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Abstract

It is a long-standing problem in graph theory to prove or disprove the reconstruction
conjecture, also known as the Kelly-Ulam conjecture. This conjecture states that every sim-
ple graph on at least three vertices is reconstructible, which means that the isomorphism
class of such a graph is uniquely determined by the isomorphism classes of its vertex-deleted
subgraphs. In this paper, the notion of reconstructing is extended from graphs to instances
of the constraint satisfaction problem (CSP): an instance is reconstructible if its isomor-
phism class is uniquely determined by the isomorphism classes of its constraint-deleted
subinstances. Questions of interest include not only questions about reconstructible CSP
instances but also about CSP instances with reconstructible properties and parameters
such as the existence of solutions or the number of solutions. It is shown in the paper that
such questions can be answered using techniques borrowed and adapted from graph re-
construction. In particular, Lovdsz’s method of counting graph homomorphisms [Lov72] is
adapted to characterize CSP instances for which the number of solutions is reconstructible.

1 Introduction

What does “reconstructing” mean? In this paper, the word “reconstructing” and its
derivatives have the meaning illustrated by the following example. Let s be a finite sequence
of n elements and k be an integer less than n. Let My(s) be the multiset of all subsequences
obtained from s by deleting k elements. For example, if s is the string 0110 of four bits, then

M;(s) {110,010, 010, 110};
Ms(s) = {10,10,11,00,01,01}.

We say that s is k-reconstructible if My (s) uniquely determines s, i.e. for every sequence s’
different from s, we have My (s") # My(s). In our example, it is straightforward to check that
0110 is 1-reconstructible and not 2-reconstructible.

The example with sequences is generalized in two directions. First, we can consider objects
that are more general than sequences, such as matrices, graphs, structures, etc. Second, we can
consider a set of objects with a more general equivalence relation than identity, for example, a
set of graphs with the isomorphism relation on them. In this case, we say that an object s is
k-reconstructible from the corresponding multiset of its sub-objects s1, ..., sy, if the equivalence
class of s is uniquely determined by the equivalence classes of s1,..., Sy
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Given a reconstruction setting like above, it is natural to ask what objects are reconstructible
and what are not. Notice that even if an object is not reconstructible, some of its properties
and parameters can be still reconstructible. For example, when considering graphs up to iso-
morphism, the number of edges of a graph is reconstructible even if it is unknown whether the
graph itself is reconstructible or not. Therefore, it is also natural to ask what properties and
parameters of objects are reconstructible.

The graph reconstruction conjecture and its variations. Perhaps the best known ex-
amples of reconstructing are concerned with graphs and isomorphisms between them. Let G
be a simple graph on vertices vy, ..., v,. Consider the subgraphs

G—-—v,....,G—v,

where G — v; is obtained from G by removing v; and its incident edges; these subgraphs are
called the vertez-deleted subgraphs of G. The deck of G is a multiset of n cards that represent
the vertex-deleted subgraphs: the ith card is the isomorphism class of G — v;. We say that
G is reconstructible if the deck of G uniquely determines the isomorphism class of G, which
means that if a graph G’ has the same deck as G then G’ is isomorphic to G. What graphs are
reconstructible?

In the 1940s, Kelly and Ulam proposed the graph reconstruction conjecture, also known as
the Kelly-Ulam conjecture or Ulam’s conjecture. The conjecture states that every simple graph
on at least three vertices is reconstructible. It is still an open problem whether the conjecture
is true or not, but many interesting results were obtained in attempts to prove or disprove it.
For example, we know that all graphs in many well known classes are reconstructible, including
regular graphs, Eulerian graphs, trees, disconnected graphs [Kel57]. Considering randomly
chosen graphs, almost all graphs are reconstructible [Miil76]. Moreover, almost all graphs are
reconstructible using only three cards from their decks [Bol90]. Computerized verification shows
that all graphs with up to 11 vertices are reconstructible [McK97].

Properties or parameters of a graph are called isomorphism invariants if they are preserved
under isomorphisms. An isomorphism invariant is called reconstructible if it is uniquely deter-
mined by the deck of the graph. A simple example of a reconstructible invariant is the number
of edges. Indeed, notice that if a graph has n vertices then each edge of the graph appears in
exactly n — 2 cards. Other examples of reconstructible invariants include connectivity, the de-
gree sequence, the Tutte polynomial, the chromatic number, the number of Hamiltonian cycles,
and planarity, see a survey in [LS16].

A number of variations of the graph reconstruction conjecture have been proposed and
studied. Some of them have been disproved, for example, for directed graphs [Sto77], for
hypergraphs [Koc87], and for infinite graphs with finite degrees [BEHT17]. Other variations
have still been neither proved nor disproved, for example, the set reconstruction conjecture
proposed by Harary in [Har64]: every simple graph with at least four vertices is reconstructible
from the set (not the multiset) of its cards.

Edge reconstruction. There is another variant of graph reconstruction proposed by Harary
in [Har64]. For a graph G with edges eq,...,en, the edge-deleted subgraphs of G are the
subgraphs

G—e,....,G—en

where G — e; is obtained from G by removing e;. The edge-deck of a graph is the multiset
of the isomorphism classes of its edge-deleted subgraphs. A graph G is edge-reconstructible if
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the edge-deck of G uniquely determines the isomorphism class of G. The edge-reconstruction
conjecture [Har64] states that every simple graph with at least four edges is edge-reconstructible.
It was shown in [Gre71] that the edge-deck of a graph with at least four edges and no isolated
vertices uniquely determines the deck of this graph. Therefore, if the Kelly-Ulam conjecture is
true, then the edge-reconstruction conjecture is true. The notion of edge reconstruction can be
extended to hypergraphs [Ber72]. The edge-deck for a hypergraph and the edge-reconstruction
conjecture for hypergraphs are defined in literally the same way as for graphs. It is open for
both edge-reconstruction conjectures whether they are true or not.

Lovész showed in [Lov72] that a graph on n vertices with m edges is edge-reconstructible
from its deck if m is sufficiently large compared with n, namely if m > %(Z) The proof uses
the inclusion-exclusion principle to count homomorphism between graphs. Miiller improved
Lovész’s bound to 2™~1 > n! in [Miil77]; this result also follows from the sufficient condition
for edge reconstruction given by Nash-Williams in [NW78].

Reconstructing other combinatorial objects. In reconstruction of sequences (described
in the beginning of this section), we are interested in whether or not a sequence of length n is
determined by its (Z) subsequences of length k. The main results on reconstruction of sequences
are lower and upper bounds on k [MMS™91, KR97, DS03]. Reconstruction of matrices from
submatrices is defined similarly to reconstruction of sequences [KL.S09]. Another related type
of reconstruction is motivated by DNA sequence assembly: reconstruction of jigsaw puzzles
[MR15, NPS17, BBN19].

Reconstruction of the same objects can be defined differently, depending on how we define
isomorphism between these objects. For example, reconstruction of Boolean formulas in con-
junctive normal form (CNFs) from their clause-deleted subformulas is defined in [DW18] based
on the following isomorphism: two CNF's are isomorphic if one of them can be obtained from
the other by renaming variables and flipping literals. In the current paper, CNFs are viewed as
CSP instances, which defines a different type of isomorphism between them, see Section 2 for
details. Since the types of isomorphism differ, the corresponding notions of CNF reconstruction
are different too.

The notion of reconstruction defined by Alon, Caro, Krasikov, and Roditty in [ACKRS&9)]
generalizes edge reconstruction of graphs and hypergraphs, see details in Section 3. They
consider a set X and a group I' acting on X. This action determines an equivalence relation on
the subsets of X. A subset Y C X of cardinality m is called k-reconstructible if the equivalence
class of Y is uniquely determined by the equivalence classes of all subsets of Y of cardinality
m — k. Subsets of X represent graphs; equivalent subsets represent isomorphic graphs. A
k-reconstructible subset of cardinality m represents a graph G with m edges such that the
isomorphism class of G is uniquely determined by the isomorphism classes of the subgraphs
obtained from G by removing k edges. The main results of [ACKRS9] are sufficient conditions
for k-reconstruction. When applying to edge reconstruction of graphs, these conditions improve
bounds in [Miil77, NW78] mentioned above.

What is done in this paper. The paper defines the notion of reconstructing for instances of
the constraint satisfaction problem (CSP): an instance ¢ with m constraints is k-reconstructible
if its isomorphism class is uniquely determined by the isomorphism classes of all (7;”) subin-
stances obtained from by ¢ by removing k constraints. A CSP instance is reconstructible if it
is 1-reconstructible.

What CSP instances are k-reconstructible and what are not? Theorem 4 gives a sufficient
condition for k-reconstruction of CSP instances; its proof is based on the combinatorial tech-
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nique used by Alon, Caro, Krasikov, Roditty in [ACKR89]. Namely, let ¢ be a CSP instance
with m constraints over n variables taking values from a domain of cardinality d. Suppose that

gm—k < n!-d!

[ Aut(9)]

where | Aut(¢)| denotes the order of the automorphism group of ¢. Then ¢ is k-reconstructible.

A property or parameter of CSP instances is called an invariant if it is preserved under
isomorphism. For example, the existence of solutions and the number of solutions are invari-
ants. The existence of nontrivial automorphisms and the automorphism group order are other
examples. Consider a CSP instance ¢ and some invariant, say, the number of solutions. Is this
invariant uniquely determined by the k-deck of ¢? If ¢ is k-reconstructible, then the obvious
answer is “yes”. Can we answer this question if ¢ is not k-reconstructible or we do not know
whether ¢ is k-reconstructible?

Theorem 6 characterizes CSP instances for which the number of solutions is reconstructible.
To illustrate how this characterization works, the theorem is applied to the graph coloring
problem (COL) and to the Boolean satisfiability problem (SAT). The application to COL gives a
simple proof of the known result that the number of graph colorings is reconstructible, which
follows from Tutte’s theorem in [Tut79]. The application to SAT shows that the number of
satisfying assignments for a Boolean formula in CNF is reconstructible.

Organization of the paper. Section 2 contains definitions for the basic notions used in
the paper: CSP instances and isomorphism between them. Reconstruction of CSP instances
is defined in Section 3. This section also gives a sufficient condition for CSP instances to be
k-reconstructible. Section 4 contains the theorem about reconstructing the number of solutions
and its applications to COL and SAT. Concluding remarks are made in Section 5.

2 Isomorphism Between CSP Instances

In this section, we define the constraint satisfaction problem (CSP), consider its connection
to homomorphisms between finite relational structures, and define isomorphism between CSP
instances. The definitions are illustrated with two running examples, the problem of coloring
a graph with k colors and the satisfiability problem for Boolean formulas in k-CNF, that are
also used in the next sections.

2.1 CSP: Definitions and Examples

In the definitions below and throughout the paper, we use the following notation for tuples and
relations. Let f be a function from a set A to a set B. For any k-tuple x = (z1,..., ;) in A*,
we write f(x) to denote the k-tuple (f(x1),..., f(xx)) in B¥. For any k-ary relation R C A*,
we write f(R) to denote the subset {f(x) | x € R} of B*.

Definition 1 (constraint satisfaction). Let V' be a finite set of variables. Let D be a finite
set of values; this set is called the domain. A constraint of arity k over V and D is a pair
C = (x, R) where x is a k-ary tuple of variables and R is a k-ary relation on D. The tuple x is
called the scope of C; the relation R is called the constraint relation of C. An assignment is a
function f:V — D. We say that f satisfies C if f(x) € R.
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0 e V:{I1,$2,13,$4},D:{b,g,T},C:{Cl...,C5}
C'1 (-1'1,.'1,‘2) {b#gag7éb7b7ér7r7ébag7ér?r7ég})
02 (($17$3) {b#gag#bab#rar#bvg#rvr#g})
03:(({E17I4) {b#g,g#b,b#T,T#b,g#T‘,T‘#g})

e e Cy ((ﬂfg, 4) {b#gag#bab#rar%bvg#r’r#g})
C ((£C37‘T4) {b;ég,g#b,b#r,r#&g#r,r#g})

Figure 1: An instance of COL represented as a CSP instance.

Definition 2 (CSP). The constraint satisfaction problem (abbreviated CSP) is the following
decision problem. A CSP instance is a triple (V, D,C) where C is a finite set of constraints over
V and D. A solution to this instance is an assignment that satisfies all constraints in C. The
question is whether a given instance has a solution.

Many well-known decision problems can be represented as special cases of the CSP. Consider
two examples.

Example 1. In the graph coloring problem (COL), we are given a simple graph G and we
determine whether G has a k-coloring, i.e., a labeling of its vertices with at most &k colors. The
instance (G, k) is represented by the following CSP instance (V,D,C). Let uq,...,u, be the
vertices of G and let m be the number of edges of G. We define V' to be a set of n variables,
say x1,...,%Tn, and we define D to be a set of k elements viewed as colors. Thus, any labeling
of the vertices with colors is represented by an assignment to the variables of V. With each
edge {u;,u;}, we associate the constraint x; # x; where ¢ < j. More formally, all constraints
in C have the same constraint relation, namely, the # relation on D. For all integers i, j such
that 1 < ¢ < j < n, there is a constraint with the scope (z;,z;) if and only if there is an edge
between v; and v;. In this representation of COL instances with CSP instances, a labeling for the
vertices is a k-coloring if and only if the assignment that represents this labeling is a solution.

For example, let G be the graph in Fig. 1 and k£ = 3. The CSP instance representing (G, k)
is shown on the right (the elements b, g, and r of D stand for three colors blue, green, and red).

Example 2. Another natural example is SAT, the satisfiability problem for Boolean formulas
in CNF. Let F be a SAT instance, how can we represent F as an “equivalent” CSP instance
(V,D,C)? The representation is shown using the concrete example of F in Fig. 2.

We define V' to be the set of all variables appearing in F', define D to be the set of truth
values, and define C to be a set of constraints where each constraint C; = (x;, R;) is built
from the ith clause in F' as follows. First, we rearrange the literals in the clause so that all
positive literals (if any) precede the negative ones. The scope x; is defined to be the sequence
of variables in the rearranged clause. Next, we consider all assignments to the variables in x;
and we represent them by the corresponding sequences of bits. The constraint relation in C;
is determined by the numbers of positive and negative literals in ith clause. Namely, let p and
n be these numbers respectively. Then the relation consists of all tuples of length (p + n) over
{0,1} except the tuple that makes the rearranged literals false (p zeroes followed by n ones).
Obviously, an assignment to the variables of F', viewed as a function from V to {0, 1}, satisfies
F if and only if this assignment is a solution to (V, D,C).
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F = (Z7Vaa VT3) ATT VT2V ay) Axg Vas) A (T2 VTg)

V = {$1,$2,$3,$4}, D = {0, ].}, C = {Cl .. .,04}

G = ((1‘2,3?1, '7;3)’ {0’ 1}3 \ {(07 1, 1)})
Cy = ((1’4,1'1, IQ)& {Oa 1}3 \ {(07 1, 1)})
Cs = ((x1,23),{0,1}*\ {(0,0)})
Cy = (($2,$4), {07 1}2 \ {(17 1)})

Figure 2: An instance of SAT represented as a CSP instance.

2.2 Equivalent Definition in Terms of Homomorphisms

It is known that the CSP can equivalently be defined in term of homomorphisms between finite
relational structures [FV98, Jea98]. To consider this definition, we first define the notion of a
relational structure.

Definition 3 (relational structures). A relational signature o is a finite set of relation symbols.
Each relation symbol has an associated positive integer called the symbol’s arity. A relational
structure A is a triple (A, o, I) where A is a nonempty set called the domain, o is a relational
signature, and I is an interpretation function that maps each k-ary relation symbol of o to a
k-ary relation on A. A relational structure is called finite if its domain is finite.

Definition 4 (homomorphisms and isomorphisms). Let A and B be relational structures with
the same signature. Let A and B be the domains of A and B respectively. A functionh: A — B
is called a homomorphism from A to B if h has the following property: for each k-ary relation
symbol interpreted as a relation R* in A and as a relation R® in B, we have

xeR* = h(x)eRB

for all k-tuples x € A*. A homomorphism h is an isomorphism if h is a bijection and h has a
stronger property than above:
xeR* & h(x)eRB

for all k-tuples x € A*. Structures A and B are isomorphic if there is an isomorphism from A
to B.

In the homomorphism problem, we are given structures A and B with the same signature
and we determine whether there exists a homomorphism from A to B. The restriction of
homomorphism problem to finite relational structures is closely connected with the CSP: these
two problems reduce to each other in a very natural way. The reductions are described below.

Let ¢ = (V, D,C) be a CSP instance and let { Ry, ..., Rs} be the set of all constraint relations
in C. Notice that s may be less than the number of constraints in C since different constraints
can have the same relation. We introduce relations symbols r1,...,7s corresponding to the
constraint relations and define a signature o4 as the set of these relation symbols. For example,
if ¢ is the CSP instance that represents graph coloring in Fig. 1, then o4 consists of the #
symbol only. If ¢ is the CSP instance representing satisfiability in Fig. 2, then o, has three
symbols: a symbol for the 3-ary relation {0,1}2\ {(0,1,1)} and symbols for the binary relations

{0,132\ {(0,0)} and {0,1}*\ {(1,1)}.
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Next, we define relational structures V, and D,. Both have the signature o4 defined in the
paragraph above. The domain of Vy is V' and the domain of Dy is D. The symbols ry,...,rg
are interpreted in Dy as the constraint relations Ry,...,Rs (for which these symbols were
introduced). In the structure V,, each symbol r; is interpreted as a relation consisting of tuples
of variables. Namely, the interpretation of r; consists of all tuples x such that C contains a
constraint (x, R;). For example, if ¢ is the CSP instance in Fig. 1, then V), has one relation that
consists of the five tuples (z;, z;) appearing in the constraints. If ¢ is the CSP instance in Fig. 2,
then Vg has three relations: one 3-ary relation with the tuples (2, z1,23) and (24,21, 22) and
two binary relations with one tuple in each.

Definition 5 (relational structures associated with CSP instances). Let ¢ be a CSP instance.
We say that the relational structures V, and Dy described above are associated with ¢. We
call Vg the structure on variables and call Dy the structure on the domain.

Proposition 1. Let ¢ be a CSP instance. An assignment f for ¢ is a solution to ¢ if and only
if f is a homomorphism from V to Dy.

Proof. Obviously follows from the definitions of CSP instances and associated relational struc-
tures above. O

According to this proposition, the mapping ¢ — (Vy,Dy) is a polynomial-time reduction
of the CSP to the homomorphism problem. This mapping has the inverse for finite relational
structures: each pair of such structures determines a CSP instance associated with this pair.
This inverse is a polynomial-time reduction of the homomorphism problem restricted to finite
relation structures to the CSP.

2.3 Isomorphisms and Automorphisms

Informally, two CSP instances are isomorphic if one of them is obtained from the other by
permuting variables and permuting values of the domain.

Definition 6 (isomorphism between CSP instances). Let ¢ = (V,D,Cy) and ¢ = (V, D,Cy)
be CSP instances on the same set of variables and the same domain. Let a be a permutation
of V and f be a permutation of D. We say that the pair («, 8) is an isomorphism from ¢ to ¢
if for each tuple x over V and for each relation R on D,

(x,R) €Cyp & (a(x),B(R)) € Cy.

We say that CSP instances ¢ and v are isomorphic, written ¢ ~ 1, if there is an isomorphism
from ¢ to ¥. The set of all CSP instances isomorphic to ¢ is called the isomorphism class of ¢
and denoted by [¢].

Definition 7 (automorphisms of CSP instances). An isomorphism («, 8) from a CSP instance
¢ = (V,D,C) to itself is an automorphism of ¢ if («, B) preserves the set of constraints:

(x,R)eC < (a(x),8(R)) €C

for each tuple x over V' and for each relation R on D. The set of all automorphisms of ¢ forms
a group under composition; this group is denoted Aut(¢).

The following simple statements give equivalent definitions in terms of relational structures
associated with CSP instances. The statements use the notions of isomorphisms and automor-
phisms for relational structures; these notions are defined in the standard way, see for example
[Hod97].
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Proposition 2. Let ¢ = (V,D,Cy) and ¢ = (V, D,Cy) be CSP instances. Let a be a permu-
tation of V' and § be a permutation of D. The pair («, ) is an isomorphism from ¢ to 1 if and
only if o is an isomorphism from V4 to Vy and 3 is an isomorphism from Dy to Dy.

Proof. Suppose that (a, 8) is an isomorphism from ¢ to 1. Then « is a bijection between the
scopes of all constraints in ¢ and the scopes of all constraints in ©. Moreover, if scopes x and y
in ¢ have the same relation R, then their images «(x) and a(y) have the same relation S(R) in
. Therefore, « is an isomorphism from Vg4 to V. Likewise, 8 is a bijection between the tuples
of all relations appearing in ¢ and the tuples of all relations appearing in 1 and, hence, g is an
isomorphism from Dy to Dy,. The converse is proved by similar straightforward reasoning. [

Proposition 3. Let ¢ = (V, D,C) be a CSP instance. Let a be a permutation of V' and 8 be a
permutation of D. The pair («, ) is an automorphism of ¢ if and only if « is an automorphism
of Vg and f is an automorphism of Dy.

Proof. Similar to Proposition 2. O

3 Reconstruction of CSP Instances

Informally, a CSP instance ¢ is k-reconstructible if its isomorphism class is uniquely determined
by the isomorphism classes of all subinstances obtained from ¢ by removing k constraints.

Definition 8 (k-deck). Let ¢ = (V, D,C) be a CSP instance and let m = |C|. A k-card of ¢
is the isomorphism class of a CSP instance obtained from ¢ by removing k constraints from C
where 1 < k < m. The k-deck of ¢ is the multiset of all k-cards of ¢; this multiset consists of
(’,’:) elements. If k = 1, we call k-cards and k-decks cards and decks.

Definition 9 (k-reconstruction). A CSP instance ¢ is k-reconstructible if for every CSP in-
stance ¢ that has the same k-deck as ¢, we have ¢ ~ 1. We say that ¢ is reconstructible if ¢
is 1-reconstructible.

The following theorem gives a sufficient condition for k-reconstruction of CSP instances; its
proof is essentially an application of the technique used by Alon, Caro, Krasikov, Roditty in
[ACKRA&9].

Theorem 4. Let ¢ = (V,D,C) be a CSP instance with |V| = n, |D| = d, and |C| = m. Let
1 < k < m. Suppose that

ke n!-d!
2 Thae)] M)

where |Aut(¢)| denotes the order of the automorphism group of ¢. Then ¢ is k-reconstructible.

Proof. We use the following notion of k-reconstructible subsets from [ACKRS9]. Let X be a set
and I' be a group acting on X. This action determines the following equivalence relation on
the subsets of X: subsets Y7,Ys C X are equivalent if I' contains an element g that moves Y;
to Y3, i.e., Y5 is obtained from Y7 by applying the permutation on X corresponding to g. Let
Y C X consist of m elements and let 1 < k < m. Consider all subsets of cardinality m — k
of Y. The multiset of their equivalence classes is called the k-deck of Y. We say that Y is
k-reconstructible if its k-deck determines the equivalence class of Y.

Corollary 2.4 in [ACKR89] gives the following sufficient condition for a subset to be k-
reconstructible. Let Y C X be a subset of cardinality m. Let I'y be the subgroup of I" that
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consists of all “automorphisms” of Y, i.e., the subgroup of all elements of I' moving Y to itself.
Let I and I'y denote the orders of the groups. If

2m" > |r|/|Ty| (2)

then Y is k-reconstructible.

To apply this condition to CSP instances, we need to define X and I' so that the subsets of
X represent CSP instances and the equivalence relation on X represents isomorphism between
CSP instances. Consider the set of all CSP instances (V, D,C) where V and D are fixed. We
define X to be the set of all possible constraints over V and D, i.e., X consists of all pairs (x, R)
where x is a tuple of variables and R is a relation on D such that x and R have the same arity.
Thus, there is a bijection between the subsets of X and all CSP instances over V and D. Next,
we define I' to be the direct product of the symmetric group on V' and the symmetric group on
D. This group acts on X: for an element g = (a, 8) of T" and for an element C' = (x, R) of X, we
define g - C to be (a(x), S(R)). The group action partitions the power set of X into equivalence
classes in exactly the same way as described above. Subsets Y7,Ys C X are equivalent if and
only if the CSP instances corresponding to Y7 and Ys are isomorphic.

Consider a subset Y C X, an element (a, ) of T that moves Y to itself, and the CSP
instance ¢ = (V, D,C) where C is Y. By Definition 7, the pair («, 8) is an automorphism of the
CSP instance (V, D,C) where C is Y. Therefore, the subgroup I'y in (2) is the automorphism
group of this instance. Also, by our definition of I', its order is the product of the orders of the
symmetric groups on V and D. Hence, the claim (1) follows from (2). O

Corollary 5. In the setting of Theorem 4, if

nl d!

2 ord(Au.t(VQs)) . ord(Au;f(D(b))

then ¢ is k-reconstructible.

Proof. Tt follows from Proposition 3 that for each CSP instance ¢, the automorphism group
Aut(¢) is the direct product:
AUt(V¢) X Aut(D¢)

where Aut(Vy) and Aut(Dy) are the automorphism groups of the relational structures V, and
Dy respectively. O

4 Number of Solutions

In this section, we consider the question of whether or not a given property or parameter of a
CSP instance ¢ is uniquely determined by the k-deck of ¢.

Definition 10 (k-reconstruction for properties and parameters). Let f be a function defined
on all CSP instances. Given a CSP instance ¢, we say that f is k-reconstructible on ¢ if we
have f(¢) = f(¢) for every CSP instance ¢ that has the same deck as ¢. We say that f is
reconstructible on ¢ if f is 1-reconstructible on ¢.

A function f is called an invariant if f is preserved under isomorphism between CSP in-
stances, i.e., f(¢) = f(¢») whenever ¢ ~ ). Notice that if f is k-reconstructible on ¢ then f
is an invariant on ¢. How can we characterize CSP instances for which the converse is true
as well? Theorem 6 below characterizes CSP instances for which the number of solutions is
reconstructible. The characterization is given in terms of the complements of CSP instances.

45



Reconstructing in the CSP Evgeny Dantsin

Definition 11 (complements). Let R be a k-ary relation on a set D. The complement of R,
denoted by R, is the set of all k-tuples over D that do not belong to R, i.e., R = D* — R. The
complement of a constraint C' = (x, R) is the constraint C' = (x, R). If C is a set of constraints,
we write C to denote the set of the complements of the constraints of C. Let ¢ = (V, D,C) be a
CSP instance. The complement of ¢, denoted by @, is the CSP instance (V, D,C).

Theorem 6. The number of solutions to a CSP instance ¢ is reconstructible if and only if the
number of solutions to its complement ¢ is reconstructible.

Proof. For every CSP instance ¢ = (V, D,C), we write #¢ or #(V, D,C) to denote the number
of solutions to ¢. This number can be counted using the following equality:

#(VaDvC) = Z(—l)‘s‘#(V,D,g). (3)

sce

This equality follows from the inclusion-exclusion principle applied to the set of solutions to ¢.
Also, when thinking of a solution to ¢ as a homomorphism from the structure on variables Vg
to the structure on the domain Dy, we can view (3) as a generalization of the similar formula
in Lovész’s paper [Lov72] used there for counting graph monomorphisms.

Now, we consider CSP instances ¢ = (V, D,Cy) and ¢ = (V, D,Cy) that have the same deck
and we prove

#o=#) & #o=#Y. (4)

The numbers of solutions to ¢ and ¢ can be counted using (3) and writing the right-hand side of
(3) as the sum of the terms corresponding to all proper subsets of C plus the term corresponding
to C:

#o = > (=), D,8y) + (-1)%I#(V,D,C,) (5)
SCCy,S#Cy

#p = > (DB, D,Sy) + (-1)¢ (V. D, Cy) (6)
SCC«/,,S#C«/,

To prove (4), we show that the sums over proper subsets in the right-hand sides of (5) and (6)
are equal:

> (—)¥®v,D,S) = ) ()XW, D,Sy). (7)

SCC4,8#Cy SCCy,S#Cy,

Let m = |Cy| (since ¢ and 1 have the same deck, m is also the number of constraints in ),
Let 1 <k < m. Consider a subset Sy C Cy4 of cardinality m — k and the number

#(V.D,Ss)

occurring in the left-hand side of (7). Obviously, this number of solutions is uniquely deter-
mined by the isomorphism class of (V, D,STS). Moreover, since a constraint and its complement
uniquely determine each other, this number is uniquely determined by the isomorphism class
of (V,D,S,) as well. Hence, the sum in the left-hand side of (7) is uniquely determined by the
k-deck of ¢. Likewise, the sum in the right-hand of (7) is uniquely determined by the k-deck of
.

It is easy to see that if two CSP instances have the same deck then they have the same
k-deck for every k less than the number of constraints. Therefore, the sums in both sides of (7)
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are determined by the same multiset of isomorphism classes, which proves (7). Combining the
equalities (5)-(7), we obtain

#o—#Y = (“)"#o — (—1)"#.
Hence, #¢ = #1 if and only if #¢ = #. O

The following corollaries illustrate how Theorem 6 can be applied. Corollary 7 gives a
simple proof of the known result that the number of graph colorings is reconstructible, which
follows from Tutte’s theorem in [Tut79]. Corollary 8 shows that for Boolean formulas in CNF
represented as CSP instances, the number of satisfying assignments is reconstructible.

Corollary 7. Let ¢ be a CSP instance that represents an instance of the graph coloring problem
(COL) as described in Fig. 1. Then #¢ is reconstructible.

Proof. Let G4 be the underlying graph and k4 be the number of colors. Consider the comple-
ment ¢ and a solution to it. This solution corresponds to a coloring of Gy with at most kg
colors such that in each connected component of G, all vertices have the same color. Thus, the
number of solutions to ¢ is uniquely determined by k¢ and the number of connected components
of Gg. It is easy to see that both of these parameters are reconstructible from the deck of ¢.
By Theorem 6, #¢ is reconstructible. O

Corollary 8. Let ¢ be a CSP instance that represents an instance of SAT as described in Fig. 2.
If ¢ contains at least three constraints then the number of solutions to ¢ is reconstructible.

Proof. According to our representation of SAT instances, each constraint in ¢ can be viewed
a disjunction ¢, V...V £, of literals. Then, by Definition 11, its complement in ¢ represents
the conjunction ¢; A ... A £;. For every constraint C in ¢, let L(C) denote the set of literals
represented by C. Let L denote the union UL(C) over all constraints C' in ¢.

First, we consider the case that ¢ has no solution. This case holds if and only if the set L
contains a pair of complementary literals. It is clear that if ¢ has at least three constraints,
then each pair of constraints, up to isomorphism, appears together in some card. Hence, the
existence of a pair of constraint representing complementary literals can be detected from the
deck. Thus, #¢ is reconstructible for every ¢ that has at least three constraints and has no
solution.

Next, we consider the case that ¢ has a solution, which is equivalent to the case that L
does not contain any pair of complementary literals. Let V be the set of variables of ¢. Since
L does not contain complementary literals, any assignment to the variables of V' is a solution
and #¢ = 2IVI. By Definition 8, any card of ¢ has the same set V as ¢ itself. Therefore, #¢ is
reconstructible for every ¢ that has a solution.

Combining the two cases and Theorem 6, we obtain the claim. O

5 Concluding Remarks

This paper defines the notion of k-reconstructible CSP instances and considers the question
of what CSP instances and what their invariants are reconstructible. There are many other
questions of interest, not mentioned in the paper. Here are some of them.

The notion of reconstruction depends on how isomorphism and automorphisms of CSP
instances are defined. In this paper, an isomorphism is a pair of permutations: a permutation
of the set of variables and a permutation of the domain. This definition seems the most natural
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but still, there are other approaches to defining isomorphisms and symmetries of CSP instances,
see for example [CJJT06]. What about the corresponding notions of reconstruction, do they
differ significantly from the notion defined in this paper?

Almost all graphs are reconstructible [Miil76] and, moreover, almost all graphs are recon-
structible from their sub-decks consisting of three cards [Bol90]. These results are proved for
G(n,p), the most common model of random graphs, where each possible edge in a graph on n
vertices occurs independently with probability p. There are different models of random CSP
instances [AMK™01], do similar results hold for some of them?

What could be possible applications of the notion of k-reconstructible CSP instances? Can
this notion be useful for modeling some systems or processes, as reconstruction of jigsaw puzzles
was useful for modeling DNA sequence assembly [MR15, NPS17, BBN19]? Or, can this notion
be useful for solving some problems in the CSP field, as edge reconstruction was useful for
proving upper bounds on the order of the automorphism group of a graph [KLT02]?
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