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Abstract

The paper presents a pilot implementation of hybrid production environments at the
Aristotle University of Thessaloniki (AUTh) studio, using Unreal Engine (UE) 5 and
Vizrt NDI technology. The project focuses mainly on synchronizing physical and virtual
environments to improve educational content creation. The main areas of development
of the entire research and implementation include camera synchronization, depth
composition and virtual reality integration, aiming to improve interactive learning
experiences. Furthermore, taking into account ensuring compliance with GDPR and the
protection of personal data, the project presents ideas and implementations for
anonymous depth-based visualizations for interviews and voice recordings, using
silhouette representations instead of real face or body images. This approach offers
privacy-focused solutions for disciplines dealing with sensitive data, such as psychology
and social research. Finally, the project highlights interdisciplinary applications in
healthcare, engineering, and media studies, demonstrating the potential for simulations
and hands-on training. The findings contribute to advancing educational studio
technologies, driving innovation in audiovisual content production, and providing a
model for integrating emerging technologies into academic environments. This beta
application lays the groundwork for future development, emphasizing scalability,
privacy, and interdisciplinary collaboration.
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1 Introduction

We live in a digital age where universities must embrace technology to improve education and
research. As a university, we are focused on building a strong digital ecosystem that supports innovation
and new teaching methods (Roussos et al., 2025). Work has shown that AR, VR and XR are shaping
the future of education, offering new ways for students to engage with educational materials, even in
primary education (Roussos et al., 2022). Digital leadership plays a key role in this transformation,
helping universities adapt and effectively implement these developments (Brown et al., 2024; Roussos
etal., 2025)

In recent years, virtual production and virtual reality have rapidly entered all forms of audiovisual
content development, from cinema to education (Zhang & & Li, 2023; Wilson & & Clark, 2024).
Studios equipped with such tools provide new opportunities for teaching and applied learning (Cremona
& Kavakli, 2023). Recognizing these growing needs, we have explored methods for integrating these
technologies into our university studio.

1.1 The Background

The rapid advancement of digital technology has transformed educational practices, enabling more
immersive and interactive learning experiences. Virtual production, once limited to high-budget film
and media industries, is now making its way into academic environments, providing new tools for
teaching and research. Technologies such as Unreal Engine 5 (UES), Vizrt NDI, and PTZ cameras allow
for the seamless integration of real and virtual spaces, offering dynamic content creation possibilities.
Universities worldwide are exploring these innovations to enhance remote learning, support
interdisciplinary collaboration, and create scalable, high-quality educational content (Garcia et al.,
2023; Chen & & Wang, 2024; Lee & & Kim, 2024).

In fact, virtual production tools and hybrid studio environments have expanded significantly in
educational settings, driven by the need for more interactive and immersive learning experiences. This
paper explores how integrating UES with Vizrt NDI enhances educational studio production at AUTh,
allowing seamless interaction between real and virtual environments (Cremona & Kavakli, 2023;
Anderson, 2023; Chen & & Wang, 2024)

1.2 Scope, Objectives and Limitations

In order to improve the creation of instructional material, the project focuses on establishing and
beta testing a hybrid production studio at AUTh that combines virtual and real-world settings. The
studio offers an adaptable and scalable digital environment for interactive education, research, and
media creation by utilizing technologies including UES, Vizrt NDI, PTZ cameras, and real-time depth
estimation (Smith & & Jones, 2024; Garcia et al., 2023). This program enables educators and students
to experiment with innovative teaching strategies and imaginative narrative tactics by bridging the gap
between contemporary virtual production tools and conventional audiovisual education. The hybrid
method improves the quality of digital material and remote and hybrid learning settings, facilitating
multidisciplinary cooperation in sectors including digital arts, media studies, engineering, and
healthcare.

Despite its potential, the project faces several technical and operational challenges that must be
addressed for broader adoption. Previous research on educational studio infrastructure at AUTh has
identified key constraints, including spatial limitations, technical integration issues, and the need for
specialized training (Charidimou et al., 2025). One of the main challenges is overcoming latency in
PTZ synchronization and inconsistencies in real-time depth estimation, which impact the overall quality
of production. Additionally, scalability is another concern, as the current setup is a beta version that
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requires further testing and refinement before broader deployment. Furthermore, ensuring GDPR
compliance and ethical considerations in using depth-based anonymization techniques for research
purposes is essential.

2 Studio Infrastructure and Technology Overview

The research we conducted was based upon the pre-existing infrastructure of an educational studio
in our university (Charidimou et al., 2025).

2.1 Studio Layout and Key Equipment

The studio comprises of two spaces: the production room, a 4x4m space where the capture takes
place, and the control room (Charidimou et al., 2025). For the purposes of this paper, it is important to
note the following features of the studio:

e NDI & Tricaster Mini: The audiovisual infrastructure of the studio is developed around the
NewTek (Vizrt) Tricaster media production suite. This means all devices communicate via the
NDI protocol over the local network.

e PTZ cameras: Two Vizrt PTZ (pan, tilt and zoom) cameras are the main infrastructure. They
are controlled over NDI via the Tricaster.

e Green Screen: A green wall is available for keying.

Figure 1: Connectivity diagram of the studio. Highlighted the components utilized in this study.

2.2 The Role of NDI and the Integration with UE5

NDI has been quickly gaining in popularity since its release by NewTek (now Vizrt) in 2015,
especially during the Covid-19 pandemic, as a low-cost solution for small-scale production systems .
The Proliferation of NDI in Live Production and Broadcast Workflows. This makes the protocol an
exciting area of research that applies to smaller enterprises and individuals instead of being limited to
large-scale productions. Since the release of the latest version UES, it has helped boost virtual
production capabilities for both professional and amateur applications (Cremona & Kavakli, 2023).
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3 Building the Mixed - Hybrid Environment: Methods and
Implementation

The main challenge when creating the mixed world was compositing the real and digital
environments in a seamless and realistic way. This meant transferring several geometrical and camera
parameters between the real scene and the digital environment.

3.1 Creating a Virtual Model of the Studio

During the research process, it became clear that we would need an accurate 3d replica of the
geometry of the studio. The two dominant low-cost options for creating such models at this point are
photogrammetry and LiDAR scanning. Photogrammetry requires capturing hundreds of RGB images
of the object which are then processed to create the 3d representation. LiDAR on the other hand uses a
LiDAR (Light Detection and Ranging) sensor which captures depth information alongside a regular
RGB camera.

Figure 2: PolyCam user interface (left), 3d studio model (right)

LiDAR systems became widely available with the release of the iPhone 12 Pro which featured a
built-in LiDAR sensor. Although relatively low-resolution, the sensor has great potential for room
scanning applications. Utilizing other built-in sensors of the iPhone, apps like PolyCam now offer a
user-friendly and fast approach to 3d scanning (Askar & Sternberg, 2023). Using Polycam's LiDAR
mode on an iPhone 12 Pro device, we were able to capture an accurate 3d model of the studio in exact
world units, as seen below.

3.2 Camera Synchronization and PTZ Calibration

A key aspect of integrating digital and physical scenes involves accurately aligning virtual and
physical cameras in terms of position, orientation, and field of view. In UES, the static placement of
physical cameras was replicated using a 3D studio scan. Challenges with orientation and zoom arose
due to the limitations of NDI's PTZ state query, necessitating a coordinated initialization and
synchronized commands through Tricaster macros. Mechanical acceleration discrepancies in the
physical cameras required adjustments to these macros. Although these issues are minor for static
educational recordings, future enhancements could leverage a VIVE Tracker to achieve precise camera
orientation, facilitating improved PTZ integration.

3.3 Depth Estimation and Compositing

The real-world scene and the digitally created environment are two separate plates. In order to
correctly mix them together, we need data regarding the "depth" of both scenes. By depth we mean the

356



Hybrid Production Environments in the AUTh Studio Christopoulos et al.

distance from each pixel to the camera. This information can be represented in a grayscale image map.
A brighter value signifies a pixel farther away from the camera, while a darker value signifies a pixel
closer to the camera. This means that by comparing the corresponding values in each map, we can
decide whether the digital or the real plate is closer to the camera for every pixel. This method is known
as "deep compositing." When it comes to the digital environment, UES offers built-in tools and post-
processing materials for calculating the exact pixel depth of the digital environment. This information
can be streamed through NDI alongside the virtual environment.

Figure 3: Deep compositing: The real scene and the estimated depth (le), the dil
environment and its pixel depth as extracted from the renderer (middle) and the composited
image (right)

3.3.1 Estimating the Depth of the Real-world Scene

Estimating the depth of the real scene can be achieved using various algorithms, machine learning
models or specialized hardware like following.
Stereoscopic Depth Estimation: Estimates depth using data captured from two side-by-side RGB
cameras, similarly to how human eyes perceive depth (Hirschmuller, 2007).
Monocular Depth Estimation: Machine learning algorithms can be utilized to estimate depth from a
single camera input. Though inaccurate and probably unfit for the final project, the ease of use of this
approach allowed us to experiment thoroughly with it (Ranftl et al., 2020; Yang et al., 2019).
Dedicated Depth Estimation Hardware: Several manufacturers offer specialized depth cameras that
work using built-in stereoscopic cameras, ToF (Time of Flight) sensors etc. These solutions offer real-
time, almost-perfect depth calculation without any computational cost.

Figure 5: Draft test using the Middlebury-v3 dataset
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Figure 6: Experimenting with MiDaS: Large model (left), accurate but slow. Small model
(right): Real-time, but inaccurate and temporally unstable

3.3.2 Integrating the Green Screen

In addition to depth estimation, the greenscreen can be utilized to improve edge detail.

Figure 7: MiDaS large model estimation (left), green screen garbage matte (middle), combined result with
refined edges (right)

|

Figure 8: The greenscreen prevents the physical wall from showing in the final composite

Most depth estimation techniques, especially when used in real time, provide low-resolution results
which lead to low edge detail. By using chroma keying we generated a "garbage matte" map to optimize
edge detail. As the greenscreen can be considered of infinite depth, it can also help prevent the back
wall from clipping through, as shown in this example from our demo using MiDaS.

3.4 Depth Estimation in a Real Time Pipeline

An interesting challenge here is to see which depth estimation methods are best suited for real time
compositing. Besides allowing both the presenter and the production team to visualize the final result
on the spot, real time depth estimation and compositing would offer advantages like reduced file sizes
and lessen the work during the editing stage.

3.4.1 Offline Pipeline

First let's look at this diagram representing software-based, offline depth estimation. The system
works as it would without the depth estimation, so the latency is that of X, where X is the lag introduced
by an NDI video stream.

We will use this as a baseline to compare the performance of real-time options. Please note that
three video files need to be stored and edited (if using stereoscopic methods with 2 cameras, 4 files
would be needed). This adds to the complexity of the editing process.
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OFFLINE

N |

Figure 9: Diagram of offline depth estimation (latency X). The audiovisual streams (over NDI) are
shown in red, as are all computational processes.

3.4.2 Real-Time Pipeline using Depth Cameras
As for the real-time options, we start with the depth camera alternative. As is shown below, the depth
video feed is parallel to the video stream, meaning it does not add extra complexity to the system.

PIZ Metadata
Videa Stream
PTZ Metadata

Combined Composite » Tricaster Final Videa File
Depth Camera Depth Stream

Figure 10: Real time depth estimation pipeline using a depth camera (latency 2X+K). Processing steps
that slow the system down are shown as red squares.

The two feeds are processed together in UES, which introduces lag K. The final composite is
transferred over another NDI stream to Tricaster, meaning the total latency is 2X + K. It is obvious that
the latency introduced is the bare minimum for the goal we are trying to achieve. By making sure to
minimize the "K" component by optimizing the rendering process inside UES, the latency comes down
to miliseconds, and is not noticeable on set nor does it negatively impact the quality of the final
composite.

3.4.3 Real-Time Pipeline using Software Tools

All methods requiring calculations (either algorithmic or Al-assisted) follow the same pipeline as
shown below.

FIZ Metadata

Witden St
PTZ Metadata

Depth Stream
Combined Comaesite Tricaster Final Video File
Shaned Memary o

Figure 11: Real time implementation of approaches involving software. Latency of 2X+K+D for shared
memory implementations, 3X+K+D for streaming depth over NDI

After depth estimation, there are two options to transfer the depth map to UES: via an NDI stream
(like a depth camera) or using shared memory. The shared memory method requires both UES5 and the
depth estimation script to run on the same machine, allowing direct RAM access (e.g., via Spout), with
minimal lag. However, real-time depth estimation is resource-intensive, making this setup likely to slow
both processes.
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Running depth estimation on a separate machine avoids performance issues but requires sending the
depth stream to UES via NDI, adding latency (variable X). In the system diagram, the video stream
reaches UES and the depth process simultaneously (latency X); depth estimation adds D, and transfer
to UES adds another X, resulting in 2X+D. Therefore, total system latency becomes 3X-+D+K.
Critically UES receives the depth stream with a delay of X+D relative to the video, causing
desynchronization. Since this latency depends on depth estimation speed, without a complex timecode
system, visual alignment may fail especially with presenter motion. The only fix is faster depth
estimation to reduce D, but this risks lowering quality and accuracy.

3.4.1 Implementing a Real-Time Monocular Depth Estimation Pipeline

As shown above, software-based real-time depth estimation is not ideal for minimizing latency or
ensuring high-quality composites but can serve for low-quality visualization or offline use. So, we
primarily tested the MiDaS monocular Al model, chosen for its scalability and single-camera setup.
However, even at high settings, its depth estimation lacks the robustness needed beyond testing. We
used also the third pipeline option: the NDI (not shared memory) to transfer depth data from a separate
machine running the estimation script. Both machines were connected via high-speed Ethernet to reduce
network lag. Most depth estimation methods have Python implementations. Vizrt's Python wrapper for
NDI (tested with Python 3.10) led us to use Python within Visual Studio Code for this setup. On the
NDI side, we worked with four basic functions:

def displaySources():

def openReceiver (sourcelndex) :
def receive():

def broadcast (frame) :

Utilizing basic functions from the MiDaS library and the NDI functions, we created a command to
read and process an NDI stream and create a real time stream with the estimated depth result.

def livePredictNDI (self, input, scale):
ndiObj = NDI ()
ndiObj.displaySources ()
ndiObj.openReceiver (input)

ndi send = ndi.send create()
video frame = ndi.VideoFrameV2 ()
while True:
t, v, a, m = ndi.recv_capture v2(ndiObj.receiverInstance, 300)
if t==ndi. FRAME TYPE VIDEO:
frame data = np.frombuffer(v.data, dtype=np.uint8)
frame = frame data.reshape((v.yres, v.xres, 2))

frame = cv.cvtColor (frame, cv.COLOR YUV2BGR UYVY)

height, width = frame.shape[:2]
frame=cv.resize (frame, (int (width * scale), int (height * scale)))

depthMap = self.predict (frame)

video frame.data = cv.cvtColor (depthMap, cv.COLOR GRAY2BGRA)
video frame.FourCC = ndi.FOURCC VIDEO TYPE BGRA

ndi.send send video v2(ndi_ send, video frame)
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Real-time results (see 3.3.1) showed slight mismatches between depth and RGB images, even with the

fastest model and aggressive downsampling to reduce latency ("D"), due to the two NDI streams
between the camera, depth estimation machine, and UES. Offline tests used a modified script and the
first pipeline (see diagram), with full resolution and highest quality settings. This greatly improved
depth prediction, but temporal instability between frames caused flickering, making it unsuitable for
production (see 3.3.2 and 3.5). This flickering is a known limitation of monocular models. Still, the
method's low cost and simplicity suggest potential. For now, depth cameras remain the most reliable
option.

3.5 Virtual Reality Mode and Presenter Interaction

Everything we have explained until this point relates to the point of view of the camera. However,
the presenter also needs a way to perceive their digital surroundings. For this reason, we tested Unreal
Engine's VCAM application, which allows the presenter to view the digital world through their phone.

This method both allows the presenter to interact with the digital world and gives us their point of
view which can then be streamed to Tricaster via NDI. The application also runs on Apple Vision
glasses for full VR. Other types of VR glasses can also work with UE5 with methods other than the
VCAM app.

Figure 12: The VR perspective in the MiDaS demo

4 Results and Possible Use Cases

Summarizing the paper and mentioning the results and possible use cases, we consider that the beta
implementation of hybrid production environments at AUTh Studio is a first research step and, of
course, explores possible additional innovative applications in educational technology. For instance,
virtual classrooms, interactive learning materials, and voice simulation enhance content creation while
ensuring anonymity through depth mapping, replacing real faces with silhouette-based visuals to
comply with GDPR. This is crucial for sensitive fields like psychology, legal studies, and social
research. In media and film studies, virtual production serves as a training ground for students and
supports film and broadcasting projects. Research in mixed reality XR focuses on VR and AR
experiments, depth estimation, and cultural or historical reconstructions. Training and simulation
applications extend to crisis response and emergency preparedness, using controlled environments for
skill development.

5 Discussion and Future Work

The preliminary research is nearly complete, and the next step is to finalize a standardized workflow.
At Aristotle University, we are committed to continuously enhancing our processes to achieve better
outcomes (Roussos et al., 2025). This ongoing effort reflects our dedication to excellence and
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innovation. Key decisions include selecting a depth estimation method (hardware-based for realism or
MiDaS for anonymity), integrating VR and PTZ tracking for immersive and accurate interaction, and
developing a low-latency UES pipeline. Once the system is robust, outreach to university departments
and exploration of cross-disciplinary applications will follow.
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