
EPiC Series in Computing

Volume 80, 2021, Pages 153–160

8th International Workshop on Applied Verifica-
tion of Continuous and Hybrid Systems (ARCH21)

ARCH-COMP21 Repeatability Evaluation Report

Taylor T. Johnson1

Vanderbilt University,
Department of Computer Science,

Institute for Software Integrated Systems,
Nashville, TN, United States

taylor.johnson@vanderbilt.edu

http://www.TaylorTJohnson.com

Abstract

This report presents the results of the repeatability evaluation for the 5th Interna-
tional Competition on Verifying Continuous and Hybrid Systems (ARCH-COMP’21). The
competition took place as part of the workshop Applied Verification for Continuous and
Hybrid Systems (ARCH) in 2021, affiliated with the 7th IFAC Conference on Analysis
and Design of Hybrid Systems (ADHS’21). In its fifth edition, seventeen tools submitted
artifacts through a Git repository for the repeatability evaluation, applied to solve bench-
mark problems for seven competition categories. The majority of participants adhered
to the requirements for this year’s repeatability evaluation, namely to submit scripts to
automatically install and execute tools in containerized virtual environments (specifically
Dockerfiles to execute within Docker), and several categories used performance evalua-
tion information from a common execution platform. The repeatability results represent a
snapshot of the current landscape of tools and the types of benchmarks for which they are
particularly suited and for which others may repeat their analyses. Due to the diversity of
problems in verification of continuous and hybrid systems, as well as basing on standard
practice in repeatability evaluations, we evaluate the tools with pass and/or failing being
repeatable.

1 Introduction

This report summarizes the repeatability evaluation for verification of continuous and hybrid
systems for the ARCH-COMP friendly competition held in conjunction with the ARCH work-
shop, and aims to provide an overview of the usability and reproducibility of results for the
participating verification tools. The verification community publishes papers that emphasize
computational contributions, but subsequent re-creation of these computational elements is of-
ten challenging because details of the implementation are unavoidably absent in the papers. To
address this challenge, some authors post code and data to their websites, but there is often
limited formal incentive to do so, and typically there is no easy way to determine whether oth-
ers can actually use or extend the results. Owing to such factors, computational results often
become non-reproducible, sometimes even by the researchers who originally produced them.

G. Frehse and M. Althoff (eds.), ARCH21 (EPiC Series in Computing, vol. 80), pp. 153–160

http://www.TaylorTJohnson.com


ARCH-COMP21 Repeatability Evaluation Report T. T. Johnson

Over about the past decade and increasingly in the past few years, the community has insti-
tuted artifact evaluations and repeatability evaluations in various phases of review processes to
address these issues. The goal of the repeatability evaluation for ARCH-COMP is to improve
the reproducibility of computational results for the tools competing on the selected benchmarks
evaluated in the competition and to provide further confidence in the results.

This report presents a summary of the repeatability evaluation (RE) results obtained in the
2021 friendly competition of the ARCH workshop1. The results obtained in the competition
have been verified by an independent repeatability evaluation conducted by the author of this
report. To establish further confidence in the results, the artifacts, code, documentation, bench-
marks, etc. with which the repeatability results have been obtained are publicly available on
the ARCH website (https://cps-vo.org/group/ARCH) and a Git version control repository
(https://gitlab.com/goranf/ARCH-COMP).

The repeatability evaluation of the competition featured seven categories and 17 software
tools, where several tools participated in multiple categories, but have been counted distinctly
for their participation in each category. The categories of problems that tools participated in
the repeatability evaluation are:

• AFF: affine and piecewise affine dynamics (4 tools),

• AINNCS: artificial intelligence and neural network control systems (3 tools),

• HSTP: hybrid systems theorem proving (2 tools),

• NLN: nonlinear dynamics (5 tools), and

• SM: stochastic models (3 tools).

The tools evaluated, broken into their competition categories are:

• AFF

– CORA [1],

– SpaceEx [9],

– HyDRA [21], and

– JuliaReach [7].

• AINNCS

– NNV [27, 26, 22, 23],

– JuliaReach [7], and

– Verisig [12].

• HSTP

– HHL Prover [25] and

– KeYmaera X [20, 10].

• NLN

– Ariadne [4, 5],

1Workshop on Applied Verification for Continuous and Hybrid Systems (ARCH), cps-vo.org/group/ARCH

154

https://cps-vo.org/group/ARCH
https://gitlab.com/goranf/ARCH-COMP
http://cps-vo.org/group/ARCH


ARCH-COMP21 Repeatability Evaluation Report T. T. Johnson

– CORA [1],

– Dynibex [8],

– Kaa [17], and

– JuliaReach [6].

• SM

– AMYTISS [18],

– Mascot-SDS [11, 19], and

– SReachTools [24].

Some tools may have participated in the competition, but did not participate in the re-
peatability evaluation, so only those that participated in repeatability are listed. In future
iterations, we encourage all participants of the competition to complete the repeatability eval-
uation to make it easier for others in the research community to build on these results, and are
considering requiring repeatability participation in the future.

2 Repeatability Evaluation Plan, Execution, and Results

The repeatability evaluation was conducted primarily before and partially following the presen-
tations of the competition results at the ARCH’21 workshop. The basic mechanism followed
in the repeatability evaluation was similar to that done in related conferences, and builds on
the evaluation conducted in prior iterations of ARCH-COMP [13, 14, 15, 16].The primary dif-
ference to those done at conferences is this evaluation was done solely by the author of this
report, and not an evaluation committee. Three basic criteria are generally evaluated: cov-
erage, instructions, and quality, each of which may be rated on a scale of one through five,
where one indicates a missing component or significantly below acceptability, and five indicates
the criteria significantly exceeds expectations. Coverage measures the repeatability packages’
ability to regenerate the images, tables, and log files presented in the competition. Instructions
measures the packages’ ability to describe to another researcher how to reproduce the results,
including installation of the tool and how to execute it. Quality measures the packages’ level
of documentation and trustworthiness of results with respect to the quality of the software tool
and the results it produces. This report does not describe the ratings of these review criteria
for each tool evaluated, only the aggregate result of whether the submission was repeatable or
not.

The participants were sent instructions to provide their tool setup instructions and tool
execution commands for the benchmarks evaluated in their respective categories, which were
collected on a Git repository (https://gitlab.com/goranf/ARCH-COMP) by the competitors
issuing commits and subsequent pull/merge requests that were reviewed and approved by the
author of this report. The repeatability evaluation was performed on the competition bench-
marks, the selection of which has been conducted within the forum of the ARCH website
(cps-vo.org/group/ARCH), which is visible for registered users and registration is open for
anyone.

For all the tools listed above, which are those participating in the repeatability evaluation,
all were evaluated to have passed the repeatability evaluation with their benchmark analysis
results deemed repeatable. The repeatability evaluation was conducted by the author, and
took approximately three weeks to complete. As in the last two iterations of the repeatability

155

https://gitlab.com/goranf/ARCH-COMP
http://cps-vo.org/group/ARCH


ARCH-COMP21 Repeatability Evaluation Report T. T. Johnson

Category Tool Dockerfile? Execution Scripts? Performance Evaluation?
AFF CORA Yes Yes Yes

Hydra Yes Yes Yes
JuliaReach Yes Yes Yes
SpaceEx Yes Yes Yes

AINNCS NNV Yes Yes No
JuliaReach Yes Yes No
Verisig No Yes No

HSTP HHL Yes Yes No
KeYmaera X Yes Yes No

NLN Ariadne Yes Yes Yes
CORA Yes Yes Yes
Dynibex Yes Yes Yes
Kaa Yes Yes Yes
JuliaReach Yes Yes Yes

SM AMYTISS Yes Yes No
Mascot-SDS Yes Yes No
SReachTools Yes Yes No

Table 1: Summary of repeatability artifacts for each category and tool that participated in the
evaluation.

evaluation at ARCH-COMP19 [15] and ARCH-COMP20 [16], the usage of Docker significantly
simplified the repeatability, and we strongly encourage using this type of mechanism for re-
peatability evaluations, relative to earlier efforts where the evaluation was conducted primarily
on a VMWare virtual machine by installing and executing all the tools. All tool authors used
Docker by providing Dockerfiles, and also provided a script to execute their tool with appro-
priate parameters for all the benchmarks. All tools that provided Dockerfiles were able to be
installed by setting up the Docker containers, then executed by the author with their provided
instructions, but the author interacted with some tool developers for additional instruction for
installing, executing, and/or plotting their results, in some cases interacting through the ver-
sion control repository. The host machine (MRepeatability Host) used for executing the tools and
benchmarks was an Amazon EC2 g4dn.4xlarge instance.

As begun last year at ARCH-COMP20, several categories provided batch execution scripts
that would execute all tools on all benchmarks in a given category, with a standardization
process conducted on the CPS-VO forums for the output format to generate performance com-
parison tables in the individual category reports. This process in particular had a few difficulties
as it only had been tested in most cases when attempting the repeatability evaluation, but most
issues were resolved, and several categories (AFF, NLN) presented performance evaluation re-
sults generated for the repeatability evaluation in their competition results and category reports.
Overall, the tool developers provided sufficient information to install, execute, and repeat the
results they obtained in the competition, although there were some issues with installation,
such as missing dependencies or incompatible library versions.

156



ARCH-COMP21 Repeatability Evaluation Report T. T. Johnson

3 Conclusion and Outlook

This report summarizes the repeatability evaluation for the fifth competition for the for-
mal verification of continuous and hybrid systems (ARCH-COMP’21), conducted as part
of the ARCH’21 workshop at the 7th IFAC Conference on Analysis and Design of Hy-
brid Systems (ADHS’21). Detailed reports for the categories can be found in the proceed-
ings (https://cps-vo.org/group/ARCH/proceedings) and on the ARCH website (http://cps-
vo.org/group/ARCH). All documentation, benchmarks, and execution scripts for the repeata-
bility evaluation are also archived on the ARCH website, and authors contributed their repeata-
bility evaluations to the Git repository: https://gitlab.com/goranf/ARCH-COMP.

As in previous iterations of the competition and corresponding repeatability evaluation,
several aspects to improve the process were identified. In particular, there are still needs for
(1) greater standardization of input formats, (2) standardization of output formats and results,
and (3) increased execution in a common computational platform so that results, particularly
performance metrics, are more meaningful. Of these challenges, this iteration of the repeatabil-
ity evaluation improved upon the standardization of output formats and results, and execution
on a common computational platform, with both the AFF and NLN category including perfor-
mance evaluation results produced through this repeatability process on standardized execution
hardware.

For future competitions and repeatability evaluations, several factors may still be improved
by the community in future competitions. While the relatively common input format of SpaceEx
in part via HyST [2] provides some means for standardizing problem specifications, there is still
a greater need for utilizing a common language for specifying models and specifications. Fu-
ture participants may make further use of the HyST design studio on the CPS-VO to address
this issue (https://cps-vo.org/group/hyst). In some categories however, there are more
fundamental issues with input formats. Particularly, for the stochastic models category, there
are currently no standardized formats, so effort is highly recommended to address such stan-
dardization, although this area is even more challenging than non-stochastic hybrid systems,
as there are many ways to model sources of uncertainty (such as through stochastic transi-
tions a la Markov chain transitions, continuous uncertainty with stochastic differential equa-
tions, etc.). Likewise, for the AINNCS category, standardization of formats for representing
both plants (e.g. as SpaceEx models) and machine learning components (e.g., neural net-
works) should be pursued, and for the neural networks, recent efforts such as the Open Neural
Network Exchange (ONNX) format or the more recent formalization of neural network se-
mantics and specifications such as VNN-LIB (http://www.vnnlib.org/) should be leveraged,
and taking advantage of lessons learned in the Verification of Neural Networks Competition
(VNN-COMP, https://sites.google.com/view/vnn2021) [3]. As has been the case in past
iterations, providing the ability to specify comparable parameters across different tools, as well
as the particular problem domain/category (verification vs. falsification, etc.), remains a major
challenge.

Second, a challenge still remains to determine more quantitative means to compare the
output results of the tools, although some libraries for common representations of reachable
sets are starting to become available that may aid this process in the future, such as HyPro [21].
Figures of reachable sets and yes/no/maybe verified results for a given specification are means
to make comparisons currently, but developing and standardizing a common output format may
provide increased benefits and improve the ability to make quantitative comparisons between
methods and tools.

157

https://cps-vo.org/group/ARCH/proceedings
http://cps-vo.org/group/ARCH
http://cps-vo.org/group/ARCH
https://gitlab.com/goranf/ARCH-COMP
https://cps-vo.org/group/hyst
http://www.vnnlib.org/
https://sites.google.com/view/vnn2021


ARCH-COMP21 Repeatability Evaluation Report T. T. Johnson

Third, while this iteration continued for the second time performance comparisons in several
categories, this remains a significant challenge for the repeatability evaluation to also repeat the
performance results. Beyond these suggested improvements, there are still numerous aspects to
improve, but in part through this competition and evaluation, our efforts may serve to enhance
the reproducibility of computational results and increase the scientific rigor in the community.

4 Acknowledgments

The material presented in this report is based upon work supported by the National Science
Foundation (NSF) under grant number FMitF 1918450 and the Defense Advanced Research
Projects Agency (DARPA) Assured Autonomy program through contract number FA8750-18-
C-0089. The U.S. Government is authorized to reproduce and distribute reprints for Govern-
ment purposes notwithstanding any copyright notation thereon. The views and conclusions
contained herein are those of the authors and should not be interpreted as necessarily repre-
senting the official policies or endorsements, either expressed or implied, of DARPA or NSF.

A Specifications of Used Machines

A.1 MRepeatability Host

• Amazon EC2 Instance Type: g4dn.4xlarge

• Processor: Intel Xeon Scalable (2nd Generation Cascade Lake), 16 vCPUs (AWS/EC2
Custom), 2.5 GHz base, roughly Xeon Gold 5200 Series with 24 physical cores

• Memory: 64GB

• Average CPU Mark on www.cpubenchmark.net: 25740 (full), 2396 (single thread) (for
comparable Xeon Gold 5200 series)

• Host Operating System: Ubuntu

References

[1] M. Althoff and D. Grebenyuk. Implementation of interval arithmetic in CORA 2016. In Proc.
of the 3rd International Workshop on Applied Verification for Continuous and Hybrid Systems,
pages 91–105, 2016.

[2] Stanley Bak, Sergiy Bogomolov, and Taylor T. Johnson. HyST: A source transformation and
translation tool for hybrid automaton models. In Proc. of the 18th Intl. Conf. on Hybrid Systems:
Computation and Control (HSCC). ACM, 2015.

[3] Stanley Bak, Changliu Liu, and Taylor Johnson. The second international verification of neural
networks competition (vnn-comp 2021): Summary and results, 2021.

[4] Andrea Balluchi, Alberto Casagrande, Pieter Collins, Alberto Ferrari, Tiziano Villa, and Alberto L.
Sangiovanni-Vincentelli. Ariadne: a framework for reachability analysis of hybrid automata. In
PROCEEDINGS OF THE INTERNATIONAL SYPOSIUM ON MATHEMATICAL THEORY
OF NETWORKS AND SYSTEMS, 2006.

[5] Luca Benvenuti, Davide Bresolin, Pieter Collins, Alberto Ferrari, Luca Geretti, and Tiziano Villa.
Assume-guarantee verification of nonlinear hybrid systems with ariadne. International Journal of
Robust and Nonlinear Control, 24(4):699–724, 2014.

158

www.cpubenchmark.net


ARCH-COMP21 Repeatability Evaluation Report T. T. Johnson

[6] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Kostiantyn Potomkin, and Christian Schilling.
Juliareach: A toolbox for set-based reachability. In Proceedings of the 22Nd ACM International
Conference on Hybrid Systems: Computation and Control, HSCC ’19, pages 39–44, New York,
NY, USA, 2019. ACM.

[7] Sergiy Bogomolov, Marcelo Forets, Goran Frehse, Frédéric Viry, Andreas Podelski, and Christian
Schilling. Reach set approximation through decomposition with low-dimensional sets and high-
dimensional matrices. In Proceedings of the 21st International Conference on Hybrid Systems:
Computation and Control (Part of CPS Week), HSCC ’18, pages 41–50, New York, NY, USA,
2018. ACM.

[8] Julien Alexandre dit Sandretto and Alexandre Chapoutot. Validated explicit and implicit Runge–
Kutta methods. Reliable Computing, 22(1):79–103, Jul 2016.

[9] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier Lebeltel,
Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scalable verification of
hybrid systems. In Computer Aided Verification (CAV), LNCS. Springer, 2011.

[10] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeYmaera X:
An axiomatic tactical theorem prover for hybrid systems. In Amy P. Felty and Aart Middeldorp,
editors, Automated Deduction - CADE-25, pages 527–538, Cham, 2015. Springer International
Publishing.

[11] Kyle Hsu, Rupak Majumdar, Kaushik Mallik, and Anne-Kathrin Schmuck. Multi-layered
abstraction-based controller synthesis for continuous-time systems. In Proceedings of the 21st
International Conference on Hybrid Systems: Computation and Control (Part of CPS Week),
HSCC ’18, page 120–129, New York, NY, USA, 2018. Association for Computing Machinery.

[12] Radoslav Ivanov, James Weimer, Rajeev Alur, George J. Pappas, and Insup Lee. Verisig: Verifying
safety properties of hybrid systems with neural network controllers. In Proceedings of the 22Nd
ACM International Conference on Hybrid Systems: Computation and Control, HSCC ’19, pages
169–178, New York, NY, USA, 2019. ACM.

[13] Taylor T. Johnson. ARCH-COMP17 repeatability evaluation report. In Goran Frehse and
Matthias Althoff, editors, ARCH17. 4th International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems, volume 48 of EPiC Series in Computing, pages 175–180. EasyChair,
2017.

[14] Taylor T. Johnson. ARCH-COMP18 repeatability evaluation report. In Goran Frehse, editor,
ARCH18. 5th International Workshop on Applied Verification of Continuous and Hybrid Systems,
volume 54 of EPiC Series in Computing, pages 128–134. EasyChair, 2018.

[15] Taylor T. Johnson. ARCH-COMP19 repeatability evaluation report. In Goran Frehse and
Matthias Althoff, editors, ARCH19. 6th International Workshop on Applied Verification of Con-
tinuous and Hybrid Systems, volume 61 of EPiC Series in Computing, pages 162–169. EasyChair,
2019.

[16] Taylor T Johnson. ARCH-COMP20 repeatability evaluation report. In Goran Frehse and Matthias
Althoff, editors, ARCH20. 7th International Workshop on Applied Verification of Continuous and
Hybrid Systems (ARCH20), volume 74 of EPiC Series in Computing, pages 175–183. EasyChair,
2020.

[17] Edward Kim and Parasara Sridhar Duggirala. Kaa: A python implementation of reachable set com-
putation using bernstein polynomials. In Goran Frehse and Matthias Althoff, editors, ARCH20.
7th International Workshop on Applied Verification of Continuous and Hybrid Systems (ARCH20),
volume 74 of EPiC Series in Computing, pages 184–196. EasyChair, 2020.

[18] Abolfazl Lavaei, Mahmoud Khaled, Sadegh Soudjani, and Majid Zamani. Amytiss: Parallelized
automated controller synthesis for large-scale stochastic systems. In Shuvendu K. Lahiri and Chao
Wang, editors, Computer Aided Verification, pages 461–474, Cham, 2020. Springer International
Publishing.

159



ARCH-COMP21 Repeatability Evaluation Report T. T. Johnson

[19] Rupak Majumdar, Kaushik Mallik, and Sadegh Soudjani. Symbolic controller synthesis for büchi
specifications on stochastic systems. In Proceedings of the 23rd International Conference on Hy-
brid Systems: Computation and Control, HSCC ’20, New York, NY, USA, 2020. Association for
Computing Machinery.

[20] André Platzer and Jan-David Quesel. Keymaera: A hybrid theorem prover for hybrid systems
(system description). In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors,
Automated Reasoning, pages 171–178, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

[21] Stefan Schupp, Erika Ábrahám, Ibtissem Ben Makhlouf, and Stefan Kowalewski. HyPro: A
c++: A library of state set representations for hybrid systems reachability analysis. In Clark
Barrett, Misty Davies, and Temesghen Kahsai, editors, NASA Formal Methods: 9th International
Symposium, NFM 2017, Moffett Field, CA, USA, May 16-18, 2017, Proceedings, pages 288–294.
Springer International Publishing, 2017.

[22] Hoang-Dung Tran, Feiyang Cai, Manzanas Lopez Diego, Patrick Musau, Taylor T. Johnson, and
Xenofon Koutsoukos. Safety verification of cyber-physical systems with reinforcement learning
control. ACM Trans. Embed. Comput. Syst., 18(5s), October 2019.

[23] Hoang-Dung Tran, Xiaodong Yang, Diego Manzanas Lopez, Patrick Musau, Luan Viet Nguyen,
Weiming Xiang, Stanley Bak, and Taylor T. Johnson. Nnv: The neural network verification tool
for deep neural networks and learning-enabled cyber-physical systems. In Shuvendu K. Lahiri and
Chao Wang, editors, Computer Aided Verification, pages 3–17, Cham, 2020. Springer International
Publishing.

[24] Abraham P. Vinod and Meeko M. K. Oishi. Scalable underapproximative verification of stochastic
lti systems using convexity and compactness. In Proceedings of the 21st International Conference
on Hybrid Systems: Computation and Control (Part of CPS Week), HSCC ’18, pages 1–10, New
York, NY, USA, 2018. ACM.

[25] Shuling Wang, Naijun Zhan, and Liang Zou. An improved hhl prover: An interactive theorem
prover for hybrid systems. In Michael Butler, Sylvain Conchon, and Fatiha Zäıdi, editors, Formal
Methods and Software Engineering, pages 382–399, Cham, 2015. Springer International Publishing.

[26] Weiming Xiang and Taylor T Johnson. Reachability analysis and safety verification for neural
network control systems. arXiv preprint arXiv:1805.09944, 2018.

[27] Weiming Xiang, Hoang-Dung Tran, and Taylor T. Johnson. Output reachable set estimation and
verification for multi-layer neural networks. IEEE Transactions on Neural Networks and Learning
Systems (TNNLS), March 2018.

160


	Introduction
	Repeatability Evaluation Plan, Execution, and Results
	Conclusion and Outlook
	Acknowledgments
	Specifications of Used Machines
	MRepeatability_Host


