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Abstract

Spontaneous imbibition is the process in which the wetting phase is drawn into a
porous medium by means of capillary force. Cocurrent and countercurrent spontaneous
imbibitions are defined as wetting and non-wetting fluid flow in identical, and opposite
directions respectively. The mathematical model is developed for cocurrent imbibition
phenomenon in the inclined oil formatted homogeneous porous medium. An approximate
analytical solution of the governing equation is derived by homotopy analysis method. The
graphical and numerical solutions are discussed.

1 Introduction

One of the most important process in oil recovery is the spontaneous imbibition which is driven
by capillary force. Such spontaneous imbibition may occur in the form of cocurrent imbibition
or countercurrent imbibition. The direction of flow is the main difference between these two
crucial mechanisms for imbibition. In cocurrent imbibition, the wetting and non-wetting phases
flow in the same direction with the non-wetting phase being pushed out ahead of the wetting
phase. In countercurrent imbibition, the wetting and non-wetting phases flow in the opposite
directions. Imbibition in water-wet porous media is commonly considered as countercurrent
imbibition [3, 5, 7, 13, 20, 24]. When a porous medium is partially filled with wetting phase, oil
recovery is dominated by cocurrent imbibition phenomenon, not countercurrent imbibition. In
the oil recovery process, cocurrent imbibition is more efficient than countercurrent imbibition
[3, 20, 24].

Cocurrent imbibition phenomenon have been investigated by many authors with different
viewpoints [3, 13, 20, 24]. Bourblaux and Kalaydjian [3] have discussed experimental study of
cocurrent and countercurrent flows in natural porous media. Pooladi-Darvish and Firoozabadi
[20] have studied the similarities and differences of cocurrent and countercurrent imbibition and
pointed out the consequences for practical applications. Series solution is obtained for cocurrent
imbibition during immiscible two-phase flow through porous media by Yadav and Mehta [24].
Exact integral solutions for the horizontal, unsteady flow of two viscous, incompressible fluids
are derived by Mcwhorter and Sunada [13]. Homotopy perturbation method is used for solving
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the problem of cocurrent and countercurrent imbibition flow into vertical porous medium by
Fazeli et al. [7].

During secondary oil recovery process, it is assumed that the water is injected into fractured
oil formatted inclined homogeneous porous medium and cocurrent imbibition phenomenon oc-
curs. It is also assumed that the macroscopic behavior of fingers is governed by statistical
treatment. Thus only average cross sectional area occupied by fingers is taken into account,
the size and shape of individual fingers are disregarded. The velocity of oil and the velocity
of water are considered under gravitational effect and inclination effect. For the investigated
flow system, the porosity and permeability of inclined homogeneous porous medium are as-
sumed to be constants. The saturation of injected water Sw(x, t) is then defined as the average
cross-sectional area occupied by injected water at distance x and time t.

In the current work, the mathematical model is developed for cocurrent imbibition phe-
nomenon occurring during secondary oil recovery process. The mathematical formulation of
cocurrent imbibition generates a one dimensional nonlinear partial differential equation. Homo-
topy analysis method is adopted to solve this equation with appropriate boundary conditions.
The solution describes the saturation of injected water at distance x and time t for cocurrent
imbibition phenomenon in inclined homogeneous porous medium.

2 Mathematical Modelling

2.1 Fundamental equations

During the injection process, two-phase immiscible and incompressible flow in porous medium
is governed by the generalized Darcy’s law for each phase as [2, 15, 21]:

Vw = −kw
δw
K

(
∂Pw
∂x

+ ρwgsinθ

)
(1)

Vo = −ko
δo
K

(
∂Po
∂x

+ ρogsinθ

)
(2)

where Vw and Vo are the velocities of water and oil respectively, kw and ko are the relative
permeabilities of water and oil respectively, δw and δo are the constant viscosities of water and
oil respectively, K is the permeability of the inclined homogeneous porous medium, Pw and Po
are the pressures of water and oil respectively, ρw and ρo are the constant densities of water
and oil respectively, g is the acceleration due to gravity, θ is the angle of inclination with porous
matrix.

The law of conservation of mass for incompressible flow gives

P
∂Sw
∂t

+
∂Vw
∂x

= 0 (3)

where P is the porosity.
The sum of the velocities of injected water and native oil is the total velocity Vt in cocurrent

imbibition phenomenon [9]

Vw + Vo = Vt (4)
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2.2 Standard relations

The difference between pressures of oil and water is defined as the capillary pressure (Pc). We
assume that the capillary pressure is a function of phase saturation [19, 21]:

Pc(Sw) = Po − Pw (5)

Assume that the relationship between capillary pressure and phase saturation is of the form
[14]

Pc(Sw) = −βSw (6)

where β is a constant.
According to Scheidegger and Johnson [22], consider the analytical relationship between

relative permeability and phase saturation as

kw = Sw and ko = 1− αSw (7)

where α ia a constant.

2.3 Equation of motion for saturation

Combining (1), (2) and (4), we get

−kw
δw
K

(
∂Pw
∂x

+ ρwgsinθ

)
− ko
δo
K

(
∂Po
∂x

+ ρogsinθ

)
= Vt (8)

Using (5) in (8)

kw
δw
K

(
∂Pw
∂x

+ ρwgsinθ

)
+
ko
δo
K

(
∂Pc
∂x

+
∂Pw
∂x

+ ρogsinθ

)
= −Vt (9)

Solving (9) for ∂Pw

∂x

∂Pw
∂x

= −
(
K
kw
δw

+K
ko
δo

)−1(
K

(
ko
δo
ρo +

kw
δw
ρw

)
gsinθ +K

ko
δo

∂Pc
∂x

+ Vt

)
(10)

Combining (1) and (10) results in

Vw = −kw
δw

(
kw
δw

+
ko
δo

)−1(
K
ko
δo

(ρw − ρo) gsinθ −K
ko
δo

∂Pc
∂x
− Vt

)
(11)

The pressure of water can be expressed in the form

Pw =
Pw + Po

2
+
Pw − Po

2
= P̄ − 1

2
Pc (12)

where P̄ is the mean pressure which is constant, therefore (9) reduces to

K

(
kw
δw
ρw +

ko
δo
ρo

)
gsinθ +

K

2

(
ko
δo
− kw
δw

)
∂Pc
∂x

= −Vt (13)
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Therefore (11) implies

Vw =
K

2

kw
δw

∂Pc
∂x
−Kkw

δw
ρwgsinθ (14)

Substituting (14) into (3), we get

P
∂Sw
∂t

+
∂

∂x

[
K

2

kw
δw

∂Pc
∂x
−Kkw

δw
ρwgsinθ

]
= 0 (15)

Since kw = Sw and Pc = −βSw, we have

P
∂Sw
∂t
− Kβ

2δw

∂

∂x

[
Sw

∂Sw
∂x

]
− Kρwgsinθ

δw

∂Sw
∂x

= 0 (16)

Using dimensionless variables

X =
x

L
, T =

βKt

2δwL2P
,

(16) reduces to

∂Sw
∂T

=
∂

∂X

[
Sw

∂Sw
∂X

]
+A

∂Sw
∂X

(17)

where A = 2Lρwgsinθ
β and Sw(x, t) = Sw(X,T ).

Eq. (17) is the nonlinear partial differential equation for the cocurrent imbibition phenomenon
in the inclined homogeneous porous medium and Sw(X,T ) is the solution of this equation which
represents the saturation of injected water at distance X and time T .

We used following boundary conditions for solving (17):

Sw(0, T ) = 0 and Sw(1, T ) =
2(1 + T )

5
(18)

3 Solution by Homotopy Analysis Method

The homotopy analysis method which was first proposed by Liao [10, 11] is an effective and pow-
erful technique to obtain an approximate analytical solution of nonlinear differential equation.
The homotopy analysis method has been widely applied to solve nonlinear partial differential
equations [4, 6, 8, 12, 16, 17, 18, 23]. Here we apply HAM to the nonlinear PDE (17). Consider
the nonlinear partial differential equation

N [φ(X,T ; q)] = 0 (19)

where N is a nonlinear operator.
We define a nonlinear operator

N [φ(X,T ; q)] = φ(X,T ; q)
∂2φ(X,T ; q)

∂X2
+

{
∂φ(X,T ; q)

∂X

}2

+A
∂φ(X,T ; q)

∂X
− ∂φ(X,T ; q)

∂T
.

(20)
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We choose the auxiliary linear operator

L[φ(X,T ; q)] =
∂2φ(X,T ; q)

∂X2
. (21)

According to the boundary conditions (18), we choose the initial approximation of Sw(X,T ) as

Sw0
(X,T ) =

2(X2 + TX)

5
. (22)

Let q ∈ [0, 1] denote the embedding parameter, c0 6= 0 the convergence control parameter,
H(X,T ) 6= 0 an auxiliary function, L an auxiliary linear operator with the property L(f) = 0
when f = 0. The so-called zeroth-order deformation equation is

(1− q)L[φ(X,T ; q)− Sw0(X,T )] = c0qH(X,T )N [φ(X,T ; q)]. (23)

Thus when q = 0 and q = 1, we have

φ(X,T ; 0) = Sw0
(X,T ) and φ(X,T ; 1) = Sw(X,T ). (24)

Thus φ(X,T ; q) continuously deforms from the initial approximation Sw0(X,T ) to the exact
solution Sw(X,T ) of (17) as q increases from 0 to 1. Expanding φ(X,T ; q) in Maclaurin series
with respect to q, we have the homotopy-Maclaurin series

φ(X,T ; q) = Sw0
(X,T ) +

∞∑
m=1

Swm
(X,T )qm (25)

where

Swm(X,T ) =
1

m!

∂mφ(X,T ; q)

∂qm

∣∣∣∣∣
q=0

(26)

is the mth-order homotopy derivative of φ(X,T ; q). Assume that the auxiliary linear operator
L, the initial approximation Sw0

(X,T ), the convergence control parameter c0 and the auxiliary
function H(X,T ) are so properly chosen that the homotopy-Maclaurin series (25) converges at
q = 1, we have due to (24) the homotopy series solution

Sw(X,T ) = Sw0
(X,T ) +

∞∑
m=1

Swm
(X,T ). (27)

Write
−−→
Swn

= {Sw0
, Sw1

, . . . , Swn
} . Differentiating (23) m times with respect to q, then setting

q = 0 and finally dividing them by m!, we have the so-called high-order deformation equation

L[Swm(X,T )− χmSwm−1(X,T )] = c0H(X,T )Rm(
−−−−→
Swm−1) (28)

subject to the boundary conditions

Swm
(0, T ) = 0 and Swm

(1, T ) = 0, m ≥ 1 (29)

where

χm =

{
0 if m ≤ 1,

1 if m > 1
(30)
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and

Rm(
−−−−→
Swm−1

) =

m−1∑
i=0

Swi

∂2Swm−1−i

∂X2
+

m−1∑
i=0

∂Swi

∂X

∂Swm−1−i

∂X
+A

∂Swm−1

∂X
−
∂Swm−1

∂T
,m ≥ 1.

(31)

For the sake of simplicity, assume H(X,T ) = 1. Then the solution of (28) reads

Swm
(X,T ) = χmSwm−1

(X,T ) + c0L−1[Rm(
−−−−→
Swm−1

)] + C1X + C2 (32)

where the coefficients C1 and C2 are determined by the boundary conditions (29). Hence

Sw(X,T ) =
2X2

5
+

2TX

5
+ c0

(
− X

75
− 2AX

15
− 4TX

25
− ATX

5
− 2T 2X

25

+
ATX2

5
+

2T 2X2

25
− X3

15
+

2AX3

15
+

4TX3

25
+

2X4

25

)
+ c0

[
− X

75

− 2AX

15
− 4TX

25
− ATX

5
− 2T 2X

25
+
ATX2

5
+

2T 2X2

25
− X3

15
+

2AX3

15

+
4TX3

25
+

2X4

25
+ c0

(
− 7X

375
− 7AX

750
+
A2X

30
− TX

75
+
ATX

25

+
A2TX

30
+
AT 2X

75
− AX2

150
− A2X2

15
− 2TX2

375
− 2ATX2

15
− A2TX2

10

− 8T 2X2

125
− 3AT 2X2

25
− 4T 3X2

125
+

8X3

375
− AX3

50
− 14TX3

375
− 2ATX3

25

+
A2TX3

15
+

8AT 2X3

75
− 4T 2X3

125
+

4T 3X3

125
− AX4

30
+
A2X4

30
− TX4

25

+
13ATX4

75
+

12T 2X4

125
− 13X5

375
+

26AX5

375
+

12TX5

125
+

4X6

125

)]
+ · · · (33)

is an approximate analytical expression of the solution of nonlinear partial differential equation
(17) which represents the saturation of cocurrent imbibition phenomenon in inclined homoge-
neous porous medium.

4 Results and Discussion

The convergence of homotopy analysis solution is strongly dependent on convergence control
parameter c0. Many researchers have discussed the convergence of homotopy analysis solution
using c0-curve; for example, Darvishi and Khani [4] have obtained series solution of the foam
drainage equation, Abbasbandy at al. [1] have discussed mathematical properties of c0-curve in
the frame work of the homotopy analysis method, Ghotbi at al. [8] have obtained the homotopy
analysis solution of Richard’s equation for unsaturated flow of transports in soils, Fariborzi and
Naghshband [6] have discussed the convergence of homotopy analysis method to solve the
Schrodinger equation with a power law nonlinearity, Patel and Desai [17] have obtained the
solution of nonlinear partial differential equation of countercurrent imbibition phenomenon in
inclined homogeneous porous medium.

The c0-curve helps us to discover the valid region of c0, which corresponds to the line segment
almost parallel to the horizontal axis [1, 4, 6, 8, 17, 18]. The BVPh 1.1, a Mathematica

56



A Mathematical Model of Cocurrent Imbibition... M. A. Patel and N. B. Desai

package [12] is used to plot the c0-curves. To obtain the numerical and graphical representations
of the solution, we assume that the value of constants are as L = 1, ρw = 0.1, g = 9.8, β = 2.

4.1 Without inclination with porous matrix i.e. θ = 0◦.

The homotopy analysis solution of cocurrent imbibition is derived for horizontal homogeneous
porous medium and its convergence depends on c0 which is chosen from c0-curve. Fig. 1 shows
the c0-curve of SwXX

(0, 0) for 30th order approximation and c0 = −0.1 is chosen from this
c0-curve.

-0.8 -0.6 -0.4 -0.2 0.2
c0

-3

-2

-1

1

8SwXXH0, 0L<

Fig. 1. The c0-curve of SwXX
(0, 0).

Table 1 indicates the numerical values of saturation of injected water for cocurrent imbibition
phenomenon in horizontal homogeneous porous medium. The graph of saturation of injected
water versus distance X for fixed time T = 0.1, 0.2, . . . , 1 is shown in Fig. 2.

Table 1: Numerical values of the saturation of injected water for θ = 0◦.
T X = 0.1 X = 0.2 X = 0.3 X = 0.4 X = 0.5 X = 0.6 X = 0.7 X = 0.8 X = 0.9 X = 1

0.1 0.0098380 0.0286652 0.0568974 0.0942209 0.1397092 0.1920183 0.2496140 0.3109845 0.3747994 0.4400000
0.2 0.0188183 0.0458898 0.0812903 0.1244648 0.1743800 0.2297261 0.2891245 0.3512995 0.4151905 0.4800000
0.3 0.0281635 0.0636062 0.1061190 0.1549784 0.2091191 0.2673299 0.3284301 0.3913983 0.4554402 0.5200000
0.4 0.0378634 0.0817849 0.1313386 0.1857117 0.2438835 0.3048009 0.3675183 0.4312809 0.4955529 0.5600000
0.5 0.0479077 0.1003971 0.1569063 0.2166188 0.2786345 0.3421151 0.4063802 0.4709492 0.5355336 0.6000000
0.6 0.0582861 0.1194149 0.1827813 0.2476568 0.3133380 0.3792522 0.4450099 0.5104064 0.5753876 0.6400000
0.7 0.0689884 0.1388107 0.2089248 0.2787865 0.3479635 0.4161957 0.4834038 0.5496570 0.6151205 0.6800000
0.8 0.0800042 0.1585579 0.2353000 0.3099718 0.3824845 0.4529325 0.5215607 0.5887067 0.6547380 0.7200000
0.9 0.0913235 0.1786304 0.2618722 0.3411796 0.4168781 0.4894526 0.5594816 0.6275619 0.6942459 0.7600000
1.0 0.1029360 0.1990029 0.2886084 0.3723799 0.4511243 0.5257485 0.5971686 0.6662294 0.7336501 0.8000000
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0.2 0.4 0.6 0.8 1.0
X

0.2

0.4

0.6

0.8

SwHX, TL

Fig. 2. Saturation of water v/s distance X for fixed time T = 0.1, 0.2, . . . , 1.

4.2 θ = 5◦ inclination with porous matrix.

Fig. 3 shows the c0-curve of SwXX
(0, 0) for 30th order approximation and the proper value of

c0 = −0.1 chosen for convergent homotopy analysis solution of cocurrent imbibition in inclined
(θ = 5◦) homogeneous porous medium.

-0.8 -0.6 -0.4 -0.2 0.2 0.4
c0

1.0

1.5

2.0

8SwXXH0, 0L<

Fig. 3. The c0-curve of SwXX
(0, 0).

Table 2 indicates the numerical values of saturation of injected water for cocurrent imbibition
phenomenon. The graph of saturation of injected water versus distance X for fixed time T =
0.1, 0.2, . . . , 1 is given in Fig. 4.

Table 2: Numerical values of the saturation of injected water for θ = 5◦.
T X = 0.1 X = 0.2 X = 0.3 X = 0.4 X = 0.5 X = 0.6 X = 0.7 X = 0.8 X = 0.9 X = 1

0.1 0.0134242 0.0353242 0.0658915 0.1046419 0.1505559 0.2022832 0.2583616 0.3174084 0.3782527 0.4400000
0.2 0.0229441 0.0533840 0.0912083 0.1357445 0.1859259 0.2404929 0.2981836 0.3578808 0.4186973 0.4800000
0.3 0.0328201 0.0719041 0.1169061 0.1670467 0.2212909 0.2785331 0.3377509 0.3981061 0.4589871 0.5200000
0.4 0.0430415 0.0908550 0.1429412 0.1985016 0.2566122 0.3163803 0.3770560 0.4380880 0.4991283 0.5600000
0.5 0.0535977 0.1102079 0.1692718 0.2300657 0.2918555 0.3540153 0.4160945 0.4778315 0.5391275 0.6000000
0.6 0.0644781 0.1299345 0.1958584 0.2616994 0.3269906 0.3914225 0.4548646 0.5173427 0.5789915 0.6400000
0.7 0.0756722 0.1500076 0.2226633 0.2933660 0.3619913 0.4285900 0.4933666 0.5566289 0.6187269 0.6800000
0.8 0.0871694 0.1704004 0.2496513 0.3250324 0.3968351 0.4655087 0.5316030 0.5956982 0.6583407 0.7200000
0.9 0.0989593 0.1910873 0.2767889 0.3566684 0.4315026 0.5021724 0.5695778 0.6345590 0.6978398 0.7600000
1.0 0.1110315 0.2120431 0.3040445 0.3882467 0.4659777 0.5385776 0.6072965 0.6732204 0.7372307 0.8000000
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Fig. 4. Saturation of water v/s distance X for fixed time T = 0.1, 0.2, . . . , 1.

4.3 θ = 10◦ inclination with porous matrix.

The homotopy analysis solution is obtained for cocurrent imbibition in inclined (θ = 10◦)
homogeneous porous medium. The c0-curve of SwXX

(0, 0) for 30th order approximation is
plotted; see Fig. 5. Here we choose proper value of c0 = −0.1.

-0.8 -0.6 -0.4 -0.2 0.2 0.4
c0

2

4

6

8

10
8SwXXH0, 0L<

Fig. 5. The c0-curve of SwXX
(0, 0).

The numerical values of saturation of injected water for cocurrent imbibition phenomenon are
obtained (see Table 3). Fig. 6 shows the graph of saturation of injected water versus distance
X for fixed time T = 0.1, 0.2, . . . , 1.

Table 3: Numerical values of the saturation of injected water for θ = 10◦.
T X = 0.1 X = 0.2 X = 0.3 X = 0.4 X = 0.5 X = 0.6 X = 0.7 X = 0.8 X = 0.9 X = 1

0.1 0.0171217 0.0421112 0.0749611 0.1150472 0.1612894 0.2123590 0.2668863 0.3236290 0.3815786 0.4400000
0.2 0.0271826 0.0609980 0.1011812 0.1469785 0.1973249 0.2510391 0.3069950 0.3642431 0.4220696 0.4800000
0.3 0.0375898 0.0803124 0.1277266 0.1790391 0.2332829 0.2894859 0.3468013 0.4045810 0.4623935 0.5200000
0.4 0.0483324 0.1000247 0.1545544 0.2111850 0.2691290 0.3276812 0.3863026 0.4446497 0.5025581 0.5600000
0.5 0.0593993 0.1201059 0.1816243 0.2433760 0.3048336 0.3656107 0.4254988 0.4844573 0.5425715 0.6000000
0.6 0.0707798 0.1405281 0.2088981 0.2755751 0.3403706 0.4032635 0.4643923 0.5240130 0.5824417 0.6400000
0.7 0.0824630 0.1612641 0.2363397 0.3077490 0.3757182 0.4406321 0.5029872 0.5633266 0.6221768 0.6800000
0.8 0.0944381 0.1822875 0.2639152 0.3398674 0.4108576 0.4777116 0.5412894 0.6024085 0.6617847 0.7200000
0.9 0.1066946 0.2035727 0.2915928 0.3719031 0.4457736 0.5144999 0.5793063 0.6412692 0.7012731 0.7600000
1.0 0.1192218 0.2250951 0.3193426 0.4038318 0.4804535 0.5509968 0.6170462 0.6799197 0.7406496 0.8000000
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0.2 0.4 0.6 0.8 1.0
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Fig. 6. Saturation of water v/s distance X for fixed time T = 0.1, 0.2, . . . , 1.

5 Conclusions

We have discussed cocurrent imbibition phenomenon in inclined homogeneous porous medium
and its mathematical model is derived. An approximate analytical solution is obtained for
cocurrent imbibition phenomenon by homotopy analysis method. The solution satisfies both
the boundary conditions. The numerical and graphical interpretations are given. The saturation
of injected water increases when angle of inclination with porous matrix increases. We conclude
that the saturation of injected water increases when the distance increases for given time T .
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