EPiC Series in Computing EPiC

Computing

Volume 68, 2020, Pages 1-25
ANDREI-60. Automated New-era De- m
ductive Reasoning Event in Iberia (\

Description Logics That Count,
and What They Can and Cannot Count

Franz Baader and Filippo De Bortoli

Institute of Theoretical Computer Science, TU Dresden, Germany
franz.baader@tu-dresden.de, filippo.de_bortoli@tu-dresden.de

Abstract

Simple counting quantifiers that can be used to compare the number of role successors
of an individual or the cardinality of a concept with a fixed natural number have been
employed in Description Logics (DLs) for more than two decades under the respective
names of number restrictions and cardinality restrictions on concepts. Recently, we have
considerably extended the expressivity of such quantifiers by allowing to impose set and
cardinality constraints formulated in the quantifier-free fragment of Boolean Algebra with
Presburger Arithmetic (QFBAPA) on sets of role successors and concepts, respectively.
We were able to prove that this extension does not increase the complexity of reasoning.

In the present paper, we investigate the expressive power of the DLs obtained in this
way, using appropriate bisimulation characterizations and 0—1 laws as tools to differentiate
between the expressiveness of different logics. In particular, we show that, in contrast
to most classical DLs, these logics are no longer expressible in first-order predicate logic
(FOL), and we characterize their first-order fragments. In most of our previous work
on DLs with QFBAPA-based set and cardinality constraints we have employed finiteness
restrictions on interpretations to ensure that the obtained sets are finite, as required by
the standard semantics for QFBAPA. Here we dispense with these restrictions to ease the
comparison with classical DLs, where one usually considers arbitrary models rather than
finite ones, easier. It turns out that doing so does not change the complexity of reasoning.

1 Introduction

Description Logics (DLs) [6] are a well-investigated family of logic-based knowledge representa-
tion languages, which are frequently used to formalize ontologies for application domains such
as biology and medicine [18]. To define the important notions of such an application domain
as formal concepts, DLs state necessary and sufficient conditions for an individual to belong
to a concept. These conditions can be Boolean combinations of atomic properties required for
the individual (expressed by concept names) or properties that refer to relationships with other
individuals and their properties (expressed as role restrictions). Adapting an example from
[8, 3] to a different domain, the concept of a Computer Science author can be formalized by
the concept description

Person M Ipublished.( Paper M Vtopic. CS),
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which uses the concept names Person, Paper and CS, and the role names published and topic,
as well as the concept constructors conjunction (M), existential restriction (3r.C'), and value
restriction (Vr.C). It describes the set of all persons that have published a paper all of whose
topics lie in the area of Computer Science. The concept inclusion (CI)

CS-author C Person T Ipublished.( Paper M Ytopic. CS)

can then be used to state that Computer Science authors need to belong to this concept de-
scription.

Numerical constraints on the number of role successors (so-called number restrictions) have
been used in DLs for more than three decades [10, 20, 19]. For example, using number restric-
tions, we can define prolific authors as those having published at least 100 papers:

Prolific-author C Person M (= 100 published. Paper).

The exact complexity of reasoning in ALCQ, the DL that has all Boolean operations and number
restrictions of the form (<nr.C) and (Znr.C) as concept constructors, was determined by
Stephan Tobies [29, 31]: it is PSpace-complete without CIs and ExpTime-complete w.r.t. CIs,
independently of whether the numbers occurring in the number restrictions are encoded in unary
or binary. Note that, using unary coding of numbers, the number n is assumed to contribute
n to the size of the input, whereas with binary coding the size of the number n is logn. Thus,
for large numbers, assuming binary coding (or coding w.r.t. any base larger than 1) is more
realistic.

Numerical constraints have also been used in DLs to formulate cardinality restrictions on
concepts (CRs) |5, 30]. For example, the CRs'

| Conference M Juses. Easychair| > 75000 and |Person M Juses. Easychair] < 3000000

state that at least 75 thousand conferences and at most 3 million persons use the conference
management system Easychair.? Whereas number restrictions are local in the sense that they
consider role successors of an individual under consideration (e.g. the papers published by
a particular author), CRs are global, i.e., they consider all individuals in an interpretation.
Cardinality restrictions can express Cls since, clearly, C C D is equivalent to |C M —D| < 0.
They are, however, considerably more expressive. The higher expressivity of CRs over Cls can,
for example, be seen from the fact that Cls in ALCQ are closed under disjoint union of models,
but models of a CR like |A| < 1 are clearly not (see Section 2.3 for more details).

In addition, CRs increase the complexity of reasoning: for the DL ALCQ, consistency w.r.t.
CIs is ExpTime-complete [31], but consistency w.r.t. CRs is NExpTime-complete if the numbers
occurring in the CRs are assumed to be encoded in binary [30]. With unary coding of numbers,
consistency stays ExpTime-complete even w.r.t. CRs [30], but the above example considering
3 million conferences clearly shows that unary coding is not appropriate if numbers with large
values are employed. It should be noted that both number restrictions and CRs can be expressed
in C2, the two-variable fragment of first-order logic with counting quantifiers [15, 26], whose
satisfiability problem is known to be NExpTime-complete [27].

The logic C?, and thus also number restrictions and CRs, are expressible in FOL. In contrast,
the counting extensions considered in the present paper actually leave the realm of FOL. The
classical number restrictions available in ALCQ can only be used to compare the number of role

INote that the syntax we use here for CRs differs from the one introduced in [5] to make it more similar to
the syntax used later on for our extensions of CRs.
2See https://www.easychair.org/, last accessed November 24, 2019.
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successors of an individual with a fized natural number. They cannot compare the numbers
of different kinds of role successors to each other without relating them to a fixed number.
This would, e.g., be required to describe persons that have developed more theorem provers
than conference management systems, without fixing what these numbers actually are. To
overcome this deficit, we have extended ALCQ by allowing the statement of constraints on
role successors that are more general than the number restrictions of ALCQ [1]. To formulate
these constraints, we have used the quantifier-free fragment of Boolean Algebra with Presburger
Arithmetic (QFBAPA) [23], in which one can express Boolean combinations of set constraints
and numerical constraints comparing the cardinalities of sets. In the resulting logic, called
ALCSCC, the above constraint regarding theorem provers and conference managements systems
can be expressed using a cardinality constraint on the role successors:

Person M succ(|developed N TP| > |developed N CMS)). (1)

In general, such a succ-expression considers the set of all role successors of a given individual,
and requires certain subsets to satisfy the stated QFBAPA constraints. In our example, for
a person Andrei to belong to this concept, the cardinality of the set of developed-successors
of Andrei that belong to the concept TP (collecting all theorem provers) must be larger than
the cardinality of the set of developed-successors of Andrei that belong to the concept CMS
(collecting all conference management systems).

Adding such cardinality constraints strictly extends the expressive power of ALCQ. In [I]
it is shown that the constraint succ(|r| = |s|), which describes individuals that have the same
number of r-successors as s-successors, cannot be expressed in ALCQ. In [4], the constraint
succ(|r N A| = |r N —A]), which describes individuals that have exactly as many r-successors
belonging to A as r-successors not belonging to A, is shown to be not even expressible in first-
order logic. Intuitively, both kinds of constraints can, e.g., be used to describe people that have
the same number of sons and daughters, where in the first constraint one uses roles son and
daughter, whereas in the second one uses the role child and the concept Male. In spite of this
considerable increase of the expressive power, we were able to show in [1] that this does not
increase the complexity of reasoning: like for ALCQ, the complexity of the satisfiability problem
in ALCSCC is PSpace-complete without CIs and ExpTime-complete w.r.t. CIs. While the
PSpace result also follows from previous work [12] on modal logics with Presburger constraints,
the ExpTime result was new.

Just like classical number restrictions, CRs can only relate the cardinality of a concept to
a fired number. In [8], we have introduced and investigated more general constraints on the
cardinalities of concepts, which we called extended cardinality constraints. The main idea was
again to use QFBAPA to formulate and combine these constraints. An example of a constraint
expressible this way, but not expressible using CRs is

2 - | Paper M Vtopic.DL| < | PaperMYtopic. AR

which states that papers with topic Automated Reasoning outnumber papers with topic De-
scription Logic by a factor of at least two. In [8] it is shown that, in the DL ALC, the complexity
of reasoning w.r.t. extended cardinality constraints (NExpTime for binary coding of numbers)
is the same as for reasoning w.r.t. CRs. In addition, the paper introduces a restricted version
of this formalism, which can express Cls, but not CRs, and shows that this way the complexity
can be lowered to ExpTime. The NExpTime upper bound for the general case actually also
follows from the NExpTime upper bound in [32] for a more expressive logic with n-ary relations
and function symbols, but the ExpTime result for the restricted case was new.
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In [2, 3], we combined the work in [1] and [8] by considering extended cardinality constraints
in ALCSCC. This turned out to be non-trivial since the local cardinality constraints of ALCSCC
may interact with the global ones in the extended cardinality constraints. Nevertheless, we
were able to show that the complexity results (NExpTime-complete in general, and ExpTime-
complete in the restricted case) hold not only for ALC, but also for ALCSCC.

The purpose of the present paper is twofold. On the one hand, we give a compact represen-
tation of the known complexity results for the DLs with extended counting facilities mentioned
above, and transfer them to a setting where arbitrary rather than just finite models are con-
sidered (see below). On the other hand, we investigate the expressive power of these DLs in
detail. A first step in this direction was already made in [4], where the expressive power of con-
cept descriptions was examined using appropriate bisimulation relations. Basically, we showed
there that ALCSCC is not expressible in FOL, and determined a sub-logic of ALCSCC, called
ALCCOU, that is the first-order fragment of ALCSCC. We also showed that ALCCOU is more
expressive that ALCQ. Here, we recall these results, and then extend them to TBoxes, CRs,
and extended cardinality constraints, by adapting methods and ideas from [25]. As in [4], we
consider variants of QFBAPA and ALCSCC that allow for possibly infinite sets and interpre-
tations, respectively. This change has no influence on the complexity of reasoning, but it eases
the comparison with classical DLs, for which one usually employs arbitrary models rather than
finite ones when defining the semantics. It also adds flexibility since finiteness can be expressed
in these logics, and thus one can actually switch between arbitrary model reasoning and finite
model reasoning.

2 DLs with counting quantifiers

In this section, we formally introduce the DLs with extended counting facilities mentioned
in the introduction, and recall the known complexity results for reasoning in these logics. As
mentioned above, we will not restrict the semantics to finite models. For this reason, the results
originally obtained for the “finite model” case need to be adapted. We start with introducing
the infinite variant of QFBAPA upon which all our logics are based.

2.1 An infinite variant of QFBAPA

We recall the definition of QFBAPA®® as introduced in [4].? In this logic one can build set terms
by applying Boolean operations (intersection N, union U, and complement -¢) to set variables
as well as the constants () and /. Set terms s, ¢ can then be used to state inclusion and equality
constraints (s = t, s C t) between sets. For example, if Vampire and Easychair are set variables,
then the set constraint

Barstool N Easychair = ()

says that barstools are not easychairs.

Presburger Arithmetic (PA) expressions are built from numerical variables, integer con-
stants, and set cardinalities |s| using addition as well as multiplication with an integer constant.
They can be used to form numerical constraints of the form k& = ¢ and k < ¢, where k, ¢ are PA
expressions. For example, the numerical constraint

| Vampire| > 10-(| Easychair| + | Barstool|)

3A variant of QFBAPA™ with a slightly different expressivity, but the same complexity of reasoning, was
introduced in [22].

4
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says that there are more than ten times as many vampires as there are easychairs and barstools
together. A QFBAPA® formula is a Boolean combination of set and numerical constraints.

The semantics of set terms and set constraints is defined using substitutions o that assign
a set o(U) to U and subsets of o(U) to set variables. The evaluation of set terms and set
constraints by such a substitution is defined in the obvious way, using the standard notions of
intersection, union, complement,® inclusion, and equality for sets. PA expressions are evaluated
over N*° = NU {oo}, i.e., the natural numbers® extended with a symbol for infinity. Thus, sub-
stitutions additionally assign elements of N°° to numerical variables. The cardinality expression
|s| is evaluated under o as the cardinality of o(s) if this set is finite, and as oo if o(s) is not
finite.” When evaluating PA expressions w.r.t. a substitution o, we employ the usual way of
adding, multiplying, and comparing natural numbers, extended by the following rules that deal
with infinity: co + N = N + 00 = o0 = 00 + oo for all natural numbers N, 0- 00 =0 = o0 - 0,
N - 00 =00 =o00- N for all positive integers N, N < co and oo £ N for all natural numbers
N, and oo = 0o as well as 0o £ oc.

A solution o of a QFBAPA> formula ¢ is a substitution that evaluates ¢ to true, using
the above rules for evaluating set and numerical constraints and the usual interpretation of the
Boolean operators occurring in ¢. The formula ¢ is satisfiable if it has a solution.

Note that, in QFBAPA®, we can enforce infinity of a set although we do not allow the use
of oo as a constant. For instance, |s| = co is not an admissible numerical constraint, but it is
easy to see that the constraint |s| + 1 = |s| can only be satisfied by a substitution that assigns
an infinite set to the set term s.

The set constraints in QFBAPA> are actually syntactic sugar since they can be expressed
using numerical constraints. In fact, the set constraint s C t is equivalent to the numerical
constraint |s N t°| < 0. Note that, for finite sets, this could equivalently be expressed as
|s Ut| = [t|, but for infinite sets the latter constraint is not equivalent to s C ¢. Since set
constraints are syntactic sugar and > and < can easily be simulated in N°*° using > and <, we
can assume without loss of generality that any QFBAPA® formula is a Boolean combination
of atomic QFBAPA®® formulae of the form

No + Nils1| + -+ + Nglsg| < Mo+ My|ta] + - - - + Meltel, (2)

where the s;,t; are set terms and the IV;, M; are natural numbers.

The logic CQU as introduced in [4] is obtained from QFBAPA® by restricting numerical
constraints to be of the form £ < V and k > N, i.e., a CQU formula is a Boolean combination of
set constraints and numerical constraints of this restricted form. By using the same arguments
as above, we can show that any CQU formula is equivalent to a Boolean combinations of atomic
formulae of the form (2) where k = 0 or £ = 0. In addition, in this setting sums can be expressed
using disjunction. For example, saying that |s|+ |¢| < 1 is equivalent to saying that |s| < 0 and
|t] <1, or |s| <1and |¢t| <0. Thus, when it comes to expressive power, we can assume without
loss of generality that formulae of CQU are Boolean combinations of numerical restrictions of
the form |s|] < N or |s| > N.

It is actually not hard to see that the logic CQU as defined here and in [4] has the same
expressivity as C!, the one-variable fragment of first-order logic with counting (see, e.g., [28]).
The logic originally called CQU in [14] is the fragment where only conjunctions of atomic

4In QFBAPA, o(l{) is constrained to be a finite set.

5The complement is built w.r.t. o(U), i.e., o(s¢) = a(U) \ o(s).

6We assume here that the natural numbers contain 0. We call the natural numbers without 0 “positive
integers.”

"Note that we do not distinguish between different infinite cardinalities, such as countably infinite, uncount-
ably infinite, etc.
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restrictions of the form |s| < N or |s| > N can be used. However, when using CQU within
our DLs with counting quantifiers, this difference is irrelevant since the Boolean operations are
available anyway on the DL level.

2.2 Concept descriptions that count

We are now ready to define the DL ALCSCC™ and some of its sub-logics. Basically, ALCSCC™
provides us with Boolean operations on concepts and constraints on role successors, which are
expressed in QFBAPA®. In these constraints, role names and concept descriptions can be used
as set variables, and there are no numerical variables allowed.

Definition 1 (Syntax of ALCSCC™). Given finite, disjoint sets N¢ of concept names and
Ngr of role names, the set of ALCSCC™ concept descriptions over the signature (No, Ng) is
inductively defined as follows:

o T, and every concept name in N¢ is an ALCSCC™ concept description over (N, Ng);

o if C,D are ALCSCC™ concept descriptions over the signature (No,Ng), then so are
CcnD,CuUD, and -C;

e if Con is a set or numerical constraint of QFBAPA™ using role names and already de-
fined ALCSCC™ concept descriptions over the signature (No, Ng) as set variables, then
succ(Con) is an ALCSCC™ concept description over (N, Ng).

For example, the description (1) in the introduction is an ALCSCC™ concept description
that uses the QFBAPA® numerical constraint |developed N TP| > |developed N CMS]|, in which
developed, TP, and CMS are viewed as set variables. Of course, successor constraints can also
be nested, as in the ALCSCC™ concept description

succ(|friend N suce(|developed N CMS| > 1)| = |friend N succ(|developed N TP| > 1)]),

which describes all individuals having as many friends that have developed at least one con-
ference management system as they have friends that have developed at least one theorem
prover.

For the sake of simplicity, we will sometimes use “concept” in place of “concept description,”
and often dispense with explicitly mentioning the signature. As usual in DL, the semantics of
ALCSCC™ is defined using the notion of an interpretation.

Definition 2 (Semantics of ALCSCC™). Given finite, disjoint sets No and Ng of concept and
role names, respectively, an interpretation of No and Ng consists of a non-empty set AT and
a mapping - that maps every concept name A € N¢ to a subset AT of AT and every role name
r € Ng to a binary relation r% over AT. Given an individual d € AT and a role name r € Ng,
we define
rI(d) := {e € AT | (d,e) €T} and ars’(d) := U rL(d).
reNgr

The function T is inductively evtended to ALCSCC™ concept descriptions over (N¢, Ng)

by interpreting M, U, and — respectively as intersection, union and complement as well as T as

AT and L as the empty set. Successor constraints are evaluated according to the semantics of
QFBAPA>: to determine whether d € succ(Con)® or not

o U is evaluated as ars™(d) (i.e., the set of all role successors of d),
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e () as the empty set,
e roles v occurring in Con as rX(d) (i.e., the set of r-successors of d),

e and concept descriptions D as DT Nars(d) (i.e., the set of role successors of d that belong
to D). Note that, by induction, the sets DT are well-defined.

Then d € succ(Con) iff the substitution obtained this way is a solution of the QFBAPA>
formula Con.

The ALCSCC™ concept description C' is satisfiable if there is an interpretation T such that
CT # 0. The ALCSCC™ concept descriptions C, D are equivalent (written C = D) if CT = D
for all interpretations Z.

The sub-logics ALCQ, ALCOt, and ALCCOU of ALCSCC can be obtained from ALCSCC™
by restricting the successor constraints appropriately:

e The DL ALCQ is the fragment of ALCSCC™ in which only successor constraints of the
form succ(|C Nr| = N) or succ(]C Nr| < N) are allowed, where N is a natural number,
r is a role name, and C' is an ALCQ concept description. These constraints are usually
written as (= N r.C) and (< N r.C), and are called qualified number restrictions.

e The DL ALCOt is the fragment of ALCSCC™ in which only successor constraints of
the form succ(|C N 7| = N) or succ(]C N7| < N) are allowed, where N is a natural
number, 7 is a safe role type, and C' is an ALCQt concept description. A safe role
type is an intersection of role names r (positive occurrence) and complements r¢ of role
names (negative occurrence) such that every role name in Ng occurs either positively or
negatively, and at least one role name occurs positively. Using the syntax for qualified
number restrictions, these constraints can be written as (= N 7.C') and (< N 7.C).

e The DL ALCCOU is the fragment of ALCSCC™ in whose successor constraints only con-
straints of CQU are allowed.

By definition, ALCQ is a sub-logic of ALCCOU, and ALCCOU is a sub-logic of ALCSCC™.
In addition, ALCQt is clearly a sub-logic of ALCCOU. Moreover, it is shown in [4] that any
ALCCOU concept description can be expressed by an equivalent ALCOt concept description,
and thus that ALCCOU and ALCOt have the same expressive power.

We will see below that ALCSCC™ concept descriptions can in general not be expressed
in FOL. In contrast, the concept descriptions of the three fragments introduced above can be
expressed by first-order formulae with one free variable. This is well-known for ALCQ (9], and
can be shown for ALCQt by a simple adaptation of the first-order translation for ALCQ, where
safe role types are translated into first-order formulae with two variables in the obvious way.
For ALCCQU this follows from its equivalence with ALCQt.

Proposition 3. If L € {ALCQ, ALCOt, ALCCOU}, then L is a fragment of FOL, i.e., for
every L concept description C there exists a first-order formula with one free variable C*(x)

such that C and C*(x) are equivalent in the sense that, for every interpretation I, we have
CT={de AT |TkC4d)}.

The logic ALCSCC™ and its sub-logics are local in the sense that the decision on whether
a certain individual belongs to a concept depends only on this individual and other individuals

7
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connected via roles to it. For this reason, evaluating a concept in the disjoint union of interpre-
tations corresponds to evaluating it separately in the single interpretations. To be more precise,
given a family (Z,),ecn of interpretations, we define their disjoint union T = @,y I, as

AT = {(d,v)|v €N and d € AT},
AT = {(d,v)|ve N andde AT} forall A€ Ng,
T = {((d,v),(e,v)) | v €N and (d,e) € r**} for all r € Np.

The following is now easy to show, using the locality of ALCSCC™ concept descriptions men-
tioned above.

Lemma 4. Let C be an ALCSCC™ concept description. Then we have

C* ={(d,v)|vEN and d € C*}.

2.3 TBoxes and cardinality boxes

In classical DLs, terminological knowledge is represented using so-called TBoxes, which are
finite sets of Cls of the form C' T D for concepts C,D. Cardinality boxes extend TBoxes
by allowing for the formulation of cardinality constraints also on this level. To simplify the
comparison with cardinality boxes, in which Boolean combinations of numerical constraints are
allowed, we also consider Boolean TBoxes.

Definition 5. Let £ be one of the DLs ALCQ, ALCQt, ALCCOU, or ALCSCC™.

1. A Boolean £ TBox is a Boolean combination of Cls C T D, where C,D are L concept
descriptions. An L TBox is a conjunction of such Cls.

2. A Boolean £ CBox is a Boolean combination of CRs of the form |C| < N and |C| > N,
where C is an L concept description and N is a natural number. An L CBox is a
conjunction of such CRs.

3. An L ECBox is a Boolean combination of inequations of the form
No + Ni|Cy| + -+ + Ni|Ck| < Mo + My|Dy| + - - - + M| Dy, (3)
where the Cy, D; are L concept descriptions and the N;, M; are natural numbers.
4. An L RCBox is a conjunction of inequations of the form
Ni|Cy|+ -+ + Ni|Cr| < My|Dy| + -+ + M| Dy, (4)
where the C;, D; are L concept descriptions and the N;, M; are positive natural numbers.
We say that the interpretation T is a model of
1. the CI C C D if CT C D? holds,
2. the CR |C| < N if |CT| < N, and of the CR |C| > N if |CT| > N,
3. an inequation of the form (3) if

No + Ny|CE| + -+ -+ Ni|CE| < Mo + My|D¥| + - - + M,|DF|,
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4. an inequation of the form (4) if

Ni[CT|+ -+ 4 Ni|CF| < My|DY| + -+ - + M| D7 .

The notion of a model is extended to Boolean combinations of such constraints in the obvious
way.

Obviously, the CI C C D can be expressed by the CR |C' 1 —D| < 0. Equivalently, one
can express this restriction as |C' M —=D| < |L|, which shows that CIs are also expressible by
ECBoxes and RCBoxes. Thus, TBoxes can be expressed using CBoxes, ECBox, or RCBoxes.
CBoxes and RCBoxes are clearly expressible by ECBoxes. However, the expressiveness of
CBoxes and RCBoxes appears to be orthogonal. While the former only allow us to compare
concept cardinalities with a fixed number, this is exactly what is prohibited in RCBoxes. On
the other hand, RCBoxes enable us to compare the cardinalities of different concepts whereas
this is not possible in CBoxes.

In case the underlying DL L is expressible in FOL, £ TBoxes and £ CBoxes are clearly also
expressible in FOL. Together with Proposition 3 this observation yields the following:

Corollary 6. If £ € {ALCQ, ALCQOt, ALCCOU}, then L (Boolean) TBoxes and CBoxes can be
expressed in FOL, i.e., for every (Boolean) L TBox or CBox T there exists a first-order sentence
TH such that T and T* are equivalent in the sense that they have the same interpretations as
models.

We can use disjoint unions to show inexpressibility results for some of our box formalisms.

Definition 7. Let £ € {ALCQ, ALCOt, ALCCOU, ALCSCC™} and T be a (Boolean) TBot,
CBoz, RCBox, or ECBozx. We say that the models of T are closed under disjoint union if
the following holds: if the interpretations I, for v € N are models of T, then their disjoint
union I = @,y L, is also a model of T. The models of T are invariant under disjoint union if
additionally the implication in the other direction holds, i.e., if the disjoint unionT = @,y I,
is a model of T, then so are the interpretations I, for v € N.

Using Lemma 4, the positive statements of the following proposition are easy to show.
Proposition 8. If L € {ALCQ, ALCOt, ALCCOU, ALCSCC™}, then
1. the models of L TBoxes are invariant under disjoint union;

2. the models of L RCBoxes are closed under disjoint union, but in general not invariant
under disjoint union;

3. the models of L ECBozxes or CBoxes are in general not closed under disjoint union;
4. the models of Boolean L TBozes are not closed under disjoint union.

Regarding the negative statement in 2., consider the RCBox |A| + |B| < |C| for concept
names A, B,C. If we consider interpretation Z; and Z, in which A%7* contains one element,
BT one element, C7t one element, A”? one element, B72 one element, and C”2 three elements,
then the disjoint union of Z; and Z, is a model of the RCBox, but Z; is not. Regarding 3., it
should be clear that the models of |A] < 1 cannot be closed under disjoint union. Finally, it is
also easy to see that the models of the Boolean TBox (A C 1)V (B C L) are not closed under
disjoint union.

As an immediate consequence of the above lemma, we obtain the following inexpressibility
results.
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Proposition 9. If £ € {ALCQ, ALCOt, ALCCOU, ALCSCC™}, then
e L TBozes in general cannot express L RCBoxes, ECBoxes, CBozes, and Boolean TBoxes;

e L RCBozxes in general cannot express L ECBoxes, CBoxes, and Boolean TBozes.

2.4 Reasoning in DLs that count

For a DL £, the fundamental inference problems are satisfiability and subsumption of concepts:

e Given an L concept C, the satisfiability problem asks whether C is satisfiable, i.e., whether
there is an interpretation Z such that CT # ().

e Given L concepts C, D, the subsumption problem asks whether C is a subconcept of D
(written C' C D), i.e., whether C?T C D7 holds for all interpretations Z.

If the DL £ can express | as well as conjunction and negation of concepts, then subsumption
and satisfiability can be reduced to each other in polynomial time since C' C D holds iff CT1—=D
is unsatisfiable, and C is unsatisfiable iff C' C | holds.

These two inference problems can also be considered w.r.t. the kinds of boxes introduced in
the previous subsection. Let C, D be L concepts and 7 an £ TBox, CBox, ECBox, or RCBox.
Then we say that

e T is consistent if it has a model,
e C is satisfiable w.r.t. T if there is a model Z of T such that CT # (),
e C is subsumed by D w.r.t. T (written C T D) if CT C D7 holds for all models Z of T.

Again, it is well-known that these problems can be reduced to each other in polynomial time if
L, T,—, M, and qualified number restrictions of the form (> 1r.C) are available. In fact, T is
inconsistent iff T T4 L holds, and C is satisfiable w.r.t. 7 iff TU{T C (>1r.C)} is consistent,
where 7 is a new role name occurring neither in C' nor in 7.

Since the prerequisites required for the reductions mentioned above are satisfied by the DLs
ALCO, ALCOt, ALCCOU, and ALCSCC™, and all our box formalisms can express Cls, we can
restrict the attention to the satisfiability problem in case there is no box, and to the consistency
problem in case there is a box, when investigating the complexity of reasoning.

Reasoning without a box in ALCSCC™ and its sub-logics

The satisfiability problem in ALCQ was shown to be PSpace-complete in [29]. In [1] it was
proved that this result can be extended to ALCSCC, and in [4] it was demonstrated that the
same is true for ALCSCC™. Since we have a PSpace lower bound for ALCQ, which is the
least expressive DL considered in this paper, even for unary coding of numbers, as well as a
PSpace upper bound for ALCSCC, which is the most expressive one, even for binary coding,
this determines the exact worst-case complexity of the satisfiability problem for all the DLs
introduced above.

Theorem 10 ([29, 4]). If £ € {ALCQ, ALCOt, ALCCOU, ALCSCC™}, then satisfiability of £
concepts is PSpace-complete independently of whether numbers are encoded in unary or binary.

10
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Reasoning w.r.t. CBoxes and ECBoxes

Consistency of ALCQ CBoxes was shown to be NExpTime-complete in [30] if binary coding
of numbers is used, whereas for unary coding it stays in ExpTime. In [2, 3] we were able to
prove a NExpTime upper bound for consistency of ALCSCC ECBoxes with numbers encoded in
binary. Basically, the proof of this result takes the ALCSCC ECBoxes £ and translates it into an
exponentially larger QFBAPA formula d¢ that is satisfiable iff £ is consistent. Since satisfiability
in QFBAPA is NP-complete for binary coding of numbers, this yields the NExpTime upper
bound for ALCSCC. This results can easily be transferred to ALCSCC™ by using the same
translation, but then testing satisfiability of d¢ in QFBAPA® rather than in QFBAPA. In [4]
it is shown that the satisfiability problem in QFBAPA® is also in NP.

Theorem 11 ([30, 8, 2, 4]). If L € {ALCQ, ALCOt, ALCCOU, ALCSCC™}, then consistency
of L (Boolean) CBozxes and ECBozxes is NExp Time-complete if numbers are encoded in binary.
For ECBozes, NExpTime-hardness already holds for unary coding of numbers.

The reason why the coding of numbers is irrelevant in the presence of ECBoxes is that
one can use iterated multiplication to create large numbers from small ones (see [8] for a more
detailed argument).

Reasoning w.r.t. TBoxes and RCBoxes

It is well-known that consistency of ALCQ TBoxes is an ExpTime-complete problem [31]. This
result was extended in [1] to ALCSCC TBoxes, and in [4] it was argued that it also holds for
ALCSCC™. RCBoxes were introduced in [8] to obtain a restriction of ECBoxes that lowers
the complexity of the consistency problem from NExpTime to ExpTime. For ALCSCC (i.e.,
the case of finite models), it is shown in [2, 3] that the consistency problem for RCBoxes is
ExpTime-complete. It would not be hard to demonstrate that the approach employed there to
prove the ExpTime upper bound for the “finite model” case can be adapted to the infinite case
as well. However, below we give a simpler proof of this result for ALCSCC, which uses that
fact that it is sufficient to consider solutions of inequations of the form (5) where the concepts
C; are either empty or have infinite cardinality.
Recall that an ALCSCC™ RCBox R is a system of inequations of the form

Ni|Ci| + -+ 4+ Ng|Ck| < Nig+1|Craa| + - -+ + Nigt2|Crotel s (5)

where the C; are ALCSCC™ concept descriptions and the N; are positive integers. Our al-
gorithm reduces consistency of ALCSCC™ RCBoxes to consistency of ALCSCC™ TBoxes. It
receives an ALCSCC™ RCBox R as input and initializes the ALCSCC™ TBox T as T := 0. It
then proceeds with the following steps:

1. Check whether the ALCSCC™ TBox T is consistent. If this is not the case, then terminate
with failure. Otherwise, for all concepts C occurring in an inequation of R, check whether
T implies C' C . If this is the case, then add C C 1 to 7. Then proceed with the next
step.

2. For all inequations of the form (5) such that C; C L belongs to T for all k+1 < j < k+,
add C; C L to 7T for all 7,1 < i < k. If no new CI has been added to T, then terminate
with success. Otherwise, continue with the previous step.

Lemma 12. The algorithm terminates after a polynomial number of iterations and it succeeds
iff the RCBox R is consistent.

11
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Consistency of TBox RCBox CBox ECBox

ALCQ ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.
ALCOt ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.
ALCCOU ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.
ALCSCC™ ExpTime-c. ExpTime-c. NExpTime-c. NExpTime-c.

Table 1: Complexity results for consistency assuming binary coding of numbers

Proof. Termination after a polynomial number of iterations is an immediate consequence of the
fact that only polynomially many Cls of the form C' T L can be added to 7 since the concepts
C for which such a CI can be added must occur in an inequation in R.

Now, assume that R is consistent, and let Z be a model of R. By an induction on the
number of iterations, it is easy to show that we must have CZ = {) for all CIs added to 7~ during
the run of the algorithm. Consequently, in Step 1 the algorithm can never fail since Z is a
model of 7. Since the algorithm always terminates, it must thus succeed.

Next, assume that the algorithm succeeds with the final TBox 7. Then T is consistent, and
for every concept C' occurring in an inequation of R such that C' C 1 does not belong to T,
there is a model Z¢ of T such that CZ¢ # (). By using closure under disjoint union of models
of ALCSCC™ TBoxes, this implies that there is an interpretation Z., such that the following
holds for all concepts C' occurring in an inequation of R:

e if C' C 1 belongs to T, then C%= = ();
e if C' C L does not belong to 7, then the cardinality of CZ= is infinite.

It remains to shows that Z, is a model of R. Thus, consider an inequation of the form (5) in
R. If there is a j with k+1 < j < k+ £ such that CJ-I’” is infinite, then clearly this inequation is
satisfied by Zo,. Otherwise, C; € L belongs to 7 for all k41 < j < k44, and thus also C; T L
belongs to T for all ¢ with 1 <4 < k. This shows that, again, the inequation is solved. O

Since consistency of ALCSCC™ TBoxes can be tested in exponential time [4], the overall com-
plexity of our algorithm is ExpTime.

Proposition 13. Consistency of ALCSCC™ RCBozxes is in ExpTime.

Combining this result with the known lower bounds for TBox consistency, we thus obtain
the following:

Theorem 14. If £ € {ALCQ, ALCOt, ALCCOU, ALCSCC™}, then consistency of L (Boolean)
TBozxes and RCBozes is FxpTime-complete independently of whether numbers are encoded in
unary or binary.

To explain the ExpTime upper bound for Boolean TBoxes, note that one can reduce consis-
tency of a Boolean TBox to exponentially many consistency tests for TBoxes. In fact, one can
bring the Boolean TBox into disjunctive normal form and then test every disjunct for consis-
tency. At first sight, such a disjunct is not a TBox since it may contain negated Cls, but one
can replace negated CIs =(C C D) with CIs T C (= 1r.(C M —D)) for new roles r (see [7] for a
justification).

The complexity results for “box consistency” in ALCSCC™ and its sub-logics are summarized
in Table 1.
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3 Expressivity of concept descriptions

The purpose of this section is to compare the expressive power of the concept description
languages of the DLs ALCQ, ALCOt, and ALCSCC™. Since we already know that ALCOt and
ALCCOU have the same expressiveness, we will not consider ALCCOU explicitly here. Our
results, which have been presented first in [4], make use of appropriate bisimulation relations
for the first-order expressible logics ALCQ and ALCOL.

Bisimulation relations for ALCQO and ALCOt

Let 7 be a safe role type, rq,...,r; the role names occurring positively in 7, and s, ..., s, the
role names occurring negatively, i.e., 7 =7 N...NryNs{N...Nsj. For a given interpretation
7 and an element d € AT, we define

5(d) = (rI(d)n...0rEd) \ (sT(d)U...UsE(d)).
Since 7 is safe, we must have k > 1, and thus 77(d) C r¥(d) C ars(d).

Definition 15 (ALCQOt bisimulation). Let Z; and Iy be interpretations of No and Ng. The
relation p C ATY x AT is an ALCQOt bisimulation between I, and I, if for all A € N¢ and all
safe role types 7 over N the following three properties are satisfied:

1. dy p dy implies d; € AT iff dy € AT2;

2. ifdy pdy and Dy C 771 (dy) is finite, then there is a set Doy C 772(do) such that p contains
a bijection between Dy and Ds;

3. if dy p do and Dy C 772(dy) is finite, then there is a set D1 C 771 (dy) such that p contains
a bijection between Dy and D-.

Two individuals di € AT and dy € A2 are called ALCQt bisimilar (written (Zy,d1) ~.arcor
(Z,ds)) if there is an ALCOt bisimulation p between I and Iy such that dy p dy. These
individuals are called ALCQOt equivalent (written (Z1,d1) =accor (Z2,dz2)) if for all ALCOt
concept descriptions C we have dy € CT iff do € 22,

The notion of an ALCQ bisimulation (called counting bisimulation in [25]) is obtained from
the above definition by replacing safe role types 7 over Ng with role names r € Ng. ALCQ bisim-
ilarity (written (Zy,d1) ~acco (Zz2,dz2)) and ALCQ equivalence (written (Zy1,dy) =acco (Z2,dz))
are obtained by replacing ALCOt in the above definition with ALCQ. The next proposition
states that concepts of ALCQ and ALCOt are invariant under the respective notion of bisimu-
lation. For ALCQ, this was first shown in [25] and for ALCQt in [4].

Proposition 16 ([25, 4]). If £ € {ALCQ, ALCOt}, then (T1,d1) ~r (Za,dg) implies (I1,d1) =¢
(Z,d3).

This result is already sufficient for showing that ALCQt is not expressible in ALCQ.

Corollary 17 ([4]). Let Ng = {r,s} and No = {A}. There is no ALCQ concept description
C such that C is equivalent to the ALCOt concept description succ(JANrNs| > 1).

In fact, if succ(|JANTNs| > 1) was equivalent to an ALCQ concept description, then it would
need to be invariant under ALCQ bisimulation as stated in the above proposition. However,
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Figure 1: Two interpretations Z; and Zy and an ALCQ bisimulation p, which is not an ALCQOt
bisimulation.

Fig. 1 shows two interpretations in which the individuals d; and dy are ALCQ bisimilar, but
whereas dy belongs to succ(]JAN 7N s| > 1), the individual d2 does not.

The following theorem states that ALCQ and ALCQt are exactly the fragments of first-
order logic that are invariant under the respective notion of bisimulation. We say that a
first-order formula ¢(x) with one free variable x is invariant under ~. for L € {ALCQ, ALCOt}
if (Zy,d1) ~¢ (Za,d2) implies that Z; = ¢(dy) iff Zy | ¢(ds). For ALCQ this was first shown
in [25] and the proof for ALCOt can be obtained by adapting this proof. A detailed proof that
closes some small gaps of the one in [25] can be found in the technical report [7].

Theorem 18 (|25, 4]). Let £ € {ALCQ, ALCOt} and ¢(x) be a first-order formula with one
free variable x. Then the following are equivalent:

1. there is an L concept description C such that C is equivalent to ¢(x);

2. ¢(x) is invariant under ~.

Comparison with ALCSCC™

One might think that invariance of ALCQt concept descriptions under ALCQOt bisimulation could
be used to show that ALCSCC™ concepts cannot be expressed in ALCQt. This is, however, not
the case since ALCSCC™ concepts are also invariant under ALCQt bisimulation.

PI‘OpOSitiOD 19 ([4]) ]f (Ih dl) ~ ALCOt (Iz,dg) then (Zl, dl) = ALCSCC>™ (Ig,dg).

Here ALCSCC™ equivalence is defined in the obvious way, by considering all ALCSCC™
concept descriptions over the given signature. The main idea underlying the proof of this
proposition is that all the PA expressions occurring in successor constraints can be transformed
into the form

¢
k = ZNz . |TimOi|,
i=1
where the N; are natural numbers, the 7; are safe role types, and the C; are ALCSCC™ concept
descriptions. Then, one can show that, for individuals that are ALCQt bisimilar, expressions of
the form |7 N C;| evaluate to the same number or to co on their role successors.

Combining Proposition 19 and Theorem 18 for £ = ALCQOt, we can now conclude that
ALCQt is exactly the first order fragment of ALCSCC™.

Theorem 20 ([4]). For an ALCSCC™ concept description C, the following are equivalent:

1. C is equivalent to an FOL formula with one free variable;

14



Description Logics That Count Baader and De Bortoli

FOL DLs
C [ALCOt — ALCCOU c _
ALCQ = " A resce™ n FoL ALLOLL

Figure 2: The relative expressivity of the DLs ALCQ, ALCOt, ALCCOU, and ALCSCC™.

2. C is equivalent to an ALCOL concept description.

The direction (2 = 1) is an immediate consequence of Proposition 3. For the other di-
rection, assume that C' is equivalent to the FOL formula ¢(x). Then ¢(z) is invariant under
ALCOt bisimulation by Proposition 19, and thus equivalent to an ALCQOt concept description
by Theorem 18.

It remains to show that ALCSCC™ is more expressive than ALCQt. Note that, by Theo-
rem 20, any ALCSCC™ concept that is not expressible in ALCQt is also not expressible in FOL.
The following proposition, which was first stated in [4], is an easy consequence of Proposition 30
in Section 4.1.

Proposition 21 ([4]). The ALCSCC™ concept description succ(|r N A| = |r N —=A|) cannot be
expressed in first-order logic.

Fig. 2 summarizes the results obtained in this section.

4 Expressivity of boxes

Here we extend the bisimulation characterizations of the previous section to the box formalisms
introduced in Section 2.3. For (Boolean) TBoxes and the DL ALCQ, this was already done
in [25]. First, we recall these results and extend them to ALCQt. As a consequence, we also
obtain characterizations of the first-order fragments of ALCSCC™ TBoxes and Boolean TBoxes.
Second, we show similar results for CBoxes and ECBoxes.

4.1 TBoxes and Boolean TBoxes in ALCQ, ALCOt, and ALCSCC™

In order to deal with CIs, which make global statements about all individuals of an interpreta-
tion, we need to “globalize” the notion of a bisimulation [25].

Definition 22. Let £ € {ALCQ, ALCOt} and T1,Zy be interpretations.

e The L bisimulation p between I, and I, is global if for every d € ATt there exists e € AT
such that (d,e) € p (and vice versa).

e The interpretations I, and I, are globally £ bisimilar (written Iy ~% I,) if there is a
global L bisimulation p between I and Z,.

o The interpretations I and Iy are globally £ equivalent (written I, =% 1) if for every CI
C C D with C and D L concept descriptions we have that T, E C E D iff I, = C C D.

e The first-order sentence ¢ is invariant under global £ bisimulation if 71 |= ¢ and Z; ~% I,
imply Iy = ¢.

The following proposition is an easy consequence of the above definition and Proposition 16.
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Proposition 23. If £ € {ALCQ, ALCOt}, then T ~% Ty implies Ty =% Is.

As an immediate consequence, we obtain invariance of (Boolean) £ TBoxes (viewed as
first-order sentences) under global £ bisimulation.

Corollary 24. FEvery (Boolean) L TBox (for L € {ALCQ, ALCOt}) is invariant under global
L bisimulation.

This result can be used to show that Boolean ALCQ TBoxes cannot express ALCOt TBoxes.

Corollary 25. Let Ng = {r,s} and Noc = {A, B}. There is no Boolean ALCQ TBox that is
equivalent to the ALCOt TBox T = {B C succ(|[ANrns| > 1)}.

To prove this corollary, we can basically reuse the interpretations Z;, Zo and the ALCQ
bisimulation p shown in Fig. 1, but where now additionally d;, ds belong to the concept B,
whereas the other elements do not belong to B. Then p is a global ALCQ bisimulation between
7, and Z,. However, Z; is a model of 7, whereas Z, is not, which shows that 7 cannot be
equivalent to a Boolean ALCQ TBox by Corollary 24.

Global £ bisimulations can also be used to characterize the first-order sentences that are
equivalent to Boolean £ TBoxes. For £ = ALCQ, this was already shown in [25]. A detailed
proof for £ = ALCOt can be found in [7].

Theorem 26 ([25, 7]). Let L € {ALCQ, ALCOt} and ¢ be a first-order sentence. Then the

following are equivalent:
1. There exists a Boolean L TBox T such that T is equivalent to ¢.
2. The sentence ¢ is invariant under global L bisimulation.

To distinguish TBoxes from Boolean TBoxes, one needs to use the fact that TBoxes are
invariant under disjoint union, whereas Boolean TBoxes are not (see Proposition 8).

Theorem 27. Let £ € {ALCQ, ALCOt} and ¢ be a first-order sentence. Then the following
are equivalent:

1. There exists an L TBox T such that T = ¢.
2. The sentence ¢ is invariant under global L bisimulation and under disjoint unions.

For £ = ALCQ, this theorem was shown in [25] (see proof of Theorem 7 in [25]), and the
adaptation of this proof to the case £ = ALCOt is simple.

Using the fact that ALCSCC™ concept descriptions are invariant under ALCQt bisimulation
(see Proposition 19 above), it is easy to see that Proposition 23 can be extended to ALCSCC™
as follows.

Corollary 28. Z; ~% rco; Lo implies Ty = posece Lo-

Combining this result with Theorems 26 and 27 for the case £ = ALCOt, we thus obtain
the following characterizations of the first order fragments of (Boolean) ALCSCC™ TBoxes.

Theorem 29. Let T be a (Boolean) ALCSCC™ TBox. Then the following are equivalent:

1. T is equivalent to a first-order sentence.

2. T is equivalent to a (Boolean) ALCOt TBoz.
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It remains to show that there are indeed ALCSCC™ TBoxes that cannot be expressed by a
Boolean ALCOt TBox, and thus are not expressible in FOL.

Proposition 30. The ALCSCC™ TBox T, := {T C succ(lr N A] = |r N —-A])} cannot be
expressed in first-order logic.

Proof. Tt is sufficient to show that 7, cannot be expressed as an equivalent ALCOt TBox 7.
Together with Theorem 29, this yields our statement. We fix (N¢, Ng) = ({A},{r}) and
assume by contradiction that such 7 exists over this signature. Note that, in this restricted
signature, the only safe role type is the role r itself, and thus successor constraints are in fact
qualified number restrictions for the role r.

Due to the semantic equivalence (< Kr.D) = —=(> (K + 1) r.D), we can assume that every
qualified number restriction occurring in 7 is of the form (> K r.D) with K a natural number
and D an ALCQOt concept description. Let N’ be the largest natural number appearing in a
qualified number restriction in 7. Then, we define N := N’ + 1 and the sets S :={1,...,N}
and Sy :={N +1,...,2N}.

The interpretation Z over ({A}, {r}) of domain AT = {0,1,...,2N} is defined by setting all
elements of S; and Ss as r-successors of 0 and AT := S;. Then 7 is clearly a model of Ty, and
hence of T. We extend Z to Z' by adding 2N + 1 to the domain and to the interpretation of A,
and connecting 0 with 2N + 1 via the role r. We show that Z’ is a model of T, by proving the
following facts:

1. Forallie {1,...,N},j€{l,...,N,2N + 1}, and ALCQt concepts D we have i € DT iff
jeDT.

2. Foralli,j € {N +1,...,2N}, and ALCQt concepts D we have i € DT iff j € D'
3. For all ALCOt concepts D containing only numbers < N we have 0 € DT iff 0 € DT’

Before showing these facts, first note that they indeed imply that Z’ is a model of 7. In fact,
assume that this is not the case. Then there is a CI C7; C Cy in T such that D := C7 M —=Cy
is non-empty in Z’. Assume that j € DT If j € {1,...,N,2N + 1}, then (1) implies that
1 € D%, contradicting the fact that Z is a model of 7. Similarly, we can show that the case
where j € {N +1,...,2N} leads to a contradiction. Finally, if j = 0, then we have 0 € D%
since D satisfies the restriction stated in (3). Again, this leads to a contradiction.

To show the three facts, first note that every element of {1,..., N} in Z is ALCOt bisimilar
to every element of {1,..., N,2N + 1} in Z’. Similarly, every element of {N +1,...,2N} in Z
is ALCOt bisimilar to every element of {N + 1,...,2N} in Z’. By Proposition 16, this yields
the facts (1) and (2).

We show (3) by induction on the structure of D. The only interesting case is the one where D
is of the form D = (> K r.E) for an ALCQOt concept E and a number K < N. We observe that
all the elements of S are pairwise ALCOt bisimilar in Z, and the same is true for the elements
of S3. Combining this observation with Proposition 16, we obtain that, for the ALCQt concept
E, at least one of the following holds: (a) S; C EZ, (b) Sy C EZ, (c) S;U S, C (-E)L.

If (a) holds, then |S;| = N > K yields 0 € (> Kr.E)L. Due to the ALCQt bisimilarity
relationships between elements of Z and Z' mentioned above, Proposition 16 yields S; C EI/,
and thus 0 € (> K r.E)% holds as well. The case (b) can be treated similarly. Finally, assume
that (c) holds. The case K = 0 is trivial since then (>0r.E) = T. If K > 1, then 0 ¢
(> K r.E)T since none of the r-successors of 0 in Z belong to E. From (1) and (2) we obtain
that {1,...,2N +1} C (-E)T, and can conclude that 0 ¢ (> K r.E)T. This concludes the
proof of (3).
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Summing up, we have seen that both Z and Z’ are models of 7. However, this contradicts
our assumption that 7 is equivalent to 7, since actually Z is a model of 7, but Z’ is not. [

Note that this proposition also implies Proposition 21. In fact, if succ(|rNA| = [rN—A|) was
expressible in FOL, then there would exist an ALCQOt concept C such that C = succ(jr N A| =
|r N =A|). But then the TBox 7, would be equivalent to the ALCQt TBox {T C C}, which is
expressible in FOL by Corollary 6.

4.2 Boolean CBoxes and ECBoxes in ALCQ, ALCOt, and ALCSCC™

In order to deal with CRs rather than Cls, we need to extend our notion of a global bisimulation
to one that can also compare cardinalities of sets on the global level. The following definition is
inspired by the first-order counting games used in [16] to analyze extensions of first-order logic
by certain counting quantifiers.

Definition 31. Let £ € {ALCQ, ALCOt} and I, Iy be interpretations.

e The L bisimulation p C AT' x AT2 is a comparative £ bisimulation between Z; and I, if
p satisfies the following two properties:

1. if D, C AT s finite, then there is a set Dy C A2 such that p contains a bijection
between D1 and Do;

2. if Dy C A”2 is finite, then there is a set D; C ATt such that p contains a bijection
between D1 and Do.

o The interpretations Z, and Iy are comparatively £ bisimilar (written Z; ~% Iy ) if there
s a comparative L bisimulation p between I, and I,.

o The interpretations Iy and Ty are comparatively £ equivalent (written Z; =3 I, ) if for
all CRs |C| X N (with C an L concept, N a natural number, and x € {<,>}) we have
TLEIC| %N iff To = |C| % N.

o The first-order sentence ¢ is invariant under comparative £ bisimulation if Z; &= ¢ and

The following proposition states that CRs are indeed invariant under comparative bisimu-
lation.

Proposition 32. If £ € {ALCQ, ALCOt}, then Iy ~F Iy implies Ty =7 Is.

Proof. Assume that p is a comparative £ bisimulation between the interpretations Z; and Z,.
Let |C| > N be a CR with C an £ concept and N a natural number such that |C7t| > N. Then
CT' contains distinct elements dy,...,dy, and the fact that p is a comparative bisimulation
implies that there exist distinct elements ey, ...,ey € AZ2 such that (d;,e;) € p for 1 <i < N.
Thanks to Proposition 16, it follows that ey, ...,exy € CZ2, and thus |C%2| > N. We can prove
that |C%2| > N implies |CT1| > N using an analogous argument. The case for CRs of the form
|C| < N follows from the semantic equivalence of |C] < N and =(|C| > N + 1). O

This proposition obviously implies that (Boolean) CBoxes are invariant under comparative

bisimulation. We show next that this is true even for ECBoxes (which subsumes the case of
(Boolean) CBoxes).
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Corollary 33. If £ is an L ECBox with £ € {ALCQ, ALCOt} and I, ~F Iy then I = € iff
I, €.

Proof. First, we show that Z; ~%' Z, implies that |C%1| = |CZ2| holds for all £ concepts C. In
fact, if |C71| = N is finite, then Z; satisfies the CRs |C| < N and |C| > N. By Proposition 32,
T, must then satisfy these CRs as well, which shows that |C%t| = N = |CZ2|. If |CT1| is infinite,
then 7; satisfies the CRs |C| > N for all N > 0, and by Proposition 32, Z, must satisfy all
these CRs as well, which shows that |CZ2| is also infinite.

Every extended cardinality constraint occurring in £ is of the form

No + N1|Cy| + -+ 4+ Ny |Ck| < Mo + M;y|Dy| + - - + M;|Dy|

with N;, M; natural numbers and C;, D; £ concepts. Since Z; ~% T, implies that |C71| = |CF2|
and \D]Zl| = \Djz2| hold for 1 <i < kand 1 < j < £ (as just shown), every cardinality constraint
occurring in £ is evaluated in the same way in Z; and Z,. O

Next, we want to show that Boolean £ CBoxes are exactly the first-order sentences that are
invariant under comparative £ bisimulation. In contrast to the Sections 3 and 4.1, where we
have stated the corresponding results for concept descriptions and TBoxes (see Theorems 18
and 27) without proofs, here we will give a detailed proof. In fact, while the results for concept
descriptions and TBoxes have been published before (in [25] for ALCQ and in [4] for ALCOL),
the results for CBoxes are published for the first time in the present paper. Note that the proofs
of Theorems 18 and 27 have a structure that is very similar to the proof given below.

The first step is to show that the converse of Proposition 32 holds as well if we restrict
the statement to so-called w-saturated interpretations [25, 11]. When defining w-saturated
interpretations, one assumes that every domain element of an interpretation Z can be used
as a constant symbol in formulae, where d € AT interprets itself, i.e., dZ := d. Let Z be
an interpretation of No and Ng. A (possibly infinite) set of first-order formulae I" with free
variables from a finite set {z1, ..., 2, }, predicate symbols from No U Np, and constant symbols
from a finite subset of A7 is called

e realizable in T if there is a variable assignment a: {z1,...,7,} — AT such that T =
ola(xyy), ... a(x;,)) for every formula ¢(z;,,..., 2, ) €T}

e finitely realizable in T if every finite subset I of I is realizable in Z.

The interpretation Z is w-saturated if, for every such set I', finite realizability in Z implies
realizability in Z.

The following result from [11] implies that, though not every interpretations Z is w-saturated,
one may without loss of generality assume that one has such an interpretation if one is only
interested in the FOL sentences that the interpretation satisfies.

Theorem 34. For every interpretation T there exists an w-saturated interpretation T* that
satisfies the same first-order sentences as T.

A further result that we will need in our proof of the converse of Proposition 32 is Hall’s
theorem [17]. Given a finite family F = (S1,...,Sn) of sets, we say that F' has a system of
distinct representatives (SDR) if there are N distinct elements s1,..., sy such that s; € S; for
i=1,...,N.

Theorem 35 (Hall). The family F = (S1,...,Sn) has a system of distinct representatives iff

for all index sets I C {1,..., N} we have fUieI Si| > 1.
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The following lemma is an immediate consequence of Hall’s theorem. It shows that the
existence of an SDR can be characterized using a CBox.

Lemma 36. Let L € {ALCQ, ALCOt}, T an interpretation, and C1,...,Cn L concepts. Then
the family (CL,...,C%) has an SDR iff T |= C, where C, is the CBoz that is defined to be the
conjunction of the following CRs:

|Ciy U UCy | =k
where {i1,...,4} C{1,...,N}and|{i1,...,ix} = k.

Proposition 37. Let L € {ALCQ, ALCOt} and Ty, Iy be w-saturated interpretations. Then
I, =7 I implies Ty ~F 1.

Proof. Let I, T be w-saturated interpretations such that Z; =7 7. To demonstrate that
these two interpretations are also comparatively £ bisimilar, it is sufficient to prove that the
binary relation

Eqr :={(d,e) € AT x AT | (T},d) = (T2,€)}

is a comparative £ bisimulation between Z; and Zs.

The fact that Eq, is an £ bisimulation between Z; and 7, is actually also needed in the
proofs of Theorems 18 and 27. For the proofs of this fact, we thus refer the reader to [25] for
the case £ = ALCQ and to [4, 7] for the case L = ALCQt. Here, we concentrate on showing
that condition (1) in Definition 31 is satisfied since condition (2) can be shown analogously.

Thus, let dq,...,dy be distinct individuals in AZ*. To find distinct individuals eq,. .., en
in AZ2 such that (d;,e;) € Eqe for 1 < < N, we resort to the fact that Z, is w-saturated. In
particular, we define the set ' := I'# U Ui\il@i of first-order formulae, where

I'7 .= {A1<i<j<N$i # ;},
©; := {C*(x;) | C'is an L concept and d; € CT1}.

Clearly, the variable assignment a(z;) := d; for 1 < i < N shows that T" is realizable in Z;. If
we could show that T is also realizable in Zy with variable assignment b, then setting e; := b(x;)
would clearly yield the distinct individuals ey, ..., en we are looking for.

Since 7, is w-saturated, it is sufficient to show that each finite subset I of T is realizable in
T,. Without loss of generality, we can assume that IV contains I'* since this set is finite. For
i=1,..., N, we introduce the £ concept descriptions

Ci=[ {C|C¥ai) eT' NOY,

which are well-defined since I is finite. Note that the first-order formula

N
=1

1<i<j<N

is satisfied in Z; under the variable assignment a(x;) := d;. This shows that di,..., dy is an
SDR for the the family of sets (CII1 ...,Cf,l). Then, by Lemma 36, we obtain that Z; is a
model of C,, where C, is the CBox defined in this lemma. Since Z; and Z, are comparatively
L equivalent, 75 is also a model of C,. By Lemma 36, this implies that the family of sets
(CT2...,0%2) also has an SDR, say ey, ...,en. Clearly, setting b(z;) := e; then shows that T
is realizable in Zs. O
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We are now ready to prove the main theorem of this subsection.

Theorem 38. Let £ € {ALCQ, ALCOt} and ¢ be a first-order sentence. Then the following
are equivalent:

1. There exists a Boolean L CBox C such that C = ¢.
2. The sentence ¢ is invariant under comparative L bisimulation.

Proof. The direction (1 = 2) is a direct consequence of Corollary 33 since Boolean £ CBoxes
are a special case of £ ECBoxes.

Let Cons(¢) denote the set of Boolean £ CBoxes entailed by the first-order sentence ¢.
We prove (2 = 1) by showing that (2) implies Cons(¢) = ¢. In fact, if this is the case, then
compactness of first-order logic yields a finite set of Boolean £ CBoxes I' C Cons(¢) entailing
¢. But then the conjunction C := AT of the elements of " also belongs to Cons(¢), and thus
we have that C is a Boolean £ CBox that is equivalent to ¢.

We prove Cons(¢) = ¢ by contradiction. Thus, assume that Cons(¢) = ¢. Then Cons(¢p) U
{—¢} has a model Z~, of which we can assume without loss of generality that it is w-saturated
(thanks to Theorem 34).

Now, let G denote the set of £ CRs that are satisfied by Z—. We claim that G U {¢} has a
model. In fact, otherwise first-order compactness would yield a finite subset G’ of G such that
G'U{¢} also does not have a model. However, this would imply that ¢ — = A G’ is a tautology,
which would yield = A G’ € Cons(¢). This lead to a contradiction since now both A G’ and
- A\ G’ would need to be satisfied by Z~. Thus, we have shown that G U {¢} has a model ZT,
of which can again assume that it is w-saturated.

We observe that Z= and ZT both satisfy exactly the CRs occurring in G, which implies
that they are comparatively £ equivalent. Since these two interpretations are also w-saturated,
Proposition 37 yields Z~ ~% Z7. This contradicts our assumption that (2) holds since we have
It ¢, but T~ [£ ¢ Thus, we have shown that (2) implies Cons(¢) = ¢, which concludes our
proof. [

Since ECBoxes are invariant under comparative £ bisimulation by Corollary 33, Theorem 38
yields the following characterization of the first-order fragment of ECBoxes for the DLs ALCQO
and ALCOL.

Theorem 39. Let £ € {ALCQ, ALCOt} and £ be an L ECBox. Then the following are
equivalent:

1. There exists a first-order sentence ¢ such that € = ¢.
2. &€ is equivalent to a Boolean L CBozx C.

It remains to show that there are ALCQ ECBoxes that are not equivalent to a first-order
sentence. Since it uses a technique different from the ones employed until now in this paper,
we defer the proof of this result to the next section.

We close the current section by giving a characterization of the first-order fragment of

ALCSCC™ ECBoxes.
Theorem 40. Let £ be an ALCSCC™ ECBox. Then the following are equivalent:
1. There exists a first-order sentence ¢ such that € = ¢.

2. &€ is equivalent to a Boolean ALCQt CBoz C.
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FoL  KBs (£ € {ALCQ, ALCOt, ALCCOUY)

Boolean | & | Boolean £ CBoxes

=

£ TBoxes £ ECBoxes N FOL|| &

>

C o]
Ut L ECBoxes [—— ALGSCEL

€ ECBoxes
c
L TBoxes L RCBoxes

Figure 3: The relative expressivity of boxes.

Proof. To prove (1 = 2), assume that ¢ is a first-order sentence equivalent to £. It is easy to
show that ALCSCC>™ ECBoxes are invariant under comparative ALCQt bisimulation. There-
fore, ¢ is also invariant under comparative ALCQt bisimulation. By Theorem 38, this implies
that ¢, and hence &, is equivalent to a Boolean ALCQt CBox C.

(2 = 1) is an immediate consequence of the fact that Boolean ALCOt CBoxes have a
first-order translation (see Corollary 6). O

Fig. 3 summarizes the results obtained in this section and the next section.

5 ECBoxes and the 0-1 law for FOL

Let ¢ be a first-order sentence over a finite relational signature 6. We denote by L, (d) the set

of interpretations over the signature ¢ with domain {1,...,n}, and with L, (¢) the number of
these interpretations that are models of ¢. We then set
. Ln(9)
14 =1 .
(0) = lm 75 (6)

Theorem 41 (0-1 law of FOL [13]). For every first-order sentence ¢, the limit £($) always
exists and is equal to 0 or 1.

One can use this theorem to prove that a sentence of a certain logic cannot be equivalent
to a first-order sentence by showing that the corresponding limit either does not exist or is a
number different from 0 or 1. An example for the former case would be a formula whose models
are exactly the interpretations whose domain has even cardinality. We show now that ECBoxes
can yield examples for the latter case.

Proposition 42. The ECBox £ := |A| < |-A] is not expressible as a first-order sentence.

Proof. By contradiction, assume that £ is equivalent to some first-order sentence ¢. We restrict
our attention to the relational signature § := {A} since the only relation symbol contained in
€ is the concept name A. If we consider interpretations Z with domain AT = {1,...,n}, then
there are 2" possible ways of interpreting AZ, which shows that L, () = 2". Among these
interpretations, the ones where |AZ| = j for 0 < j < n are exactly (?) Therefore, the number
of interpretations with domain {1,...,n} over § satisfying £, and hence ¢, is

La(¢) = Y4007 (2). (7)
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Let 4,(¢) := Ln(¢)/L,(5). We show that the sequence L := (¢,,(¢))n>1 is convergent and
0(¢) = limy, 00 £ (¢) = 1/2.8 This yields a contradiction: by Theorem 41, it should hold that
L(p)=0or £(¢) =1.

We split the sequence L into two subsequences Ly := (£2,,(¢))n>1 and Lg := (la11(¢))n>1-
To show that L converges to 1/2, it is sufficient to prove that both L; and Ly have this
limit. First, note that for n > 1 the following identities hold (which can, e.g., be shown by an
application of Newton’s binomial theorem):

S YOI S ()= () O

By (8), our claim clearly holds for Ly. Indeed, for n > 1 we have

Z?:o(zn‘ﬂ) (8) Z?:o(%jﬂ) 1

£2n+1(¢) = 22n+1j - 9. Zn 0(277,?1»1) - 5
J= J

Regarding the other subsequence, note that the n-th term of L, corresponds to

S 91 1 (2
ezn(¢):%(:)§+§~ (47;).

We know that the following asymptotic equivalence holds [24]:

()

Hence, we deduce that

1
+ = lim

. Lo () 1 1

This yields the convergence of Ly to 1/2 as desired. O

6 Conclusion

In this paper, we have provided an almost complete picture of the complexity and expressivity
of the DLs with extended counting facilities introduced in our previous work. Regarding expres-
sivity, it would be interesting to see whether the results presented here for the “arbitrary model”
setting also hold for the “finite model” case. We conjecture that this is the case, but it should be
noted that the proofs of the bisimulation characterizations given here (Theorems 18, 20, 26, 27,
29, 38, 39, and 40) crucially depend on the application of compactness of FOL, which does not
hold in the finite case. One idea for overcoming this problem could be to consider extensions of
the model comparison games introduced in [21] instead of bisimulations. Regarding reasoning,
the next step will be to design variants of our decision procedures that are more appropriate
for implementation than the ones used to show the complexity results. The main idea for this
is to combine SAT solvers with numerical methods, such as simplex, branch-and-bound, and
column generation, similar to the decision procedure for CQU sketched in [14].

8This was already stated in [16], but without proof.
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