EPiC Series in Computing =i
omputing

Volume 44, 2017, Pages 33-45

Vampire 2016. Proceedings of the 3rd Vampire Workshop E ; EE

AS .
£ Chrq, 3

Automating Proof Steps of Progress Proofs:
Comparing Vampire and Dafny

Sylvia Grewe!, Sebastian Erdweg?, and Mira Mezini'?

1 TU Darmstadt, Germany
2 TU Delft, Netherlands
3 Lancaster University, UK

Abstract

Developing provably sound type systems is a non-trivial task which, as of today, typically
requires expert skills in formal methods and a considerable amount of time. Our Veritas [4]
project aims at providing support for the development of soundness proofs of type systems
and efficient type checker implementations from specifications of type systems. To this end,
we investigate how to best automate typical steps within type soundness proofs.

In this paper, we focus on progress proofs for type systems of domain-specific languages.
As a running example for such a type system, we model a subset SQL and augment it with
a type system. We compare two different approaches for automating proof steps of the
progress proofs for this type system against each other: firstly, our own tool Veritas, which
translates proof goals and specifications automatically to TPTP [14] and calls Vampire [9]
on them, and secondly, the programming language Dafny [7], which translates proof goals
and specifications to the intermediate verification language Boogie 2 [6] and calls the
SMT solver Z3 [10] on them. We find that Vampire and Dafny are equally well-suited for
automatically proving simple steps within progress proofs.

1 DMotivation

Consider developers or researchers who want to specify a programming language along with a
type system for statically catching type errors in programs. To make sure that their type system
operates as intended, they want to formally prove its soundness. Let us say that as soundness
criterion they choose the standard syntactic approach of proving progress and preservation, as
formalized and explained in detail in one of the standard books on type systems, Pierce’s “Types
and Programming Languages” (TAPL [12]).} Let e — ¢’ denote that an expression e evaluates
in a single small step to an expression ¢’. Furthermore, let I' - e : T' denote a typing judgment
which says that an expression e of the program is typable with type T under typing environment
I" which assigns variables to types. Then progress and preservation are defined as follows:

Definition 1 (Progress). If an expression e is not a value and 0§ e : T holds for a type T,
then there is an expression € such thate — e'.

1The notion of describing type soundness as progress and preservation was first articulated by Robert Harper.
Wright and Felleise proposed a variant in 1994 [15].

L.Kovacs and A.Voronkov (eds.), Vampire 2016 (EPiC Series in Computing, vol. 44), pp. 33-45

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

Definition 2 (Preservation). IfT'F e : T holds for an expression e and a type T and if there is
an €' such thate — €', thenT ke’ : T holds.

Intuitively, progress says that a well-typed program expression which is not yet fully evaluated
can always take at least one other step, while preservation says that evaluation steps preserve
the type of expressions. Together, progress and preservation say that well-typed programs do not
get stuck.

What can our developers/researchers now do in order to formally prove these two properties
for their type system? Obviously, they could choose the classical approach and develop proofs
on paper. The effort of applying this approach varies: Our developers/researchers can choose
themselves how many details of the proof they want to develop. However, independent of the
level of details chosen, human errors in proofs on paper are very common, and it is generally
hard to check whether such a proof is correct.

To help with the matter of making sure that a proof is correct, our developers/researchers
could mechanize their proofs using an existing verification tool. Candidate verification tools
include for example Isabelle/HOL [11], Coq [2], Dafny [7] , and Twelf [1]. Isabelle/HOL and Coq
are tools for general-purpose verification. Dafny and Twelf specialize on verification of programs
and programming languages. They offer varying degrees of automation and support for proof
development. However, all of these tools require that our developers translate their specification
into the respective input language of the tool and then develop proofs using the respective
language and concepts offered by the tool. The available tools offer good automation for some
simple proof tasks, but typically cannot automatically prove properties whose proofs require any
form of higher-order reasoning: In general, the proofs of inductive properties require applying
the cut rule: proving an auxiliary fact (lemma) and applying it in the main proof. This fact
makes the space for proof search infinitely large [13]. The proofs of our progress and preservation
properties from above require induction as well as the application of the cut rule using various
auxiliary lemmas. Hence, formalizing progress and preservation proofs in existing verification
tools requires laying out the proof steps in detail, which typically is a very time-consuming task.

In earlier work, we proposed the design of Veritas [4], a tool which aims at providing as much
support as possible for the development of mechanized progress and preservation proofs and
the implementation of efficient type checker implementations from provably sound type system
specifications. The verification part of Veritas aims at exploiting domain knowledge about the
structure of progress and preservation proofs to break down the proofs to steps which existing
automated theorem provers can solve. To this end, we investigate which typical steps occur
in progress and preservation proofs, and which of these steps automated theorem provers can
prove.

In this paper, we focus on progress proofs. We model a type system for a typed subset of SQL
as a running example in two different systems, which can automate steps in proofs, and informally
compare the two systems to each other: As first system, we choose Vampire [9] (versions 3.0 and
4.0), which is an automated theorem prover for first-order logic. We use our Veritas prototype
to automatically translate from a specification language for language specifications (SPL) to
TPTP [14]. As second system, we choose Dafny [7], which is a programming language with a
high degree of support for automated verification that translates to Boogie 2 [6] and uses the
SMT solver Z3 [10] in the background for proof tasks.

Disclaimer. Our comparison is not intended to be a general comparison between the two
systems and their capabilities. Rather, we aim at comparing the two systems from a user’s
perspective for a very specific task, namely proof steps in progress proofs of type systems.

34

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

2 Example Specification: Typed SQL

As a running example, we model a subset of SQL, a language for querying data bases. Tradi-
tionally, SQL is not statically typed. Hence, SQL queries can fail at run time, for example if a
query attempts to access a non-existent attribute of a table in the data base. We model a type
system for SQL which is supposed to statically catch such errors. The subset of SQL we focus
on consists of row selection based on simple selection predicates, projection on a single table,
union, intersection, and difference of two tables.

We model our subset of SQL separately in Veritas and in Dafny.

2.1 Specification in Veritas

In Veritas, we use a core specification languages for language specifications called SPL. We
implemented SPL in the language workbench Spoofax [8]. Our prototype of Veritas translates
SPL specifications automatically to TPTP. We described part of our encoding in previous work
presented at the 2nd Vampire Workshop [5]. Since then, we added additional constructs to
SPL and improved some of the encodings. Notably, we added a translation to tff, the TPTP
format for typed first-order logic, and improved the encodings of SPL types. We explain these
changes here using excerpts of our running example. The full code of our example and the
implementation of Veritas is available at https://github.com/stg-tud/type-pragmatics/
tree/master/Veritas. For further details on our current encoding scheme and the specification
of typed SQL, please refer to our recent paper “Exploration of Language Specifications by
Compilation to First-order Logic” [3].

Tables. We model tables in SPL as lists of lists of rows. Since neither SPL nor Vampire
supports lists directly, we use constructors of the form “nil” and “cons” to model lists with
different element types.

open data Name // attribute and table names
data AttrL = aempty | acons(Name, Attrl) // attribute list

open data Val // cell values

data Row = rempty | rcons(Val, Row) // row of cell values

data RawTable = tempty | tcons(Row, RawTable) // list of rows
data Table = table(AttrL, RawTable) // header and body of a table

We model underspecified types via the keyword “open data”, which we introduced into SPL
since our presentation at the 2nd Vampire Workshop [5]. For open data types, we explicitly
assume that their domain is infinite. To this end, our translation to tff/TPTP adds additional
axioms which specify that an open data type is isomorphic to natural numbers. For the open
data type Name, this looks as follows:

Vn : Name. initName # enumName(n)
Vni : Name,ny : Name. enumName(n,) = enumName(ny) = ny = ng

For data types which are not open, we assume closedness, i.e. that each term of the given
type is representable via the specified constructors. To this end, we add an additional domain
axiom to the TPTP translation. For example, for the type AttrL:

Va : AttrL. a = aempty() V (3In : Name,a' : AttrL. a = acons(n,a’))

35

https://github.com/stg-tud/type-pragmatics/tree/master/Veritas
https://github.com/stg-tud/type-pragmatics/tree/master/Veritas

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

data Exp = constant(Val) | lookup(Name) // constants and attr. lookup
data Pred = ptrue | and(Pred, Pred) | not(Pred) // predicates
| eq(Exp, Exp) | gt(Exp, Exp) | It(Exp, Exp)

data Select = all() | some(AttrL) // select all or some specific atiributes
data Query = tvalue(Table) // table values

| selectFromWhere(Select, Name, Pred) // select from where

| union(Query, Query) | intersection(Query, Query) // set ops

| difference(Query, Query)

Figure 1: Part of the abstract syntax of SQL specified in SPL.

Next, we model auxiliary functions on tables. They define low level operations on tables,
such as retrieving a particular column out of the table, attaching a column to the front of a
table, etc. For example:

function

attachColToFrontRaw : RawTable RawTable -> RawTable

attachColToFrontRaw(tempty(), tempty()) = tempty

attachColToFrontRaw(tcons(rcons(f, rempty), rtl), tcons(r, rt2)) =
tcons(rcons(f, r), attachColToFrontRaw(rtl, rt2))

attachColToFrontRaw(rtl1, rt2) = tcons(rempty, tempty)

The function attachColToFrontRaw blindly assumes that it gets first a RawTable that consists
of just a single column, and second another RawTable that has as many rows as the first one.
If the arguments satisfy these conditions, the function will return a correct table where the
single column of the argument is attached to the front of the table of the second argument.
Otherwise, attachColToFrontRaw will return a “broken” RawTable, where the given rows do not all
have equal length. It is the responsibility of the caller to make sure that attachColToFrontRaw
receives “proper”’ arguments.

We translate functions such as attachColToFrontRaw like we described in our previous work [5]:
We translate every function equation to an axiom in TPTP. Furthermore, we add an inversion
axiom, which is typically very helpful in progress and preservation proofs.

SQL syntax. Figure 1 shows how we model the syntax of our subset of SQL in SPL. Con-
structor selectFromWhere models projection of all or some attributes of a named table, where each
row is filtered using the predicate of the where-clause. We translate this syntax to TPTP as
indicated above.

SQL reduction semantics. Figure 2 shows an excerpt of how we model the dynamic seman-
tics of our subset of SQL, along with the signatures of the most important auxiliary functions.
We modeled the dynamic semantics as a small-step structural operational semantics. The
reduction function reduce takes a query and a table store (TStore), which maps table names to
tables (Table).
The reduction function proceeds by pattern matching on the query. A table value (tvalue) is
a normal form and cannot be reduced further. A selectFromWhere query is processed in three
steps:
1. From-clause: Look up the table referred to by name in the query. Since the name may be
unbound, the lookup yields a value of type OptTable. Reduction is stuck if no table was
found. Otherwise, we receive the table through getTable(mTable).

36

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

function reduce : Query TStore -> OptQuery
reduce(tvalue(t), ts) = noQuery
reduce(selectFromWhere(sel, name, pred), ts) =
let mTable = lookupStore(name, ts) in
if (isSomeTable(mTable))
then let filtered = filterTable(getTable(mTable), pred) in
let mprojected = projectTable(sel, filtered) in
if (isSomeTable(mprojected))
then someQuery(tvalue(get Table(mprojected)))
else noQuery
else noQuery
reduce(union(tvalue(table(all, rtl)), tvalue(table(al2, rt2))), ts) =
someQuery(tvalue(table(all, rawUnion(rt1, rt2))))
reduce(union(tvalue(t), q2), ts) =
let g2’ = reduce(q2, ts) in
if (isSomeQuery(q2'))
then someQuery(union(tvalue(t), getQuery(q2')))
else noQuery
reduce(union(ql, q2), ts) =
let q1' = reduce(ql, ts) in
if (isSomeQuery(ql'))
then someQuery(union(getQuery(ql’), q2))
else noQuery

function filterTable : Table Pred -> Table
function projectTable : Select Table -> OptTable
function rawUnion : RawTable RawTable -> RawTable

Figure 2: Part of the reduction semantics of SQL.

2. Where-clause: Filter the table to discard all rows that do not conform to the predicate
pred. We use the auxiliary function filterTable whose signature is shown at the bottom of
Figure 2. We modeled filtering such that it always yields a RawTable and cannot fail: We
discard a row if the evaluation of pred fails. The type system will ensure that this can never
actually happen within a well-typed query.

3. Select-clause: Select the columns of the filtered table in accordance with the selection
criteria sel, using auxiliary function selectTable. We modeled selection such that it fails if a
non-existing column was required. Also here, the type system will ensure that this cannot
happen within a well-typed query.

For union queries, reduce defines one contraction case and two congruence cases. For the union of
two table values, we use the auxiliary function rawUnion that operates on header-less tables and
constructs the union of the rows. In the two congruence cases of union, we try to take a step
on the right and left operand, respectively. The reduction of intersection and difference queries is
defined analogously to union.

When translating reduce to tff/TPTP, we first translate let and if as described in our previous
work [5]: We translate a let as an implication, where the equation of the binding becomes a
premise, and the body of the let a conclusion. Each if is translated as two axioms: one for the

37

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

judgment tcheck(TTContext, Query, TT)

matchingAttrL(TT, al)
welltypedRawTable(TT, rt)
———————————————————————————— T-tvalue
TTC I tvalue(table(al, rt)) : TT

lookupContext(tn, TTC) = someT Type(TT)

tcheckPred(p, TT)

projectType(sel, TT) = someT Type(TT2)
—————————————————————————————————————— T-selectFromWhere
TTC I selectFromWhere(sel, tn, p) : TT2

TTCHaql: TT

TTCHq2: TT
________________________ T-union
TTC I union(ql, g2) : TT

function matchingAttrL : TType AttrL -> Bool
function welltypedRawTable : TType RawTable -> Bool
function tcheckPred : Pred TType -> Bool

function projecttType : Select TType -> OptT Type

Figure 3: Part of the typing rules of typed SQL.

then-branch, and one for the else-branch. Each of these two axioms is an implication, where the
guard of the if (respectively, its negation) becomes a premise and the content of the branch the
conclusion. We apply this translation exhaustively, i.e. the second equation of reduce in Figure 2
translates to three different axioms.

Typing. The static semantics of our variant of SQL ensures that well-typed queries do not get
stuck but evaluate to table values. We define the type of an SQL query as the type of the table
that the query evaluates to. The type of a table TT is a typed table schema that associates
field types to attribute names. Type checking uses a table-type context TTC, which maps table
names to table types.

Figure 3 shows an excerpt of the typing rules of SQL and the most important auxiliary
functions used. The semantics of the inference-like notation is the semantics of an implication:
Each new line represents part of a conjunction. The premises of the implication are above the
line, the conclusion(s) below.

A table value has table type TT if the table’s attribute list and the attribute names within
the table type match and if all rows in the table adhere to the table schema. The latter is
checked by the function welltypedRawTable. A selectFromWhere query is well-typed if the table
name tn is bound to TT in the table-type context TTC, the predicate pred is well-typed for TT,
and the attribute selection selectType succeeds. Like the other set operations, a union query is
well-typed if both subqueries have the same type. The typing rules for intersection and difference
queries are defined analogously.

Naturally, we translate the inference rules from Figure 3 to implications in TPTP, where the

38

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

meta-variables used in the inference rules become universally quantified variables.

2.2 Specification in Dafny

The specification of our typed subset of SQL in Dafny is very similar to the specification in
Veritas. We show excerpts of our Dafny specification in this section - the full specification
is available at https://bitbucket.org/cygne_noir/sql-dafny/. Occasionally, we use some
convenience features that Dafny supports, but Veritas/Vampire does not - just like a Dafny
user would. For example, we use the construct and helper functions for sequences that Dafny
provides.

Thus, we specify for example tables as follows in Dafny:

type AttrL = seq<string>
datatype Val = N(int) | S(string)
type Row = seq<Val>

type RawTable = seq<Row>

datatype Table = table(getAL: AttrL, getRaw: RawTable)

We do not bother with using Dafny’s generic constructs for parametrizing over the concrete
type for attribute names or values of tables. Rather, we use Dafny’s built-in type string for
attribute names, and define a small algebraic datatype for table values. In the proofs later, we
will not have to reason about these types anyway. For lists of values and lists of rows, we use
Dafny’s sequences. When specifying tables, Dafny allows us to directly specify destructors for
the constructor arguments. Hence, we use destructors instead of the get... functions which we
defined in our SPL specification of SQL in the remaining Dafny specification.

Using Dafny’s sequences and the functions defined on them, we model the attachColToFrontRaw
function in Dafny as follows:

function attachColToFrontRaw(rtl: RawTable, rt2: RawTable): RawTable

{

if Irtl] ==0&& [rt2| ==
then []
else if [rtl] > 0 && |rt1[0]| == 1 && |rt2| > 0O
then [[rt1[0][0]] + rt2[0]] + attachColToFrontRaw(rt1[1..], rt2[1..])

else [[]]

For modeling the syntax of SQL in Dafny, we also use Dafny’s datatype notation, so that the
Dafny version of our SQL syntax looks almost like the SPL version from Figure 1. We define
the semantics of SQL via a function and match-construct in Dafny (see Figure 4). The latter
allows us to write case distinctions on the different constructors of our algebraic datatype for
the syntax of SQL queries.

Dafny does not provide a notation for inference rules like SPL in Veritas, hence we model
the type system for our subset of SQL via a predicate typable, which takes a table type context,
a query, and a type as an argument. We show an excerpt in Figure 5.

39

https://bitbucket.org/cygne_noir/sql-dafny/

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

function reduce(q: Query, ts: TStore): Option<Query>

{
match q
{
case tvalue(t) => none
case selectFromWhere(sel, ref, pred) =>
if |refl ==1 //currently, no Cartesian product supported
then if lookupEnv(ref[0], ts).some?
&& projectTable(sel, filterTable(lookupEnv(ref[0], ts).get, pred)).some?
then some(tvalue(projectTable(sel, filterTable(lookupEnv(ref[0], ts).get, pred)).get))
else none
else none
case union(ql, q2) => if ql.tvalue? then
if g2.tvalue?
then some(tvalue(table(ql.getTable.getAL,
rawUnion(ql.getTable.getRaw, q2.getTable.getRaw))))
else if reduce(q2, ts).some? then some(union(ql, reduce(q2, ts).get)) else none
else if reduce(ql, ts).some? then some(union(reduce(ql, ts).get, q2)) else none
}
}

Figure 4: SQL reduction semantics in Dafny

predicate typable(ttc: TTContext, q: Query, tt: TType)

{
match q
{
case tvalue(t) => welltypedtable(tt, t)
case selectFromWhere(sel, refs, p) => [refs| == 1 && lookupEnv(refs[0], ttc).some?
&& tcheckPred(p, lookupEnv(refs[0], ttc).get)
&& projectType(sel, lookupEnv(refs[0], ttc).get) == some(tt)
case union(ql, q2) => typable(ttc, q1, tt) && typable(ttc, g2, tt)
¥
}

Figure 5: SQL type system in Dafny

3 Progress Proof

Next, we attempt to prove a progress theorem for SQL in both Veritas with Vampire and in Dafny.
We do not focus on obtaining a complete proof, but rather on mechanizing individual steps of
the proof, and on finding out which of these steps one or the other system can automatically
prove.

40

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

Here is the progress theorem for SQL in SPL notation:

goal

lisValue(q)

TTCHq:TT
StoreContextConsistent(TS, TTC)

SQL-Progress
exists qo
reduce(q, TS) = someQuery(qo)

Predicate StoreContextConsistent specifies that the table store and the table type context
involved need to contain the same table names, and that each table in the table store has to be
well-typed with regard to the corresponding table type from the table type context.

In Dafny, we write the theorem in a slightly different way, which is semantically equivalent:

lemma progress(ttc: TTContext, ts: TStore, q: Query)
requires StoreContextConsistent(ts, ttc)
requires exists tt :: typable(ttc, q, tt)
ensures isValue(q) || reduce(q, ts).some?

Dafny treats lemmas similarly to functions: A proof of the lemma may call the lemma itself
recursively, which corresponds to applying an induction hypothesis in an inductive prove. This
is why the lemma uses parameters.

3.1 General Structure

The general structure of the proof of the progress theorem from above is a representative of the
structure typical progress proofs: The proof proceeds by structural induction on the structure
of a program expression, i.e. in this case, an SQL query.
This structure yields five induction cases:
1. tvalue(t): trivial (is a value)
2. selectFromWhere(sel, refs, p): most difficult case of the proof; directly requires 4 auxiliary
lemmas, whose prove requires induction and further 7 auxiliary lemmas
3. union(ql, q2): proof via case distinction on the three different cases of union in the semantics,
two of which are proved by simply applying the induction hypotheses
4. intersection(ql, q2): like union case
5. difference(ql, g2): like union case
In Veritas, we specify manually the five different induction cases, by simply copying the theorem
5 times, and adding a premise to each case which requires q to be of the desired shape. For the
last 3 cases (the set operations), we add the induction hypotheses as axioms. Here, we fix the
induction variables locally to represent the subqueries of the set opereations. Note that if we
did not explicitly do that, the induction hypotheses would universally quantify on any query,
and would hence directly correspond to the theorem that we we want to prove (which would not
correspond to a correct instantiation of the induction scheme we use!). For example, the union
case looks like this in Veritas:

local {
consts ql : Query
g2 : Query
TS : TStore
TTC : TTContext
TT : TType

41

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

axiom

lisValue(ql)

TTCHql : TT
StoreContextConsistent(TS, TTC)

SQL-Progress-T-Union-1H1
exists qo
reduce(ql, TS) = someQuery(qo)

axiom

lisValue(q2)

TTCHQ2: TT
StoreContextConsistent(TS, TTC)

SQL-Progress-T-Union-1H2
exists qo
reduce(q2, TS) = someQuery(qo)

goal

g == Union(ql, q2)

lisValue(q)

TTCE~q = TT
StoreContextConsistent(TS, TTC)

SQL-Progress-T-Union
exists qo
reduce(q, TS) = someQuery(qo)

}

Dafny provides support for automatically applying induction, which often works well for
simple lemmas. However, for our progress theorem, Dafny does not seem to be able to figure
out the induction scheme on its own (probably, because auxiliary lemmas need to be applied in
the selectFromWhere case), which is why we have to specify induction manually here as well:

match q

{

case tvalue(t) =>
case selectFromWhere(sel, refs, p) =>

if |refs| ==
{1}
else {}

case union(ql, q2) =>
case intersection(ql, q2) =>
case difference(ql, q2) =>

3.2 The Easy Steps

Both Vampire and Dafny naturally prove the tvalue(t) case immediately automatically, since it
only requires applying the definition of isValue.

The last three cases (the set cases) are proven automatically by Dafny. Vampire 4.0 in CASC
mode also proves these three cases automatically, but requires between 76 and 83 seconds for

42

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

the proof of each case?. Vampire 3.0 cannot prove the cases (given timeout was 120 seconds).
If we manually split each set case into the three sub-cases given by the reduction semantics,
Vampire 3.0 can prove each sub-case separately: Interestingly, Vampire 3.0 takes longest to solve
the first sub-case (between 60 and 70 seconds), which does not require the application of an
induction hypothesis and should hence be very easy to solve. The other two sub-cases always
need below 5 seconds to be solved.

3.3 The More Difficult Steps

The selectFromWhere case is the most difficult case of the proof. Dafny can only prove it if we
define and prove four additional auxiliary lemmas on properties of the auxiliary functions used
in the reduction semantics:

lemma successfulLookup(ttc: TTContext, ts: TStore, ref: string)
requires StoreContextConsistent(ts, ttc)
requires lookupEnv(ref, ttc).some?
ensures lookupEnv(ref, ts).some?

lemma welltypedLookup(ttc: TTContext, ts: TStore, ref: string)
requires StoreContextConsistent(ts, ttc)
requires lookupEnv(ref, ttc).some?
requires lookupEnv(ref, ts).some?
ensures welltypedtable(lookupEnv(ref, ttc).get, lookupEnv(ref, ts).get)

lemma projectTableProgress(s: Select, tt: TType, t: Table)
requires welltypedtable(tt, t)
requires projectType(s, tt).some?
ensures projectTable(s, t).some?

lemma filterPreservesType(tt: TType, t: Table, p: Pred)
requires welltypedtable(tt, t)
ensures welltypedtable(tt, filterTable(t, p))

Within the selectFromWhere proof case, we then have to apply these four lemmas in the
correct order, instantiating them as the proof requires. This looks as follows in Dafny:

case selectFromWhere(sel, refs, p) =>

if |refs| ==

{
successfulLookup(ttc, ts, refs[0]);
welltypedLookup(ttc, ts, refs[0]);
var t := lookupEnv(refs[0], ts).get;
var tt := lookupEnv(refs[0], ttc).get;
filterPreservesType(tt, t, p);
projectTableProgress(sel, tt, filterTable(t, p));

3.

If we add the four lemmas as axioms in the selectFromWhere case in Veritas, neither Vampire
3.0 nor Vampire 4.0 can prove the case automatically (with a timeout of 120 seconds). Even
adding the instantiations of the four lemmas which are needed as axioms does not help.

As for the proofs of the auxiliary lemmas itself, the ones that do not require induction or only
require applying one additional other lemma can easily be proved by both Dafny and Vampire.

2We used a MacBook Pro late 2012 with 2,9 GHz Intel Core i7 and 8GB RAM.

43

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

For instance, the proof of lemma filterRowsPreservesTable requires one additional lemma. As soon
as this lemma is given, both Vampire 3.0/4.0 and Dafny prove filterRowsPreservesTable in under
one second.

4 Discussion

For the simple and routine steps in our example progress proof, Vampire and Dafny are
comparable regarding proof automation - even despite the fact that Dafny and Boogie 2
internally apply several custom reasoning techniques before calling Z3, which we do not (yet)
apply in Veritas. Also, as opposed to Dafny, Veritas currently does not attempt the application
of axiom selection strategies.

If the reasoning gets more complicated and requires auxiliary lemmas, Dafny strictly requires
not only the auxiliary lemmas themselves, but also applying these lemmas in the correct
instantiation and in the correct order to prove a goal. We had hoped that in this regard,
applying Vampire for the steps in question could be “more user-friendly” as opposed to using
Dafny, i.e. that the strategies in Vampire are able to prove a case if all necessary lemmas are
given, even if neither the concrete instantiation of the lemmas nor the order in which they have
to be applied are clear. So far, we could not find such a case. This may be due to the fact that
we did not (yet) attempt to pre-select axioms or to provide any kind of prioritization hints to
Vampire (e.g. marking axioms that represent lemmas as hypotheses etc.). In this regard, further
investigation is required to give a definite answer whether Vampire is able to prove the more
complicated proof steps automatically or not.

5 Conclusion and Future Work

For solving simple routine steps in progress proofs automatically, Vampire and Dafny appear
equally well-suited — even if one does not apply any particular optimization strategies to the
input problem. Simple routine steps seem to include steps that only require the application of
one or two auxiliary lemmas/induction hypotheses or that can be solved by directly applying a
definition from the original specification. For all other cases, both Vampire and Dafny require
user interaction.

To study whether Vampire can prove more steps of typical progress proofs, it would be
interesting to investigate the effect of applying further optimizations within our translations
from SPL to TPTP. Optimizations could for example apply typical case distinction steps or
axiom selection strategies before passing input problems to Vampire. Furthermore, one could
experiment further with different options of configuring Vampire or with prioritizing lemmas
as suggested above. Additionally, it would be interesting to extend the present comparison to
include different or more complicated language specifications, and to include more theorem
provers.

Acknowledgements

We thank the participants of the 3rd Vampire Workshop for helpful feedback and discussions.
This work has been supported in part by the European Research Council, grant No. 321217.

44

Comparing Vampire and Dafny Grewe, Erdweg, and Mezini

References

(1]
2]

3]

[4]

[5]
[6]
7]

18]

19]
[10]
[11]

[12]
[13]

[14]

[15]

The Twelf project. http://twelf.org/, 2014.

Cop development team. The Coq proof assistant reference manual, version 8.4pl5. https://coq.
inria.fr/distrib/current/refman/, 2014.

Sylvia Grewe, Sebastian Erdweg, Michael Raulf, and Mira Mezini. Exploration of language specifi-
cations by compilation to first-order logic. In Principles and Practice of Declarative Programming
(PPDP). ACM, 2016. To appear.

Sylvia Grewe, Sebastian Erdweg, Pascal Wittmann, and Mira Mezini. Type systems for the masses:
Deriving soundness proofs and efficient checkers. In Proceedings of International Symposium on New
Ideas, New Paradigms, and Reflections on Programming € Software (ONWARD), pages 137-150.
ACM, 2015.

Sylvia Grewe, Sebastian Erdweg, Pascal Wittmann, and Mira Mezini. Using vampire in soundness
proofs of type systems. In Proceedings of Vampire Workshop. EPiC, 2015.

K. Rustan M. Leino. This is Boogie 2. Technical report, June 2008.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In Proceedings
of Logic for Programming, Artificial Intelligence, and Reasoning (LPAR), pages 348-370. Springer,
2010.

Lennart C. L. Kats and Eelco Visser. The Spoofax language workbench: Rules for declarative
specification of languages and IDEs. In Proceedings of Conference on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA), pages 444-463. ACM, 2010.

Laura Kovacs and Andrei Voronkov. First-order theorem proving and Vampire. In Proceedings of
International Conference on Computer Aided Verification (CAV), pages 1-35. Springer, 2013.

Leonardo De Moura and Nikolaj Bjgrner. Z3: An efficient SMT solver. In Tools and Algorithms
for the Construction and Analysis of Systems (TACAS), pages 337-340. Springer, 2008.

Tobias Nipkow, Markus Wenzel, and Lawrence C. Paulson. Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer-Verlag, Berlin, Heidelberg, 2002.

Benjamin C. Pierce. Types and programming languages. MIT press, 2002.

John Alan Robinson and Andrei Voronkov, editors. Handbook of Automated Reasoning, Chapter
13. Elsevier and MIT Press, 2001.

Geoff Sutcliffe. The TPTP problem library and associated infrastructure: The FOF and CNF
parts, v3.5.0. Automated Reasoning, 43(4):337-362, 2009.

Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness. Information
and Computation, 115(1):38-94, 1994.

45

http://twelf.org/
https://coq.inria.fr/distrib/current/refman/
https://coq.inria.fr/distrib/current/refman/

	Motivation
	Example Specification: Typed SQL
	Specification in Veritas
	Specification in Dafny

	Progress Proof
	General Structure
	The Easy Steps
	The More Difficult Steps

	Discussion
	Conclusion and Future Work

