such as
saliency maps, t-SNE visualization, and N-gram features of the datasets.
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