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Abstract 

The paper presents a pilot implementation of hybrid production environments at the 

Aristotle University of Thessaloniki (AUTh) studio, using Unreal Engine (UE) 5 and 

Vizrt NDI technology. The project focuses mainly on synchronizing physical and virtual 

environments to improve educational content creation. The main areas of development 

of the entire research and implementation include camera synchronization, depth 

composition and virtual reality integration, aiming to improve interactive learning 

experiences. Furthermore, taking into account ensuring compliance with GDPR and the 

protection of personal data, the project presents ideas and implementations for 

anonymous depth-based visualizations for interviews and voice recordings, using 

silhouette representations instead of real face or body images. This approach offers 

privacy-focused solutions for disciplines dealing with sensitive data, such as psychology 

and social research. Finally, the project highlights interdisciplinary applications in 

healthcare, engineering, and media studies, demonstrating the potential for simulations 

and hands-on training. The findings contribute to advancing educational studio 

technologies, driving innovation in audiovisual content production, and providing a 

model for integrating emerging technologies into academic environments. This beta 

application lays the groundwork for future development, emphasizing scalability, 

privacy, and interdisciplinary collaboration. 
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1 Introduction 

We live in a digital age where universities must embrace technology to improve education and 

research. As a university, we are focused on building a strong digital ecosystem that supports innovation 

and new teaching methods (Roussos et al., 2025). Work has shown that AR, VR and XR are shaping 

the future of education, offering new ways for students to engage with educational materials, even in 

primary education (Roussos et al., 2022). Digital leadership plays a key role in this transformation, 

helping universities adapt and effectively implement these developments (Brown et al., 2024; Roussos 

et al., 2025) 

In recent years, virtual production and virtual reality have rapidly entered all forms of audiovisual 

content development, from cinema to education (Zhang & & Li, 2023; Wilson & & Clark, 2024). 

Studios equipped with such tools provide new opportunities for teaching and applied learning (Cremona 

& Kavakli, 2023). Recognizing these growing needs, we have explored methods for integrating these 

technologies into our university studio. 

1.1 The Background 

The rapid advancement of digital technology has transformed educational practices, enabling more 

immersive and interactive learning experiences. Virtual production, once limited to high-budget film 

and media industries, is now making its way into academic environments, providing new tools for 

teaching and research. Technologies such as Unreal Engine 5 (UE5), Vizrt NDI, and PTZ cameras allow 

for the seamless integration of real and virtual spaces, offering dynamic content creation possibilities. 

Universities worldwide are exploring these innovations to enhance remote learning, support 

interdisciplinary collaboration, and create scalable, high-quality educational content (Garcia et al., 

2023; Chen & & Wang, 2024; Lee & & Kim, 2024). 

In fact, virtual production tools and hybrid studio environments have expanded significantly in 

educational settings, driven by the need for more interactive and immersive learning experiences. This 

paper explores how integrating UE5 with Vizrt NDI enhances educational studio production at AUTh, 

allowing seamless interaction between real and virtual environments (Cremona & Kavakli, 2023; 

Anderson, 2023; Chen & & Wang, 2024) 

1.2 Scope, Objectives and Limitations 

In order to improve the creation of instructional material, the project focuses on establishing and 

beta testing a hybrid production studio at AUTh that combines virtual and real-world settings. The 

studio offers an adaptable and scalable digital environment for interactive education, research, and 

media creation by utilizing technologies including UE5, Vizrt NDI, PTZ cameras, and real-time depth 

estimation (Smith & & Jones, 2024; Garcia et al., 2023). This program enables educators and students 

to experiment with innovative teaching strategies and imaginative narrative tactics by bridging the gap 

between contemporary virtual production tools and conventional audiovisual education. The hybrid 

method improves the quality of digital material and remote and hybrid learning settings, facilitating 

multidisciplinary cooperation in sectors including digital arts, media studies, engineering, and 

healthcare. 

Despite its potential, the project faces several technical and operational challenges that must be 

addressed for broader adoption. Previous research on educational studio infrastructure at AUTh has 

identified key constraints, including spatial limitations, technical integration issues, and the need for 

specialized training (Charidimou et al., 2025). One of the main challenges is overcoming latency in 

PTZ synchronization and inconsistencies in real-time depth estimation, which impact the overall quality 

of production. Additionally, scalability is another concern, as the current setup is a beta version that 
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requires further testing and refinement before broader deployment. Furthermore, ensuring GDPR 

compliance and ethical considerations in using depth-based anonymization techniques for research 

purposes is essential. 

2 Studio Infrastructure and Technology Overview 

The research we conducted was based upon the pre-existing infrastructure of an educational studio 

in our university (Charidimou et al., 2025).  

2.1 Studio Layout and Key Equipment 

The studio comprises of two spaces: the production room, a 4x4m space where the capture takes 

place, and the control room (Charidimou et al., 2025). For the purposes of this paper, it is important to 

note the following features of the studio: 

• NDI & Tricaster Mini: The audiovisual infrastructure of the studio is developed around the 

NewTek (Vizrt) Tricaster media production suite. This means all devices communicate via the 

NDI protocol over the local network. 

• PTZ cameras: Two Vizrt PTZ (pan, tilt and zoom) cameras are the main infrastructure. They 

are controlled over NDI via the Tricaster. 

• Green Screen: A green wall is available for keying. 

 

Figure 1: Connectivity diagram of the studio. Highlighted the components utilized in this study. 

2.2 The Role of NDI and the Integration with UE5 

NDI has been quickly gaining in popularity since its release by NewTek (now Vizrt) in 2015, 

especially during the Covid-19 pandemic, as a low-cost solution for small-scale production systems . 

The Proliferation of NDI in Live Production and Broadcast Workflows. This makes the protocol an 

exciting area of research that applies to smaller enterprises and individuals instead of being limited to 

large-scale productions. Since the release of the latest version UE5, it has helped boost virtual 

production capabilities for both professional and amateur applications (Cremona & Kavakli, 2023). 
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3 Building the Mixed - Hybrid Environment: Methods and 

Implementation 

The main challenge when creating the mixed world was compositing the real and digital 

environments in a seamless and realistic way. This meant transferring several geometrical and camera 

parameters between the real scene and the digital environment. 

3.1 Creating a Virtual Model of the Studio 

During the research process, it became clear that we would need an accurate 3d replica of the 

geometry of the studio. The two dominant low-cost options for creating such models at this point are 

photogrammetry and LiDAR scanning. Photogrammetry requires capturing hundreds of RGB images 

of the object which are then processed to create the 3d representation. LiDAR on the other hand uses a 

LiDAR (Light Detection and Ranging) sensor which captures depth information alongside a regular 

RGB camera. 

 
Figure 2: PolyCam user interface (left), 3d studio model (right) 

LiDAR systems became widely available with the release of the iPhone 12 Pro which featured a 

built-in LiDAR sensor. Although relatively low-resolution, the sensor has great potential for room 

scanning applications. Utilizing other built-in sensors of the iPhone, apps like PolyCam now offer a 

user-friendly and fast approach to 3d scanning (Askar & Sternberg, 2023). Using Polycam's LiDAR 

mode on an iPhone 12 Pro device, we were able to capture an accurate 3d model of the studio in exact 

world units, as seen below. 

3.2 Camera Synchronization and PTZ Calibration 

A key aspect of integrating digital and physical scenes involves accurately aligning virtual and 

physical cameras in terms of position, orientation, and field of view. In UE5, the static placement of 

physical cameras was replicated using a 3D studio scan. Challenges with orientation and zoom arose 

due to the limitations of NDI's PTZ state query, necessitating a coordinated initialization and 

synchronized commands through Tricaster macros. Mechanical acceleration discrepancies in the 

physical cameras required adjustments to these macros. Although these issues are minor for static 

educational recordings, future enhancements could leverage a VIVE Tracker to achieve precise camera 

orientation, facilitating improved PTZ integration. 

3.3 Depth Estimation and Compositing 

The real-world scene and the digitally created environment are two separate plates. In order to 

correctly mix them together, we need data regarding the "depth" of both scenes. By depth we mean the 
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distance from each pixel to the camera. This information can be represented in a grayscale image map. 

A brighter value signifies a pixel farther away from the camera, while a darker value signifies a pixel 

closer to the camera. This means that by comparing the corresponding values in each map, we can 

decide whether the digital or the real plate is closer to the camera for every pixel. This method is known 

as "deep compositing." When it comes to the digital environment, UE5 offers built-in tools and post-

processing materials for calculating the exact pixel depth of the digital environment. This information 

can be streamed through NDI alongside the virtual environment. 

 

 
Figure 3: Deep compositing: The real scene and the estimated depth (left), the digital 

environment and its pixel depth as extracted from the renderer (middle) and the composited 

image (right) 

3.3.1 Estimating the Depth of the Real-world Scene 

Estimating the depth of the real scene can be achieved using various algorithms, machine learning 

models or specialized hardware like following. 

Stereoscopic Depth Estimation: Estimates depth using data captured from two side-by-side RGB 

cameras, similarly to how human eyes perceive depth (Hirschmuller, 2007). 

Monocular Depth Estimation: Machine learning algorithms can be utilized to estimate depth from a 

single camera input. Though inaccurate and probably unfit for the final project, the ease of use of this 

approach allowed us to experiment thoroughly with it (Ranftl et al., 2020; Yang et al., 2019). 

Dedicated Depth Estimation Hardware: Several manufacturers offer specialized depth cameras that 

work using built-in stereoscopic cameras, ToF (Time of Flight) sensors etc. These solutions offer real-

time, almost-perfect depth calculation without any computational cost. 

Figure 4: Camera Calibration for algorithmic methods (SGBM) 

 

 

Figure 5: Draft test using the Middlebury-v3 dataset 
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Figure 6: Experimenting with MiDaS: Large model (left), accurate but slow. Small model 

(right): Real-time, but inaccurate and temporally unstable 

3.3.2 Integrating the Green Screen 

In addition to depth estimation, the greenscreen can be utilized to improve edge detail. 

 
Figure 7: MiDaS large model estimation (left), green screen garbage matte (middle), combined result with 

refined edges (right) 

 
Figure 8: The greenscreen prevents the physical wall from showing in the final composite 

Most depth estimation techniques, especially when used in real time, provide low-resolution results 

which lead to low edge detail. By using chroma keying we generated a "garbage matte" map to optimize 

edge detail. As the greenscreen can be considered of infinite depth, it can also help prevent the back 

wall from clipping through, as shown in this example from our demo using MiDaS. 

3.4 Depth Estimation in a Real Time Pipeline 

An interesting challenge here is to see which depth estimation methods are best suited for real time 

compositing. Besides allowing both the presenter and the production team to visualize the final result 

on the spot, real time depth estimation and compositing would offer advantages like reduced file sizes 

and lessen the work during the editing stage. 

 

3.4.1 Offline Pipeline 
First let's look at this diagram representing software-based, offline depth estimation. The system 

works as it would without the depth estimation, so the latency is that of X, where X is the lag introduced 

by an NDI video stream.  

We will use this as a baseline to compare the performance of real-time options. Please note that 

three video files need to be stored and edited (if using stereoscopic methods with 2 cameras, 4 files 

would be needed). This adds to the complexity of the editing process. 
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Figure 9: Diagram of offline depth estimation (latency X). The audiovisual streams (over NDI) are 

shown in red, as are all computational processes. 

3.4.2 Real-Time Pipeline using Depth Cameras 
As for the real-time options, we start with the depth camera alternative. As is shown below, the depth 

video feed is parallel to the video stream, meaning it does not add extra complexity to the system. 

 
Figure 10: Real time depth estimation pipeline using a depth camera (latency 2X+K). Processing steps 

that slow the system down are shown as red squares. 

The two feeds are processed together in UE5, which introduces lag K. The final composite is 

transferred over another NDI stream to Tricaster, meaning the total latency is 2X + K. It is obvious that 

the latency introduced is the bare minimum for the goal we are trying to achieve. By making sure to 

minimize the "K" component by optimizing the rendering process inside UE5, the latency comes down 

to miliseconds, and is not noticeable on set nor does it negatively impact the quality of the final 

composite. 

3.4.3 Real-Time Pipeline using Software Tools 
 

All methods requiring calculations (either algorithmic or AI-assisted) follow the same pipeline as 

shown below. 

 
Figure 11: Real time implementation of approaches involving software. Latency of 2X+K+D for shared 

memory implementations, 3X+K+D for streaming depth over NDI 

After depth estimation, there are two options to transfer the depth map to UE5: via an NDI stream 

(like a depth camera) or using shared memory. The shared memory method requires both UE5 and the 

depth estimation script to run on the same machine, allowing direct RAM access (e.g., via Spout), with 

minimal lag. However, real-time depth estimation is resource-intensive, making this setup likely to slow 

both processes. 
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Running depth estimation on a separate machine avoids performance issues but requires sending the 

depth stream to UE5 via NDI, adding latency (variable X). In the system diagram, the video stream 

reaches UE5 and the depth process simultaneously (latency X); depth estimation adds D, and transfer 

to UE5 adds another X, resulting in 2X+D. Therefore, total system latency becomes 3X+D+K. 

Critically UE5 receives the depth stream with a delay of X+D relative to the video, causing 

desynchronization. Since this latency depends on depth estimation speed, without a complex timecode 

system, visual alignment may fail especially with presenter motion. The only fix is faster depth 

estimation to reduce D, but this risks lowering quality and accuracy. 

3.4.1 Implementing a Real-Time Monocular Depth Estimation Pipeline 

As shown above, software-based real-time depth estimation is not ideal for minimizing latency or 

ensuring high-quality composites but can serve for low-quality visualization or offline use. So, we 

primarily tested the MiDaS monocular AI model, chosen for its scalability and single-camera setup. 

However, even at high settings, its depth estimation lacks the robustness needed beyond testing. We 

used also the third pipeline option: the NDI (not shared memory) to transfer depth data from a separate 

machine running the estimation script. Both machines were connected via high-speed Ethernet to reduce 

network lag. Most depth estimation methods have Python implementations. Vizrt's Python wrapper for 

NDI (tested with Python 3.10) led us to use Python within Visual Studio Code for this setup. On the 

NDI side, we worked with four basic functions: 
 

 

def displaySources(): # lists all NDI sources in the network 

def openReceiver(sourceIndex): # creates a receiver for the selected source  

def receive(): # returns every new frame received from the source 

def broadcast(frame): # broadcasts frame in an NDI stream 

 

Utilizing basic functions from the MiDaS library and the NDI functions, we created a command to 

read and process an NDI stream and create a real time stream with the estimated depth result. 

 
def livePredictNDI(self, input, scale): 

        ndiObj = NDI() 

        ndiObj.displaySources()# display NDI sources 

        ndiObj.openReceiver(input)# open desired source 

 

        ndi_send = ndi.send_create()# create an NDI sender for broadcasting 

        video_frame = ndi.VideoFrameV2()# frame readable by NDI 

        while True: 

            t, v, a, m = ndi.recv_capture_v2(ndiObj.receiverInstance, 300) # 

timeout for receiving data 

            if t==ndi.FRAME_TYPE_VIDEO: # separate image data from audio and 

metadata 

                    frame_data = np.frombuffer(v.data, dtype=np.uint8) 

                    frame = frame_data.reshape((v.yres, v.xres, 2)) 

                    frame = cv.cvtColor(frame, cv.COLOR_YUV2BGR_UYVY) # format 

received frame to readable color 

                height, width = frame.shape[:2] 

                frame=cv.resize(frame, (int(width * scale), int(height * scale))) 

# downscale frame 

                depthMap = self.predict(frame) # estimate depth using MiDaS 

                 

video_frame.data = cv.cvtColor(depthMap, cv.COLOR_GRAY2BGRA) 

video_frame.FourCC = ndi.FOURCC_VIDEO_TYPE_BGRA # Ensure correct 

format for broadcasting 

ndi.send_send_video_v2(ndi_send, video_frame) # broadcast the depth 

information 
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 Real-time results (see 3.3.1) showed slight mismatches between depth and RGB images, even with the 

fastest model and aggressive downsampling to reduce latency ("D"), due to the two NDI streams 

between the camera, depth estimation machine, and UE5. Offline tests used a modified script and the 

first pipeline (see diagram), with full resolution and highest quality settings. This greatly improved 

depth prediction, but temporal instability between frames caused flickering, making it unsuitable for 

production (see 3.3.2 and 3.5). This flickering is a known limitation of monocular models. Still, the 

method's low cost and simplicity suggest potential. For now, depth cameras remain the most reliable 

option. 

3.5 Virtual Reality Mode and Presenter Interaction 

Everything we have explained until this point relates to the point of view of the camera. However, 

the presenter also needs a way to perceive their digital surroundings. For this reason, we tested Unreal 

Engine's VCAM application, which allows the presenter to view the digital world through their phone. 

This method both allows the presenter to interact with the digital world and gives us their point of 

view which can then be streamed to Tricaster via NDI. The application also runs on Apple Vision 

glasses for full VR. Other types of VR glasses can also work with UE5 with methods other than the 

VCAM app. 

 

 
Figure 12: The VR perspective in the MiDaS demo 

4 Results and Possible Use Cases 

Summarizing the paper and mentioning the results and possible use cases, we consider that the beta 

implementation of hybrid production environments at AUTh Studio is a first research step and, of 

course, explores possible additional innovative applications in educational technology. For instance, 

virtual classrooms, interactive learning materials, and voice simulation enhance content creation while 

ensuring anonymity through depth mapping, replacing real faces with silhouette-based visuals to 

comply with GDPR. This is crucial for sensitive fields like psychology, legal studies, and social 

research. In media and film studies, virtual production serves as a training ground for students and 

supports film and broadcasting projects. Research in mixed reality XR focuses on VR and AR 

experiments, depth estimation, and cultural or historical reconstructions. Training and simulation 

applications extend to crisis response and emergency preparedness, using controlled environments for 

skill development. 

5 Discussion and Future Work 

The preliminary research is nearly complete, and the next step is to finalize a standardized workflow. 

At Aristotle University, we are committed to continuously enhancing our processes to achieve better 

outcomes (Roussos et al., 2025). This ongoing effort reflects our dedication to excellence and 
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innovation. Key decisions include selecting a depth estimation method (hardware-based for realism or 

MiDaS for anonymity), integrating VR and PTZ tracking for immersive and accurate interaction, and 

developing a low-latency UE5 pipeline. Once the system is robust, outreach to university departments 

and exploration of cross-disciplinary applications will follow. 
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