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Abstract
The theory of arrays has a central place in software verification due to its ability to

model memory or data structures. Yet, this theory is known to be hard to solve in both
theory and practice, especially in the case of very long formulas coming from unrolling-based
verification methods. Standard simplification techniques à la read-over-write suffer from
two main drawbacks: they do not scale on very long sequences of stores and they miss
many simplification opportunities because of a crude syntactic (dis-)equality reasoning. We
propose a new approach to array formula simplification based on a new dedicated data
structure together with original simplifications and low-cost reasoning. The technique is
efficient, scalable and it yields significant simplification. The impact on formula resolution
is always positive, and it can be dramatic on some specific classes of problems of interest,
e.g. very long formula or binary-level symbolic execution. While currently implemented as
a preprocessing, the approach would benefit from a deeper integration in an array solver.

1 Introduction

Context. Automatic decision procedures for Satisfiability Modulo Theory [4] are at the heart
of almost all recent formal verification methods [11, 6, 10, 26]. Especially, the theory of arrays
enjoys a central position in software verification as it allows to model memory or essential data
structures such as maps, vectors and hash tables.

Intuitively, given a set I of indexes and a set E of elements, the theory of arrays describes
the set Array I E of all arrays mapping each index i ∈ I to an element e ∈ E . Actually, logical
arrays can be seen as infinite updatable maps implicitly defined by a succession of writes from
an initial map. These arrays are defined by the two operations read (select) and write (store),
whose semantic is given in Fig. 1 by so-called read-over-write axioms (row-axioms).

Despite its simplicity, the satisfiability problem for the theory of arrays is NP-complete1.
Indeed, it implies deciding (dis-)equalities between read and written indexes on read-over-write

1Reduction of the program equivalence problem in presence of arrays (sequential, boolean case) to the
equivalence case without arrays but with if-then-else operators, to SAT [17].
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select :Array I E → I → E
store :Array I E → I → E → Array I E

∀a i e. select (store a i e) i = e
∀a i j e. (i 6= j)⇒ select (store a i e) j = select a j

Figure 1: The theory of arrays (row-axioms)

terms (row) of the form select (store a i e) j, potentially yielding nested case-splits. Standard
decision procedures for arrays consist in eliminating as much row as possible through a
preprocessing step [22], using axioms from Fig. 1 as rewriting rules, and then enumerating
all possible (dis-)equalities in row, yielding a potentially huge search space — the remaining
row-axioms can be introduced lazily to mitigate this issue [9].

Problem and challenge. Yet, this is not satisfactory when considering very long chains
of writes, as can be encountered in unfolding-based verification techniques such as Symbolic
Execution (SE) [10] or Bounded Model checking [11] — the case of Deductive Verification is
different since user-defined invariants prevent the unfolding. The theory of arrays can then
quickly become a bottleneck of constraint solving. Especially, the row-simplification step is
often very limited, for two reasons. First, exploring for every read in a backward manner the
corresponding list of all writes yields a quadratic time cost (in the number of array operations) and
therefore it does not scale to very long formulas. This is a major issue in practice as, for example,
Symbolic Execution over malware or obfuscated programs [27, 1, 29] may have to consider
execution traces of several millions of instructions, yielding formulas with several hundreds of
thousands of array operations. Note also that bounding the backward exploration misses too
many row-simplifications. Second, (dis)-equalities can be rarely decided during preprocessing
as standard methods rely on efficient but crude approximate equality checks (typically, syntactic
term equality), limiting again the power of these approaches. With such checks, index equality
may be sometimes proven, but disequality can never be — except in the very restricted case of
constant-value indexes.

Our proposal. We present a novel approach to row-simplification named fas (Fast Array
Simplification), allowing to scale and to simplify much more row than previous approaches.
The technique is based on three key components:

• A re-encoding of write sequences (total order) as sequences of packs of independent writes
(partial order), together with a dedicated data structure (map list) ensuring scalability;

• A new simple normalization step (base normalization) allowing to amplify the efficiency of
syntactic (dis-)equality checks;

• A lightweight integration of domain-based reasoning over packs yielding even more successful
(dis-)equality checks for only a slight overhead.

Experimental results demonstrate that fas scales over very large formulas (several hundreds of
thousands of row) typically coming from Symbolic Execution and can yield very significant
gains in terms of runtime — possibly passing from hours to seconds.
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Contribution. Our contribution is two-fold:

• We present in detail the new fas preprocessing step for scalable and thorough array
constraint simplification (Sec. 4), along with its three key components: dedicated data
structure (Sec. 4.1), base normalization (Sec. 4.2) and domain reasoning (Sec. 4.4);

• We experimentally evaluate fas in different settings for three leading SMT solvers (Sec. 5).
The technique is fast and scalable, it yields a significant reduction of the number of row
with always a positive impact on resolution time. This impact is even dramatic for some
key usage scenarios such as SE-like formulas with small timeout or very large size.

Discussion. In our view, fas reaches a sweet spot between efficiency and impact on resolution.
Experiments demonstrate that even major solvers benefit from it, with gains ranging from slight
to very high depending on the setting. While presented as a preprocessing, fas would clearly
benefit from a deeper integration inside an array solver, in order to take advantage of more
simplification opportunities along the resolution process.

2 Motivation

esp0 : BitVec16
mem0 : Array BitVec16 BitVec16

assert (esp0 > 61440)
mem1 , store mem0 (esp0 − 16) 1415
esp1 , esp0 − 64
eax0 , select mem1 (esp1 + 48)
assert (select mem1 eax0 = 9265)

esp0 : BitVec16
mem0 : Array BitVec16 BitVec16

assert (esp0 > 61440)
assert (select mem0 1415 = 9265)

Figure 2: A formula in the theory of arrays (left) and its simplification with fas (right)

Let us detail how the formula in the left part of Fig. 2 can be simplified into the formula
in the right part using our new fas simplification procedure for arrays. We focus on the last
assertion which involves a read on mem1 , store mem0 (esp0 − 16) 1415, i.e. a read-over-write.
Let us denote i , esp0 − 16. The read occurs at index eax0, which is itself the result of a read
on mem1 at index j , esp1 + 48. According to arrays semantics (Fig. 1), we must try to decide
whether i and j (resp. eax0 and i) are equal or different. The standard syntactic equality check
is not conclusive here. But esp1 , esp0 − 64, therefore j can be rewritten into esp0 − 16 (base
normalization in fas), which is exactly i. Hence i = j is proven. By applying array axioms,
we deduce that eax0 , 1415, and the last assertion becomes select mem1 1415 = 9265. We
now try to decide whether i and 1415 are equal or different. Again, the standard syntactic
equality check fails. Yet, by the first assertion we deduce that i > 61424 (domain propagation in
fas), leading to i 6= 1415. Therefore mem1 is safely replaced by mem0 in the last assertion which
becomes select mem0 1415 = 9265. Finally, as assertions in the formula now only refer to esp0
and mem0, we erase all the intermediate definitions to obtain the simplified formula.

This little mental gymnastic emphasises two important aspects of row-simplifications. First,
simplifications often require (dis-)equality reasoning beyond pure syntactic equality. Second,
simplifications involve a backward reasoning through the formula which may become prohibitive
on large formulas if not treated with care (not shown here, up to 1h simplification time in
Fig. 10). Our proposal focuses especially on these two aspects.
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@eax+38 46 @eax+26 43 @eax+38 32 @esp+79 50 . . .

Figure 3: Arrays represented as sequences (lists) of writes

3 Background
The theory of arrays has been introduced in Fig. 1 (Sec. 1). As already stated, the main difficulty
for reasoning over arrays comes from terms of the form select (store a i e) j, called read-over-write
(row), since depending on whether i = j holds or not, the term evaluates to e (select-hit) or
to select a j (select-miss). Array (formula) simplification consists in removing as many row
as possible before resolution by proving (when possible) the validity of the (dis-) equality of
such pairs of indexes (i, j) and rewrite the term accordingly. Such simplification procedures
critically depend on two factors: 1. the equality check procedure, and 2. the underlying
representation of an array and its revisions arising from successive writes.

The equality check must be both efficient — simplifying a formula must be cheaper than
solving it, and correct — all proven (dis-)equalities must indeed hold. It can thus only be
approximated, i.e. it is incomplete and may miss some valid (dis-)equalities. The standard
solution is to rely on syntactic term equality checking. Obviously this is a crude approximation:
disequality can never be proven (but for constant-value indexes), and as exemplified in Sec. 2,
small syntactic variations of the same value can hinder proving equalities.

We present now two (unsatisfactory) standard array representations, coming either from
the decision procedure community (the list representation: generic but slow) or from the symbolic
execution community (the map representation: efficient but restricted).

Arrays represented as lists. The standard representation of an array and its subsequent
revisions is basically a “store-chain”, the linked list of all successive writes in the array. Hence a
fresh array is simply an empty list, while the array obtained by writing an element e at index
i in array A is represented by a node containing (i, e) and pointing to the list representing A.
Fig. 3 illustrates this encoding. This approach is very generic — it can cope with symbolic
indexes, and it is the one implicitly used inside array solvers. In order to simplify a read at index
j on array A, one must decide whether i = j is valid for the pair (i, e) inside the head of the list
representing A. If we succeed, then we can apply the row axiom and replace the read by value
e. Otherwise, we try to decide whether i 6= j is valid. If this is the case, then we use the second
row axiom and move backward along the linked list. If not, the simplification process stops.

An inherent problem with this representation is the increase in the simplification cost as
the number of writes rises. As mentioned in Sec. 2, this cost becomes prohibitive when dealing
with large formulas. Indeed, one might be forced for each read to fully explore the write-list
backward, yielding a quadratic worst case time cost. This is especially unfortunate because this
worst case arises in situations where the simplification could perform the best, e.g. when all
disequalities between indexes hold so that all reads could be replaced with accesses to the initial
array (no more row). A workaround is to bound the backward exploration of the write-list,
which reduces the worst case time cost to linear, but at the expense of limited simplifications
(Fig. 10, Sec. 5.4).
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@28 84

@19 71

@69 39

@93 75

@10 58

@20 97

@49 44

. . .

Figure 4: Arrays rep-
resented as maps of
writes (constant write
indexes)

Arrays represented as maps. In the restricted case where all
indexes of reads and writes are constant values, a persistent map
with logarithmic lookup and insertion can be used to simplify all
row occurrences — yielding fast and scalable simplification. This
representation is used in symbolic execution tools [10] with strong
concretization policy [23, 14] during the formula generation step in
order to limit the introduction of arrays, but it is not suited to general
purpose array solvers as it cannot cope with symbolic indexes.

Here, a freshly declared array is represented by an empty map
where indexes and elements sorts correspond to those of the array,
and the array obtained after a write of element e at index i is simply
represented by the map of the written array in which e is added at
index i, as illustrated in Fig. 4. Then the simplification of a read at
index j becomes its substitution by the element mapped to j. In the
case where no such element is found, the read occurs on the initial
array. Therefore, we can either replace the array by the initial one
or replace the read by a fresh symbol. In the latter case, we have to
ensure that two reads are replaced by the same symbol if and only if
they occur at the same index.

4 Efficient simplification for read-over-write
We now present fas (Fast Array Simplification), an efficient approach to read-over-write sim-
plification. fas combines three key ingredients: a new representation for arrays as a list of
maps to ensure scalability, a dedicated rewriting step (base normalization) geared at improving
the conclusiveness of syntactic (dis-)equality checks between indexes, and lightweight domain
reasoning to go beyond purely syntactic checks.

4.1 Dedicated data structure: arrays represented as lists of maps
We look here for an array representation combining the advantages of the list representation
(genericity) and the map representation (efficiency) presented in Sec. 3. As a preliminary remark,
we can note that the map representation can be extended from the constant-indexes case to the
case where all indexes of reads and writes are pairwise comparable. By comparable we mean
that a binary comparison operator ≺ is defined and decidable for every pair of indexes in the
formula. Yet, if such a hypothesis might sometimes be satisfied, it is not necessary the case, for
example when indexes contain uninterpreted symbols.

The representation of arrays we propose, lists of maps (denoted map lists), aims precisely
at combining advantages of maps when all indexes are pairwise comparable while being as
general as lists in other situations. Our array representation can be thought of as a list of packs
of independent writes. The idea is that sets of comparable (and proven different) indexes can
be packed together into map-like data structures, allowing efficient (i.e. logarithmic) search on
these packs of indexes during the application of row-like simplification rules. While the idea is
presented here in general, we instantiate it in Sec. 4.3, Fig. 7, and in Sec. 4.4, Fig. 8.

In this representation, nodes of the list are maps from pairwise-comparable indexes to written
elements, as illustrated in Fig. 5. A fresh array is represented as an empty list (of maps). The
array obtained after the write of element e at index i is defined by:
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@eax+59 23

@eax+07 81

@eax+64 06

@eax+28 62

@esp+08 99

@esp+86 28

@esp+03 48

@esp+25 34

. . .

Figure 5: Arrays represented as sequences of packs of independent writes (map list)

• If i is comparable with all other indexes of elements already inserted in the map at head
position, then we add the element e at index i into this map (store-hit);

• Else we add to the list a fresh node containing the singleton map of index i to element e
(store-miss).

For a read at index j, the simplification of row is done as follows:
• If indexes in the head position map of the list representing the array are all comparable
with j, then if j belongs to this map we substitute the read by the associated element
(select-hit), else we re-iterate on the following node in the list (select-miss);
• Else, we abort (select-abort).

A first version of the dedicated (dis-)equality checks we use is presented in Sec. 4.2. The whole
fas procedure, together with the associated notion of comparable, is formally described in Sec. 4.3,
and a refinement using more semantic checks is presented in Sec. 4.4.

Intuitively, the benefit of this representation is that its behavior varies between the one of
the list representation and the one of the map representation, depending on the proportion
of indexes pairwise comparable. Indeed, when all indexes are pairwise comparable, the list
only contains a single map of all indexes, which is equivalent to the map representation. And
when none of the index pairs are comparable, the list is composed of singleton maps, which is
equivalent to the list representation.
From a technical point of view, map lists enjoys several good properties:

Property 1 (Compactness). By construction, all indexes in any map of a map list are pairwise
comparable, while indexes from adjacent maps are never comparable.

Property 2 (Complexity). Assuming that 1. we can decide efficiently (constant or logarithmic
time) whether an index is comparable to all the other indexes of a given map, 2. that ≺ between
comparable terms can also be efficiently decided (constant or logarithmic time), and 3. a decent
implementation of maps (logarithmic time insertion and lookup), then:
• Array writes are computed in logarithmic time (map insertion) — where the standard list
approach requires only constant time;

• Array reads are also computed in logarithmic time (map lookup) as select-miss can only
led to select-abort (Prop. 1) — where the standard list approach requires linear time.

In the case where all indexes are pairwise comparable, our representation contains a single
map and simplification cost for r reads and w writes is bounded by r · ln(w), while the list
approach requires a quadratic r · w time.

Finally, map lists allow to easily take into account some cases of write-over-write (a write
masked by a later write at the same index can be ignored if no read happens in-between), while
it requires a dedicated and expensive (w2) treatment with lists.
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4.2 Approximated equality check and dedicated rewriting
We consider as equality check a variation of syntactic term equality, namely syntactic base/off-
set equality, which is regarding two terms t1 and t2 defined as follows:
• If t1 , β1 + ι1 and t2 , β2 + ι2 — where β1, β2 are arbitrary terms (bases) and ι1, ι2 are
constant values (offsets), and β1 = β2 (syntactically) then return the result of ι1 = ι2,

• Otherwise the check is not conclusive.
This equality check is correct and efficient, and it strictly extends syntactic term equality — the
result is more often conclusive. Actually, in practice it turns out that this extension is significant.
Indeed, a common pattern in array formulas coming from software analysis is reads or writes at
indexes defined as the sum of a base and an offset (think of C or assembly programming idioms).
Hence, dealing with such terms is particularly interesting for verification-oriented formulas.

Dedicated rewriting: base normalization. Yet, this equality check still suffers from the
rigidity of syntactic approaches. Therefore it is worthwhile to normalizes indexes as much as
possible by applying a dedicated set of rewriting rules called base normalization (rebase),
cf. Fig. 6. These rules are essentially based on limited inlining of variables together with
associativity and commutativity rules of +/− operators, the goal being to minimize the number
of possible bases in order to increase the “conclusiveness” of our equality check, as done in
example Sec. 2.

if u , v then u+ k ; v + k alias inlining
if u , v + l then u+ k ; v + (k + l) base/offset inlining

− (x+ k) ; (−k)− x constant negation
(x+ k) + l ; x+ (k + l) constant packing
(x+ k) + y ; (x+ y) + k constant lifting

(x+ k) + (y + l) ; (x+ y) + (k + l) base/offset addition
(x+ k)− (y + l) ; (x− y) + (k − l) base/offset subtraction

. . .

Figure 6: Example of base normalization rules. u, v are variables, k, l are constant values and
x, y are terms. Non-inlining rules reduce either the number of operators or the depth of constant
values, ensuring termination. Note that (−k), (k + l), (k − l) are constant values, not terms.

Optimization: sub-term sharing. Sharing of sub-terms consists in giving a common name
to two syntactically equal terms. This improvement is not new, but has an original implication
is this context. Besides easing the decision of equality between terms, it remedies to an issue
induced by the simplification of row. Indeed, the simplification of row can be seen as a kind
of “inlining” stage, which may in some cases lead to terms size explosion. This problem arises
when after a write of element e at index i, several reads at index i are simplified. It may result
in numerous copies of term e, term which may contain itself other reads to simplify. By naming
and sharing terms read and written in arrays, the sub-term sharing phase prevents this issue.
Experiments in Sec. 5.4 demonstrate the practical interest on very large formulas.

4.3 The fas procedure
Using the generic algorithm of Sec. 4.1 with equality check and normalization from Sec. 4.2,
we formalize fas as the set of inference rules presented in Fig. 7. Two terms will be said
comparable when they share the same base β. store-hit and store-miss rules explain how
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to update the representation of an array on writes, and select-hit and select-miss rules
explain how to simplify reads. store rules are presented as triples {Λ} store a i e {Λ′} where
Λ′ is the representation for store a i e when Λ is the representation for a. select rules are
presented as triples {Λ} ` select a i; e meaning that select a i can be rewritten in e when Λ is
the representation for a.

i = β + ι ι a constant
{〈Γ, β, b〉 :: Λ} store a i e {〈Γ [ι← e] , β, b〉 :: Λ}

store-hit

i = α+ ι α 6= β

{〈Γ, β, b〉 :: Λ} store a i e {〈∅ [ι← e] , α, a〉 :: 〈Γ, β, b〉 :: Λ}
store-miss

Γ [ι] = e i = β + ι

{〈Γ, β, b〉 :: Λ} ` select a i; e
select-hit

{Λ} ` select b i; e Γ [ι] = ∅ i = β + ι

{〈Γ, β, b〉 :: Λ} ` select a i; e
select-miss

Figure 7: Inference rules for select and store using the map list representation

The representation 〈Γ, β, b〉 :: Λ we use is a specialized version of the map list representation
that we just defined, where Γ is a map, β is the common base of indexes present in Γ, b the
last revision of the array written at a different index than β, and where Λ is the tail of the list.
Assuming that all indexes have been normalized, if the base of the write index is equal to β,
then the store-hit rule applies and we add the written element into Γ. If the base of the write
index is not equal to β, then the store-miss rule applies. We add as a new node of the list a
singleton map containing only the written element, the new base and the written array. For
row-simplification, the select-hit rule states that if the base of the read index is equal to β,
and if there is an element in Γ mapped to this index, then we return this element. Finally the
select-miss rule states that if there is no such element, then we return the simplified read on b
at the same index, using Λ as the representation.

4.4 Refinement: adding domain-based reasoning
While our equality check performs well for deciding (dis-)equalities between indexes with a same
base, it behaves poorly with different bases. So we extend fas in Fig. 8 with domain-based
reasoning abilities. Basically, maps are now equipped with abstract domains over-approximating
their sets of (possible) concrete indexes, and the data structure is now a list of sets of maps,
all maps in a set having different bases but disjoint sets of concrete indexes. When syntactic
base/offset equality check is not conclusive, domain intersection may be used to prove disequality.

We borrow ideas from Abstract Interpretation [13]. Given a concrete domain D, an abstract
domain is a complete lattice

〈
D],v,t,u,>,⊥

〉
coming with a monotonic concretization function

γ : D] 7→ P (D) such that γ (>) = D and γ (⊥) = ∅. An element of an abstract domain is
called an abstract value. In the following the concrete domain is the set of array indexes.

The representation is now a list of sets of tuples
〈
Γ, β, b,Γ]

〉
where Γ, β and b are a map, a

base and an array as previously described, and where Γ] is the joined abstract value of indexes
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i = β + ι ι a constant
Θ =

{〈
Σ, σ, c,Σ]

〉
| σ 6= β ∧ Σ] u i] = ⊥

}
Ξ =

{〈
Σ, σ, c,Σ]

〉
| σ 6= β ∧ Σ] u i] 6= ⊥

}{(〈
Γ, β, b,Γ]

〉
⊕Θ ] Ξ

)
:: Λ

}
store a i e

{(〈
Γ [ι← e] , β, b,Γ] t i]

〉
⊕Θ

)
:: Ξ :: Λ

} store-hit

i = α+ ι ι a constant
Θ =

{〈
Σ, σ, c,Σ]

〉
| σ 6= α ∧ Σ] u i] = ⊥

}
Ξ =

{〈
Σ, σ, c,Σ]

〉
| σ 6= α ∧ Σ] u i] 6= ⊥

}
{(Θ ] Ξ) :: Λ} store a i e

{(〈
∅ [ι← e] , α, a, i]

〉
⊕Θ

)
:: Ξ :: Λ

} store-miss

Γ [ι] = e i = β + ι{(〈
Γ, β, b,Γ]

〉
⊕ Ξ

)
:: Λ

}
` select a i; e

select-hit

{Λ} ` select b i; e Γ [ι] = ∅ i = β + ι{(〈
Γ, β, b,Γ]

〉
⊕ Ξ

)
:: Λ

}
` select a i; e

select-miss

{Λ} ` select b i; e i = β + ι Θ =
{〈

Σ, σ, c,Σ]
〉
| σ 6= β ∧ Σ] u i] = ⊥

}
{Θ :: Λ} ` select a i; e

select-skip

Figure 8: Inference rules for select and store using domains

in Γ. Given a write at index i, the set at head position in the list is split into: 1. Θ the set of
tuples whose map abstract value does not overlap with i], the abstract value of i, 2. Ξ the set of
tuples whose map abstract value overlap with i], and if it exists, 3. the tuple

〈
Γ, β, b,Γ]

〉
where

β is after normalization the base of i. If this tuple exists, then the store-hit rule applies. We
update Γ as previously and its associated abstract value becomes the join value of γ] and i].
We append first Ξ alone onto the list, and then Θ together with the updated tuple. Else, the
store-miss rule applies. Again we first append Ξ alone, then Θ together with a new singleton
map, the new base, the written array and the write index abstract value. Finally, select-hit
and select-miss are similar to previous ones, but we add a new rule select-skip. This rule
states that, if the read index abstract value do not overlap with maps abstract values in the set
at head position, then we drop the head and reiterate on the tail of the list.

Note that if abstract values in these rules are set to >, then Θ is always empty and we get
back to the previous inference rules. Also the complexity of reads becomes linear in the list size,
as domains can prove disequality at each node of the list. Yet, it is not a problem in practice, as
demonstrated by experimental evaluation in Sec. 5.

Domain propagation. So far, we did not explained how abstract values are computed. The
literature on abstract domains is plentiful [28]. Nevertheless we present in Fig. 9 propagation
rules for a specific abstract domain, the well-known domain of (multi-)intervals — used in our
implementation (note that operations are performed over bitvectors of a known size N , and +
is the wraparound addition). The general difficulty is to find a sweet spot between the potential
gain (more checks become conclusive) and the overhead of propagation. As a rule of thumb,
non-relational domains should be tractable and useful. Especially, combining multi-intervals
with congruence (e.g. x ≡ 5 mod 8) or bit-level information (e.g. the second bit of x is 1) [3] is a
good candidate for refining our method at an affordable cost.
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Let i, j two bitvectors of size N , with i] = [mi,Mi], j] = [mj ,Mj ] where 0 ≤ mi,j ≤Mi,j ≤ 2N ,

c] = [c, c] for any constant c
v] = [mi,Mj ] if i ≤ v ≤ j

(extractl,h i)] = [0, 2h−l+1 − 1] if (Mi � l)− (mi � l) ≥ 2h−l+1

= [extractl,h (mi) , extractl,h (Mi)] if extractl,h (Mi) ≥ extractl,h (mi)
= [0, extractl,h (Mi)] otherwise
t [extractl,h (mi) , 2h−l+1 − 1]

(i+ j)] = [mi +mj ,Mi +Mj ] if Mi +Mj < 2N

= [mi +mj − 2N ,Mi +Mj − 2N ] if mi +mj ≥ 2N

= [mi +mj − 2N , 2N − 1] otherwise
t [0,Mi +Mj − 2N ]

Figure 9: Examples of propagation for intervals. These propagations are extended to multi-
intervals by distribution for unary operators and pairwise distribution for binary operators.

5 Implementation and experimental evaluation
5.1 Implementation
In order to evaluate the efficiency of our approach, we implemented fas (with the different
representations presented so far and the abstract domain of multi-intervals) as a preprocessor
for SMT formulas belonging to the QF_ABV logic (quantifier-free formulas over the theory of
bitvectors and arrays) — as typical choice in software verification. In that setting, all bitvector
values and expressions have statically known sizes, arithmetic operations are performed modulo
and values can “wraparound”. For reproducibility purposes source code and benchmarks are
available online2. The implementation comprises 6,300 lines of OCaml integrated into the Tfml
SMT formula preprocessing engine [19], part of the Binsec symbolic execution tool [15]. It
comprises all simplifications and optimizations described in Sec. 4, including map lists, base
normalization, sub-term sharing and domain propagation (multi-intervals) over bitvectors. Note
that our normalization rules (Sec. 4.2) and domain propagators (Sec. 4.4) correctly handle
possible arithmetic wraparounds.

An advantage operating as a preprocessor is to be independent of the underlying solver used
for formula resolution, and therefore allow us to evaluate the impact of our approach with several
of them. A drawback is that we do not have access to various internal components of the solver,
like accessing the model under construction, and cannot use them to refine our approach. In the
long term, a deeper integration into a solver would be more suitable.

5.2 Experimental setup
We evaluated fas performances under three criteria : 1. simplification thoroughness, measured by
the reduction of the number of row terms; 2. simplification impact, measured by resolution time
before and after simplification; 3. simplification cost, measured by the total time of simplification.

We devise three sets of experiments corresponding to three different scenarios: mid-sized
formulas generated by the SE-tool Binsec [15] from real executables programs — typical of test
generation and vulnerability finding (cf. Sec. 5.3), very large formulas generated by Binsec from

2http://benjamin.farinier.org/lpar2018/
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very long traces — typical of reverse and malware analysis (cf. Sec. 5.4), and formulas taken from
the SMT-LIB benchmarks (cf. Sec. 5.5). Regarding experiments over SE-generated formulas,
we also consider three variants corresponding to standard concretization / symbolization policies
[14] (cf. Sec. 5.3), as well as different timeout values. Experiments are carried out on an
Intel(R) Xeon(R) CPU E5-2660 v3 @ 2,60GHz. We consider three of the best SMT solvers for
the QF_ABV theory, namely Boolector [8], Yices [18] and Z3 [16].

Note that the impact of map lists (w.r.t. a list-based representation) and sub-term sharing will
be evaluated only in Sec. 5.4, as they are interesting only on large enough formulas. Moreover,
the map list representation impacts only preprocessing time, not its thoroughness: assuming
preprocessing does not time out (and rebase and domains are used), fas and fas-list will carry
out the same simplifications.

A note on problem encoding. As already stated, we consider quantifier-free formulas over
the theory of bitvectors and arrays coming from the encoding of low-level software verification
problems. Arithmetic operations are performed modulo and values can “wraparound”. Also,
since memory accesses in real hardware are performed at word-level (reading 4 or 8 bytes at
once), they are modelled here by successive byte-level reads and writes — allowing to take
properly into account misaligned or overlapping accesses. Finally, memory is often modelled as
a single logical array of bytes (i.e., bitvector values of size 8), without any a priori distinction
betweeen stack and heap (this is the case for all examples from Binsec).

5.3 Medium-size formulas from SE
We consider here typical formulas coming from symbolic execution over executable codes. While
mid-sized (max. 3.42 MB, avg. 1.40 MB), these formulas comprise quite long sequences of nested
row (max. 11,368 row, avg. 4,726 row) as there is only one initial array (corresponding to the
initial memory of the execution, i.e. a flat memory model). More precisely, we consider 6,590
traces generated by Binsec [15] from 10 security challenges (e.g. crackme such as Manticore
or Flare-On) and vulnerability finding problems (e.g. GRUB vulnerability), and from these
traces we generate 3 x 6,590 formulas depending on the concretization / symbolization policies
used in Binsec to generate them: concrete (all array indexes are set to constant values),
symbolic (symbolic array indexes), and interval (array indexes bound by intervals). We
consider two different timeout: 1,000 seconds (close to SMT-LIB benchmarks setting) and
1 second (typical of program analysis involving a large number of solver calls, e.g. deductive
verification or symbolic execution).

The whole results are presented in Table 1 (timeout 1,000 sec.) and Table 2 (timeout 1
sec.). Note that resolution time does not include timeout. Columns fas and fas-itv represents
respectively our technique (map list, rebase and sharing) potentially improved with domain
reasoning based on intervals (fas-itv). The default column represents a minimal preprocessing
step consisting of constant propagation and formula pruning, without any array simplification.

We can see that:
• Simplification time is always very low on these examples (340 sec. for 3 x 6,590 formulas,

in avg. 0.017 sec. per formula). Moreover, it is also very low w.r.t. resolution time (taking
timeout into account: Boolector 6%, Yices 4% and Z3 0.3%) and largely compensated by
the gains in resolution, but for one case where Boolector performs especially well (concrete
formulas: cost of 118% — not compensated by gains in resolution).

• Formula simplification is indeed thorough: as a whole, the number of row is reduced by a
factor 5 (2.5 without interval reasoning). The simplification performs extremely well, as
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Table 1: 6,590 x 3 medium-size formulas from SE, with timeout = 1,000 sec.: simplification
time (in seconds), number of row after simplification, number of timeout and resolution time
(in seconds, without timeout)

simpl. #timeout and resolution time #rowtime Boolector Yices Z3
co
nc
re
te default 61 0 163 2 69 0 872 866,155

fas 85 0 94 2 68 0 244 1,318
fas-itv 111 0 94 2 68 0 224 1,318

in
te
rv
al default 65 0 2,584 2 465 31 155,992 866,155

fas 99 0 2,245 2 487 25 126,806 531,654
fas-itv 118 0 755 2 140 14 37,269 205,733

sy
m
bo

lic default 61 0 6,173 3 1,961 65 305,619 866,155
fas 91 0 6,117 3 1,965 66 158,635 531,654

fas-itv 111 0 4,767 2 1,108 43 80,569 295,333

to
ta
l default 187 0 8,922 7 2,495 96 462,484 2,598,465

fas 275 0 8,458 7 2,520 91 285,686 1,064,626
fas-itv 340 0 5,616 6 1,317 57 37,573 502,384

Table 2: 6,590 x 3 medium-size formulas from SE, with timeout = 1 sec.

#timeout and resolution time
Boolector Yices Z3

co
nc
re
te default 2 93 2 3.12 2 655

fas 2 24 2 2.54 2 39
fas-itv 2 23 2 2.51 2 40

in
te
rv
al default 1,230 730 57 184 480 751

fas 593 1,213 58 181 483 773
fas-itv 52 602 6 66 273 665

sy
m
bo

lic default 1,947 575 2,771 307 3,497 438
fas 1,888 618 2,723 310 3,470 442

fas-itv 1,597 647 1,473 528 2,895 504

to
ta
l default 3,179 1,399 2,830 494 3,979 1,845

fas 2,483 1,856 2,783 495 3,955 1,254
fas-itv 1,651 1,273 1,481 597 3,170 1,210

expected, on concrete formulas, where almost all row instances are solved at preprocessing
time. On interval formulas, the number of row is sliced by a factor 4, and a factor 3 in
the case of full symbolic formulas.

• The impact of the simplification over resolution time (for a 1,000 sec. timeout) varies
greatly from one solver to another, but it is always significant: factor 1.5 for Boolector,
factor 1.9 for Yices with one fewer timeout, up to a factor 3.8 and 32 fewer timeout
for Z3. Especially, on interval formulas fas with domain reasoning yields a 3.4 (resp. 3.3)
speed factor for Boolector (resp. Yices), while Z3 on this category enjoys a 4.1 speedup
together with 14 fewer timeout. Interestingly, domain reasoning is useful also in the case
of fully symbolic formulas, i.e. with no explicit introduction of domain-based constraints.

Results for a 1 sec. timeout follows the same trend but they are much more significant
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(number of timeout: Boolector -48%, Yices -47% and Z3 -21%), and they become
especially dramatic on interval formulas (number of timeout: Boolector -96%, Yices
-90% and Z3 -44%).

Focus on specific cases. We highlight now a few interesting scenarios where fas performs very
well, especially formulas generated from the GRUB vulnerability (Table 3, 753 formulas) and
formulas representing the inversion of a crypto-like challenge (Table 4, 139 formulas). Regarding
GRUB, while basic fas does not really impact resolution time, adding domain-based reasoning
does allow a significant improvement — Boolector, Yices and Z3 becoming respectively 4.1x,
4.7x and 7x faster. Regarding UNGAR, again fas alone does not improve resolution time (for
Z3, we even see worse performance), but adding interval reasoning yields dramatic improvement:
Boolector becomes 18.8x faster, Yices becomes 48.2x faster (with -1 timeout) and Z3 does not
time out anymore (-12 timeout).

Table 3: GRUB (interval), 753 formulas —
Number of timeout and resolution time (in
seconds, without timeout)

#timeout and resolution time
GRUB Boolector Yices Z3
default 0 508 0 258 0 31,322

fas 0 505 0 257 1 26,809
fas-itv 0 123 0 54 0 4,481

Table 4: UNGAR (symbolic), 139 formulas —
Number of timeout and resolution time (in
seconds, without timeout)

#timeout and resolution time
UNGAR Boolector Yices Z3
default 0 359 3 627 12 926

fas 0 373 3 624 12 1,130
fas-itv 0 19 2 13 0 569

Conclusion. On these middle-size formulas coming from typical SE problems, we can draw
the following conclusion: Speed. fas is extremely efficient and does not yield any noticeable
overhead; Thoroughness. Formula simplification is significant — even on fully symbolic
formulas, and it becomes (as expected) dramatic on “concrete” formulas; Impact. The impact
of fas varies across solvers and formulas categories, yet it is always positive and it can be
dramatic in some settings (low timeout, interval formulas, etc.).

5.4 Very large formulas
We now turn our attention to large formulas (max. 458 MB, avg. 45 MB) involving very long
sequences of nested row (max. 510,066 row, avg. 49,850 row), as can be found for example in
symbolic deobfuscation. We consider 29 benchmarks taken from a recent paper on the topic [27]
representing execution traces over (mostly non crypto-) hash functions (e.g. MD5, City, Fast,
Spooky, etc.) obfuscated by the Tigress tool [12]. We also consider a trace taken from the
ASPack packing tool.

Results are presented in Table 5, where fas-list represents our simplification method where
the map list is replaced by a normal list — getting an improved version of the standard list-based
row-simplification (the goal being to evaluate the gain of our new data structure). Again,
simplification is significant with a strong impact on the number of time outs and on resolution
time, especially in the concrete case and for Z3. Impact in the symbolic case is more mixed
but positive (-1 timeout for Boolector and Z3, no impact for Yices). In term of size, fas
reduces formulas to max. 86.49MB, avg. 6.98MB, and fas-itv to max. 86.45MB, avg. 6.17MB.
If sub-term sharing is disabled, formulas size jumps to max. 591.99MB, avg. 14.95MB for fas
and max. 591.71MB, avg. 16.35MB for fas-itv. Regarding simplification time, fas-list suffers
from scalability issues on these formulas (5x slower than fas).

375



Arrays Made Simpler B. Farinier, R. David, S. Bardin, M. Lemerre

Table 5: 29 x 3 very large formulas from SE, with timeout = 1,000 sec.: simplification time
(in seconds), number of row after simplification, number of timeout and resolution time (in
seconds, without timeout)

simpl. #timeout and resolution time #rowtime Boolector Yices Z3
co
nc
re
te default 44 10 159 4 1,098 26 3.33 1,120,798

fas-list 1,108 8 845 4 198 10 918 456,915
fas 196 8 820 4 196 10 922 456,915

fas-itv 210 4 654 1 12 4 1,120 0

in
te
rv
al default 44 12 131 12 596 27 0.19 1,120,798

fas-list 222 12 129 12 595 26 236 657,594
fas 231 12 129 12 597 26 291 657,594

fas-itv 237 12 58 12 28 19 81 651,449

sy
m
bo

lic default 40 12 1,522 12 1,961 27 0.13 1,120,798
fas-list 187 11 1,199 12 2,018 26 486 657,594

fas 194 11 1,212 12 2,081 26 481 657,594
fas-itv 200 11 1,205 12 2,063 26 416 657,594
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Figure 10: Boolector on ASPack

The ASPack example. We now turn our attention
to the formula generated from a trace of a program pro-
tected by ASPack (96 MB and 363,594 row, concrete
mode). Solving the formula is highly challenging: while
Yices succeeds in a decent amount of time (69 seconds),
Z3 terminates in 2h36min while Boolector needs 24h.
Table 6 presents our results on this particular example.
fas performs extremely well (Table 6), turning resolu-
tion time from hours to a few seconds (Boolector) or
minutes (Z3). Yices also benefits from it. Especially,
all row instances are simplified away. fas and fas-itv
reduce the ASPack formula size to 3.81MB, while it
jumps to 443.54MB when sub-term sharing is disabled.
Interestingly, this example clearly highlights the scalability of fas w.r.t. a standard list-based
approach, passing roughly from 1h (list) to 1 minute (fas). Fig. 10 proposes a detailed view of
the performance and impact of the standard list-based simplification method (Boolector only),
depending on the bound for backward reasoning (the standard method has no bound). For
comparison, the two horizontal lines represent simplification and resolution time with fas. We
can see that bounding the list-based reasoning has no tangible effect here, as we need at least a
3,000 seconds (50 minutes) simplification time to get a resolution time under 3,000 seconds.

Table 6: ASPack formula, without timeout

simpl. resolution time #rowASPack time Boolector Yices Z3
default 15 sec. ≈ 24h 69 sec. 2h36 360,991
fas-list 53 min. 9.7 sec. 3.4 sec. 183 sec. 0

fas 61 sec. 9.7 sec. 3.4 sec. 183 sec. 0
fas-itv 63 sec. 9.8 sec. 3.4 sec. 182 sec. 0
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Conclusion. Once again fas appears to be fast and to have a significant impact on resolution
time, especially in the concrete case where the difference can be from several hours to a few
seconds (total resolution + simplification: a few minutes). Moreover, it appears clearly that on
very long traces fas scales much better than the standard list-based row-simplification method.

5.5 SMT-LIB formulas

We consider now the impact of fas on formulas taken from the SMT-LIB benchmarks. These
formulas are notably different from the ones considered in the two previous experiments: while
most of them do come from verification problems, they may involve complex Boolean structure
(rather than “mostly conjunctive” formulas) and they do not necessarily exhibit very deep chains
of row. These kinds of formulas are not our primary objective, yet we seek to evaluate how
our technique performs on a “bad case”. We evaluate fas on all the 15,016 SMT-LIB formulas
from QF_ABV theory. timeout is set to 1,000 seconds. Results are reported in Table 7. Note
that, again, resolution time does not include timeout.

Table 7: 15,016 formulas from SMT-LIB benchmarks, with timeout = 1.000 sec.: simplification
time (in seconds), number of row after simplification, number of timeout and resolution time
(in seconds, without timeout)

simpl. #timeout and resolution time #rowSMT-LIB time Boolector Yices Z3
default 87 59 20,126 151 28,156 158 41,925 548,176

fas 378 54 19,922 148 26,657 147 43,090 469,815
fas-itv 378 55 19,843 146 28,703 149 40,873 469,567

Conclusion. fas is again very efficient on these formulas (avg. 0.025 sec. per formula), and
reduces the number of row by -14%. Yet the impact of simplifications, while slight, is clearly
positive on both timeout (Boolector -8%, Yices -2% and Z3 -7%) and resolution time (for Yices,
only when taking timeout time into account). Such gains are not anecdotal as the best SMT
solvers are highly tuned for SMT-LIB. Since the number of timeout is the main metric for
SMT-LIB, Boolector with fas would have won the last edition for QF_ABV theory. Finally,
domain reasoning does not add anything here (but for Yices) — either the benchmark formulas
do not exhibit such interval constraints, or our propagation mechanism is too crude to take
advantage of it.

5.6 Conclusion

Our experiments demonstrate that our approach is efficient (the cost is almost always negligible
w.r.t. resolution time) and scalable (compared to the list-based method). The simplification is
thorough, removing a large fraction of row. The impact is always positive (both in resolution
time and number of time outs), and it is dramatic for some key usage scenarios such as SE-like
formulas with small timeout or very large size.

Finally, we can note that domain reasoning is usually helpful (though, not on SMT-LIB
formulas) and that it shows a powerful synergy with the “interval C/S policy” in SE — yielding
a new interesting sweet spot between tractability and genericity of reasoning.
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6 Related work
A preliminary work in progress version of this work was published in a French workshop [20],
in French (6 pages). The current article adds a much more refined description, the domain
reasoning part and a much more systematic and thorough experimental evaluation (including
SMT-LIB, long traces over packed hash functions, etc.).

Decision procedures for the theory of arrays. Surprisingly, there have been relatively few
works on the efficient handling of the (basic) theory of arrays. Standard symbolic approaches
for pure arrays complement symbolic read-over-write preprocessing [22, 5, 2] with enumeration
on (dis-)equalities, yielding a potentially huge search space. New array lemmas can be added
on-demand or incrementally discovered through an abstraction-refinement scheme [9]. Another
possibility is to reduce the theory of arrays to the theory of equality by systematic “inlining” of
the array axioms to remove all store operators, at the price of introducing many case-splits The
encoding can be eager [24] or lazy [9]. Our method generalizes previous preprocessing [22, 2]
and is complementary to complete resolution methods [9, 24]. Note also that our approach
could benefit from being integrated directly within such a complete resolution method, allowing
incremental simplification all along the resolution process.

Decision procedures have also been developed for expressive extensions of the array theory,
such as arrays with extensionality (i.e. equality over whole arrays) or the array property fragment
[7], which enables limited forms of quantification over indexes and arithmetic constraints. These
extensions aim at increasing expressiveness and they do not focus so much on practical efficiency.
Our method can also be applied to these settings (as row are still a crucial issue), even though
it will not cover all difficulties of these extensions.

Optimized handling of arrays inside tools. Many verification and program analysis tools
and techniques ultimately rely on solving logical formulas involving the theory of arrays. Since
the common practice is to re-use existing (SMT) solvers, these approaches suffer from the
limitations of the current solvers over arrays. As a mitigation, some of these tools take into
account knowledge from the application domain in order to generate relevant (but usually not
equivalent) and simpler formulas [25, 21] — see also the specific case of SE over concrete indexes
discussed in Sec. 3. Our method is complementary to these approaches as it operates on arbitrary
formulas and the simplification keeps logical equivalence.

7 Conclusion
The theory of arrays has a central place in software verification due to its ability to model memory
or data structures. Yet, this theory is known to be hard to solve because of read-over-write terms
(row), especially in the case of very large formulas coming from unrolling-based verification
methods. We have presented fas, an original simplification method for the theory of arrays
geared at eliminating row, based on a new dedicated data structure together with original
simplifications and low-cost reasoning. The technique is efficient, scalable and it yields significant
simplification. The impact on formula resolution is always positive, and it can be dramatic on
some specific classes of problems of interest, e.g. very long formula or binary-level symbolic
execution. These advantages have been experimentally proven both on realistic formulas coming
from symbolic execution and on SMT-LIB formulas.

Future work includes a deeper integration inside a dedicated array solver in order to benefit
from more simplification opportunities along the resolution process, as well as exploring the
interest of adding more expressive domain reasoning.
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