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Abstract

Polynomial interpolation is a classical method to approximate continuous functions
by polynomials. To measure the correctness of the approximation, Lebesgue constants
are introduced. For a given node system X"tV = {z; < ... < z,1}(z; € [a,b]),
the Lebesgue function A, (z) is the sum of the modulus of the Lagrange basis polynomials
built on Xt The Lebesgue constant A, assigned to the function A, (x) is its maximum
over [a,b]. The Lebesgue constant bounds the interpolation error, i.e., the interpolation
polynomial is at most (1 + A,) times worse then the best approximation. The minimum
of the A,’s for fixed n and interval [a, b] is called the optimal Lebesgue constant Aj,. For
specific interpolation node systems such as the equidistant system, numerical results for
the Lebesgue constants A, and their asymptotic behavior are known [3] [7]. However, to
give explicit symbolic expression for the minimal Lebesgue constant A}, is computationally
difficult. In this work, motivated by Rack [5[6], we are interested for expressing the minimal
Lebesgue constants symbolically on [—1, 1] and we are also looking for the characterization
of the those node systems which realize the minimal Lebesgue constants. We exploited the
equioscillation property of the Lebesgue function [4] and used quantifier elimination and
Groebner Basis as tools [I], 2]. Most of the computation is done in Mathematica [§].
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