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Abstract

Comparative tests work by finding the difference (or the absence of difference) between
a reference subject and an evaluee. The Turing Test, in its standard interpretation, takes (a
subset of ) the human species as a reference. Motivated by recent findings and developments
in the area of machine intelligence evaluation, we discuss what it would be like to have
a Turing Test where the reference and the interrogator subjects are replaced by Turing
Machines. This question sets the focus on several issues that are usually disregarded when
dealing with the Turing Test, such as the degree of intelligence of reference and interrogator,
the role of imitation (and not only prediction) in intelligence, its view from the perspective
of game theory and others. Around these issues, this paper finally brings the Turing Test
to the realm of Turing machines.

Keywords: Turing Test, Turing machines, intelligence, learning, imitation games,
Solomonoff-Kolmogorov complexity, game theory, human unpredictability, matching pen-
nies.

1 Introduction

The Turing Test [26] is still the most popular test for machine intelligence. However, the Turing
Test, as a measurement instrument and not as a philosophical argument, is very different to
the instruments other disciplines use to measure intelligence in a scientific way. The Turing
Test resembles a much more customary (and non-scientific) assessment, which happens when
humans interview or evaluate other humans (for whatever reason, including, e.g., personnel
selection, sports! or other competitions). The most relevant (and controversial) feature of the
Turing Test is that it takes humans as a touchstone to which machines should be compared. In
fact, the comparison is not performed by an objective criterion, but assessed by human judges,
which is not without controversy. Another remarkable feature (and perhaps less controversial)
is that the Turing Test is set on an intentionally restrictive interaction channel: a teletype
conversation.

Nonetheless, there are some features about the Turing Test which make it more general than
other kinds of intelligence tests. For instance, it is becoming increasingly better known that
programs can do well at human IQ tests [28][27][5], because ordinary IQ tests only evaluate
narrow abilities (and assume that narrow abilities accurately reflect human abilities across a
broad set of tasks), which may not hold for non-human populations. The Turing Test (and

In many sports, to see how good a player is, we want competent judges but also appropriate team-mates and
opponents. Good tournaments and competitions are largely designed so as to return (near) maximal expected
information.
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some formal intelligence measures we will review in the following section) can test broad sets
of tasks.

We must say that Turing cannot be blamed for all the controversy. The purpose of Tur-
ing’s imitation game [33] was to show that intelligence could be assessed and recognised in a
behavioural way, without the need for directly measuring or recognising some other physical
or mental issues such as thinking, consciousness, etc. In Turing’s view, intelligence can be just
seen as a cognitive ability (or property). In fact, the standard scientific view should converge
to defining intelligence as an ability that some systems: humans, non-human animals, machines
—and collectives thereof—, might or might not have, or, more precisely, might have to a larger
or lesser degree.

While there have been many variants and extensions of the Turing Test (see [29] or [26] for
an account of these), none of them including CAPTCHAs ([34]) (and none of the approaches
in psychometrics and animal cognition, either) have provided a formal, mathematical definition
of what intelligence is and how it can be measured.

A different approach is based on one of the things that the Turing Test is usually criticised
for: learning®. This alternative approach requires a proper definition of learning, and actual
mechanisms for measuring learning ability. Interestingly, the answer to what learning is is
given by notions devised from Turing machines. In the 1960s, Ray Solomonoff ‘solved’ the
problem of induction (and the related problems of prediction and learning) [32] by the use of
Turing machines. This, jointly with the theory of inductive inference given by the Minimum
Message Length (MML) principle [36] 37, 35, [3], algorithmic information theory [I], Kolmogorov
complexity [19, B2] and compression theory, paved the way in the 1990s for a new approach for
defining and measuring intelligence based on algorithmic information theory. This approach
will be summarised in the next section.

While initially there was some connection to the Turing Test, this line of research has been
evolving and consolidating in the past fifteen years (or more), progressively cutting more and
more links to the Turing Test. This has provided important insights into what intelligence is
and how it can be measured, and has given clues to the (re-)understanding of other areas where
intelligence is defined and measured, such as psychometrics and animal cognition.

An important milestone of this journey has been the recent realisation in this context that
(social) intelligence is the ability to perform well in an environment full of other agents of similar
intelligence. This is a consequence of some experiments which show that when performance is
measured in environments where no other agents co-exist, some important traits of intelligence
are not fully recognised. A solution for this has been formalised as the so-called Darwin-
Wallace distribution of environments (or tasks) [II]. The outcome of all this is that it is
increasingly an issue whether intelligence might be needed to measure intelligence. This can be
interpreted or developed in at least three different ways. First, even though we might not need
intelligent judges to evaluate intelligence, the use of an intelligent interrogator may be useful
to conduct an adaptive test in a way which can be much more efficient than other simpler
ways of adaptation (or no adaptation at all). Second, we may need other intelligent agents to
become part of the exercises or tasks an intelligence test should contain, if we consider that
intelligence has a social part. Third, games can be used to compare subjects so that intelligence
scores (and levels) can be derived from this comparison, thus turning comparative tests into an
alternative to single-agent tests. While we do not necessarily claim that all these three issues
(intelligent adaptation, social intelligence and one-to-one comparison) will be ingredients in

2This can be taken as further evidence for Turing’s not conceiving the imitation test as an actual test for
intelligence, because the issue about machines being able to learn was seen as inherent to intelligence for Turing
[33], section 7], and yet the Turing Test is not especially good at detecting learning ability during the test.
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practical machine intelligence tests in the future, we think that it is important to study them.
Also, doing this in the context of the Turing Test can be enlightening for clarifying the different
ways of measuring intelligence and which of them may be more appropriate for machines.

Before undertaking this analysis, we need to recall that the Turing Test has a very relevant
feature: it is an imitation game. The difficulty of imitation, however, is not directly propor-
tional to intelligence. In fact, there might be non-intelligent Turing machines which are more
difficult to imitate/identify than many intelligent Turing machines, and this difficulty seems
to be related to the Kolmogorov complexity of the Turing machine. Biological intelligence is
frequently biased to social environments, or at least to environments where other agents can
be around eventually. This makes imitation games frequent, where the subjects to be imi-
tated have some degree of intelligence. In fact, societies are usually built on common sense
and common understanding, but in humans this might be an evolutionarily-acquired ability to
imitate other humans, but not other intelligent beings in general. In addition, some neurobio-
logical structures, such as mirror neurons have been found in primates and other species, which
may be responsible for understanding what other animals (and people) do and will do, and
for learning new skills by imitation. Nonetheless, humans frequently show remarkable levels of
unpredictability. Interestingly, some of the first analyses of human predictability [30][24] linked
the problem with the competitive/adversarial scenario, which is equivalent to the matching
pennies problem that we will analyse in the following section, and that has been suggested as
a possible way of evaluating intelligence.

The paper is organised as follows. Section [2] introduces a short account of the past fifteen
(or so) years concerning definitions and tests of machine intelligence based on Turing machines,
using (algorithmic) information theory and game theory. Section [3| discusses the components
of a Turing Test (roles and distributions) before analysing the various possibilities of Turing
Tests with Turing Machines in section [4} The use and properties (such as monotonicity) of any
of these possibilities is discussed in section [5} Section [6] defines whether a recursive definition
of the distributions used in the test can be used to build a hierarchy of tests where non-human
intelligence references (and judges) can be found. Section [7| briefly explores how all this might
develop, and touches upon concepts such as universality in Turing machines and potential
intelligence, as well as some suggestions as to how machine intelligence measurement might
develop in the future.

2 Machine intelligence measurement using Turing ma-
chines

There are, of course, many proposals for intelligence definitions and tests for machines which
are not based on the Turing Test. Some of them are related to psychometrics, some others
may be related to other areas of cognitive science (including animal cognition) and some others
originate from artificial intelligence (e.g., some competitions running on specific tasks such as
planning, robotics, games, reinforcement learning, ...). For an account of some of these, the
reader can find a good survey in [20]. In this section, we will focus on approaches which use
Turing machines (and hence computation) as a basic component for the definition of intelligence
and the derivation of tests for machine intelligence. We will distinguish between single-agent
tests, where the evaluee does not need to compete or interact with other agents, but just need
to solve exercises or tasks (such as psychometric tests) and adversarial tests, where the evaluee
needs to compete or interact with other agents (such as most games or the Turing test).
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2.1 Single-agent tests using algorithmic information theory

Most of the views of intelligence in computer science are sustained over a notion of intelligence
as a special kind of information processing. The nature of information, its actual content and
the way in which patterns and structure can appear in it can only be explained in terms of
algorithmic information theory. The Minimum Message Length (MML) principle [36] B7] and
Solomonoff-Kolmogorov complexity [32,[I9] capture the intuitive notion that there is structure —
or redundancy— in data if and only if it is compressible, with the relationship between MML and
(two-part) Kolmogorov complexity articulated in [37][35, chap. 2][3] sec. 6]. While Kolmogorov
[19] and Chaitin [I] were more concerned with the notions of randomness and the implications
of all this in mathematics and computer science, Solomonoff [32] and Wallace [36] developed the
theory with the aim of explaining how learning, prediction and inductive inference work. In fact,
Solomonoff is said to have ‘solved’ the problem of induction [32] by the use of Turing machines.
He was also the first to introduce the notions of universal distribution (as the distribution of
strings given by a UTM from random input) and the invariance theorem (which states that the
Kolmogorov complexity of a string calculated with two different reference machines only differs
by a constant which is independent of the string).

Chaitin briefly made mention in 1982 of the potential relationship between algorithmic
information theory and measuring intelligence [2], but actual proposals along this line did not
start until the (late) 1990s. The first proposal was precisely introduced over a Turing Test and as
a response to Searle’s Chinese room [31], where the subject was forced to learn. This induction-
enhanced Turing Test [4] could then evaluate a general inductive ability. The importance was
not that any kind of ability could be included in the Turing Test, but that this ability could be
formalised in terms of MML and related ideas, such as (two-part) compression, and potentially
established as a standalone single-agent test.

Independently and near-simultaneously, a new intelligence test (C-test) [12] [9] was derived
as sequence prediction problems which were generated by a universal distribution [32]. The
difficulty of the exercises was mathematically derived from a variant of Kolmogorov complexity,
and only exercises with a certain degree of difficulty were included and weighted accordingly.
These exercises were very similar to those found in some IQ tests, but here they were created
from computational principles. This work ‘solved’ the traditional subjectivity objection of the
items in IQ tests, i.e., since the continuation of each sequence was derived from its shortest
explanation. However, this test only measured one cognitive ability and its presentation was
too narrow to be a general test. Consequently, these ideas were extended to other cognitive
abilities in [9] by the introduction of other ‘factors’, and the suggestion of using interactive
tasks where “rewards and penalties could be used instead”, as in reinforcement learning.

Similar ideas followed relating compression and intelligence. Compression tests were pro-
posed as a test for artificial intelligence [25], arguing that “optimal text compression is a harder
problem than artificial intelligence as defined by Turing’s”. Nonetheless, the fact that there is
a connection between compression and intelligence does not mean that intelligence can be just
defined as compression ability (see, e.g., [6] for a full discussion on this).

Legg and Hutter [2I] would later propose a notion which they referred to as a “universal
intelligence measure” —universal because of the use of a universal distribution for the weighting
over environments. The innovation was mainly their use of a reinforcement learning setting,
which implicitly accounted for the abilities not only of learning and prediction, but also of
planning. An interesting point for making this proposal popular was its conceptual simplic-
ity: intelligence was just seen as average performance in a range of environments, where the
environments were just selected by a universal distribution.

While innovative, Legg and Hutter’s universal intelligence measure [21] showed several short-
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comings stopping it from being a viable test. Some of the problems are that it requires a summa-
tion over infinitely many environments, it requires a summation over infinite time within each
environment, Kolmogorov complexity is typically not computable, disproportionate weight is
put on simple environments (e.g., with 1 — 277 > 99% of weight put on environments of size
less than 8, as also pointed out by [15]), it is (static and) not adaptive, it does not account for
time or agent speed, etc.

Hernandez-Orallo and Dowe [I0] re-visited this to give an intelligence test that does not have
these abovementioned shortcomings. This was presented as an anytime universal intelligence
test. The term universal here was used to designate that the test could be applied to any kind of
subject: machine, human, non-human animal or a community of these. The term anytime was
used to indicate that the test could evaluate any agent speed, it would adapt to the intelligence
of the examinee, and that it could be interrupted at any time to give an intelligence score
estimate. The longer the test runs, the more reliable the estimate.

Preliminary tests have since been done [I7), (18] 22] for comparing human agents with non-
human AI agents. These tests seem to succeed in bringing theory to practice quite seamlessly
and are useful for comparing the abilities of systems of the same kind. However, there are
some problems when comparing systems of different kind, such as human and Al algorithms,
because the huge difference of both (with current state-of-the-art technology) is not clearly
appreciated. One explanation for this is that (human) intelligence is the result of the adaptation
to environments where the probability of other agents (of lower or similar intelligence) being
around is very high. However, the probability of having another agent of even a small degree
of intelligence just by the use of a universal distribution is discouragingly remote.

2.2 Adversarial tests: “Matching Pennies” and other multi-agent
tests

A different, but also formal, approach to machine intelligence evaluation originates from game
theory and computation, using a game known as ‘matching pennies’, which is a binary version
of rock-paper-scissors, both of them being stateless games, since the result only depends on
the current move and not on previous moves as other games. In ‘matching pennies’, there are
two players and at each round both players signal either heads or tails. The goal of the first
player, the predictor, is that both players’ signals agree, and the goal of the second player,
the ewvader, is that the players’ signals disagree. This game has been proposed as an intelli-
gence test in the form of Adversarial Sequence Prediction [I4][16] and is related to the “elusive
model paradox” [3| sec. 7.5] and to the problem of human unpredictability, mentioned in the
introduction. A tournament was organised in 2011 where computer algorithms can compete
[http://matchingpennies.com/tournament/].

The intelligence test based on matching pennies is defined for two computational models of
agent environments: Turing machines (TMs) and finite state machines (FSMs). In these tests
the agent plays the predictor against an environment (TM or FSM) that plays the evader. The
tests are an attempt to address several goals:

e Avoid the bias in some other formal intelligence measures [I5] by testing agents against
a wide set of environments.

e Provide meaningful measures for agents up to arbitrarily high levels of intelligence while
assigning every agent a finite intelligence.

e Avoid assigning decreasing weight to tests against increasingly difficult environments.
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e Give agents time to learn before they are measured (although in the FSM setting, the
test produces a secondary measurement of agents’ speed of learning).

Environments are organised into hierarchies of sets, depending on the quantity of computing
resources the environments use (time for TMs, number of states for FSMs). Rather than
measuring agent intelligence as a weighted sum of results against a distribution of environments,
the measure is an ordinal of the highest set such that the agent can defeat every environment
in the set.

Although this test measures agents against a wide set of environments, it only measures the
single skill of playing the matching pennies game. Also, this test is useless for stochastic agents
and environments, since any algorithm with a source of truly random bits will asymptotically
win half the rounds at matching pennies.

A related approach is the notion of evaluation using multi-agent environments. The ques-
tion of what the individual (or common) goals are and how the other agents are chosen is
complex. In [II], the so-called Darwin-Wallace distribution is introduced where environments
are generated using a universal distribution for multi-agent environments, and a number of
agents (also generated by a universal distribution) populate the environment. The probability
of having interesting environments and agents is very low on this first ‘generation’. However,
if an intelligence test is administered to this population and only those with a certain level
are preserved (with high probability), we may get a second population whose agents will have
a slightly higher degree of intelligence. Iterating this process we have different levels for the
Darwin-Wallace distribution, where evolution is solely driven (boosted) by a fitness function
which is just measured by intelligence tests.

3 Roles and distributions in Turing Tests

Some of the problems of the standard interpretation of the Turing Test are originated by the
participants taking different roles: a judge, an honest (or dishonest) member of the human
population and an imitator (or impostor) of the human population. It is not always clear what
the goals of the three agents are and whether the three agents are really necessary for comparing
humans and machines.

The basic idea behind a Turing Test is to check whether a machine has a behavioural
property Y, by comparing it to reference subject which certainly has the property. An inter-
rogator /judge is used to try to ascertain whether the evaluee has the property.

From the Turing Test (and after the tests seen in section [2)) we can distinguish the following
roles:

e Generators: are TMs which just generate a sequential (possibly infinitely) string of Os
and 1s.

e Interrogators: are interactive TMs which exchange inputs and outputs and may change its
outputs according to previous inputs. Typically, it is assumed that the same query is sent
to all the agents. An environment can be seen as an interrogator, where the interaction
is ruled by actions, observations and rewards.

e Judges: determines a degree of similarity between the evaluees or tells which one has the
property T (to a higher degree). A judge has the outputs of the evaluated agents as
inputs.

e Predictors: are TMs which try to anticipate (and output) the next bit(s) of the input.
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e FEuvaders: are TMs which try to anticipate (and output) some bit(s) which do not match
the next bit(s) of the input.

e Imitators: are special kinds of predictors which usually have a more complex input (what
the agent to be imitated had as inputs and outputs) and try to have a similar behaviour.

Conceptually, generators are simple, since they do not depend on the input. Predictors and
evaders are clearly more complex, since they rely on inputs and outputs. Imitators are more
convoluted since they need to observeboth the inputs and outputs of other systems. Finally,
interrogators and judges (and especially when these two functions come together) may need to
make up models of the subjects they are interrogating and judging, and use this information to
generate their outputs (queries). Nonetheless, depending on the specific setting some of these
agents may become more elaborate. For instance, an imitator may try to issue outputs to get
some desired behaviour from its opponent, playing a ‘manipulator’ or ‘controller’ role.

The specific roles each agent might actually take will be determined by the goals we set on
each specific setting for a test, and the characteristics of the agents. Consequently, goals must
be clearly determined if we want to make an unambiguous game and know exactly what it is
doing.

4 Games with Turing Machines

Before giving specific instances, let us give a general definition that can be instantiated by
setting the number of participants, distributions, roles and interfaces.

Definition A general Turing Test is defined as a tuple (J,R,E,G;,Gr,Gg,Ds,Dr,Dg,I),
where:

e The reference subject R is randomly chosen from a distribution Dpg and follows goal Gg.
e The evaluee subject E is randomly chosen from a distribution Dg and follows goal G g.
e The interrogator /judge J is randomly chosen from a distribution D ; and follows goal G ;.

e There is an interaction protocol I which is executed until a condition is met (a given
number of steps, a limited time or a certainty of the result).

e The test returns an assessment for F.

The evaluee FE is usually given, so the distribution Dp is not necessary (or we can just express
this case by saying that Dg gives all the probability to a specific individual E). An instance
of the previous schema requires us to determine the distribution D; and Dg, the goals of the
three participants and, most especially, how the interaction I goes. In the classical Turing Test,
we know that Dj and Dp are taken from a human population, the goal of J is to tell which
of R and E has really been taken from the reference distribution Dg, the goal of R and F is
to be chosen as the one who is really taken from Dpg, and the interaction I is an open teletype
conversation3.

3This free teletype conversation may be problematic in many ways. Typically, the judge J wishes to steer
the conversation in directions which will enable her to get (near-)maximal (expected) information (before the
time-limit deadline of the test) about whether or not the evaluee subject E is or is not from Dpr. One tactic
for a subject which is not from Dpg (and not a good imitator either) is to distract the judge J and steer the
conversation in directions which will give judge J (near-) minimal (expected) information.
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— O — O
generator predictor predictor evader

Figure 1: Left: A two-agent unidirectional setting. Right: a two-agent bidirectional setting.

Of course, other distributions for D could lead to other tests, such as, e.g., a canine test,
taking Dp as a dog population, and judges as other dogs which have to tell which is the member
of the species or perhaps even how much intelligent it is (for whatever purpose —e.g., mating
or idle curiosity).

More interestingly, we can look into possible instances using Turing machines. Let us start
with instances where only two agents participate (and the judge/interrogator is replaced by a
simple payoff function). After this, we will analyse the case where a judge/interrogator conducts
the test.

4.1 Turing Tests by observation

If there is no interrogator which enquires or conducts the test in any way and just a judge
which observes how two agents play, we have a Turing test by observation. While the capacity
of telling between two agents is reduced because of the inability of conducting the test (and
hence guiding the games to situations where the test can get more information), we can still
explore some insightful possibilities. Figure [1| shows two cases where two agents can play the
roles of generators, predictors or evaders. The reason why we use prediction or identification
as a goal is the same that lies behind the proposals in section We want tests that can be
completely free of culture bias (or human bias), such as language, assumed previous knowledge,
etc.
The setting on the left of Figure [I] is very similar to the general abstract setting which is
typically used for analysing what learning is, how much complexity it has and whether it can
be solved. If the generator outputs strings and the predictor has to identify what the generator
does, this is clearly related to Gold’s language identification in the limit [8]. If the predictor
identifies the generator at some point, then it will start to score perfectly from that moment.
While Gold was interested in whether this could be done in general and for every possible
generator (or language), here we are interested in how well the predictor E does this on average
for a randomly-chosen generator R from a distribution Dg. Also Solomonoff’s setting is also
very similar to this. Solomonoff proved that E could get the best estimations for R if F used
a mixture of all consistent models inversely weighted by 2 to the power of their Kolmogorov
complexity. While this may give the best theoretical approach for prediction and perhaps for
“imitation”, it does not properly “identify” R. Identification can only be properly claimed if we
have one single model which is exactly as R. This distinction between one vs. multiple models
is explicit in the MML principle, which usually considers just one single model, the one with
the shortest two-part message encoding of said model followed by the data given this model.
We know that the higher the Kolmogorov complexity (or Levin’s Kt complexity [23]) of the
TM acting as a generator, the harder it will be for the predictor (the evaluee subject) to follow
that. This is what many of the previous attempts for measuring intelligence using Kolmogorov
complexity have attempted so far [I3]. However, these attempts do not consider interaction.
The setting on the right of Figure [I]is the basic step towards interaction. A possible way of
establishing a game in this setting is as follows:

Definition An observational Turing Test for Turing machines is defined as an instance of
definition [4] where
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Figure 2: Payoff matrices for three different zero-sum games: matching pennies (left), pure
co-ordination (middle) and battle-of-the-sexes (right).
redictor
_w O)P

predictor
_
T T

generator g predictor generator imitator

Figure 3: Left: A three-agent unidirectional setting with two predictors. Right: a two-agent
unidirectional setting with one predictor and one imitator.

e The interaction is solely given as an exchange of bits between the reference subject R and
the evaluee subject E. For each step, both R and E have to output a finite binary string
r; and e; simultaneously. Both R and E have access to the history of R and E’s outputs.

e The goals of the reference and evaluee subjects, Gr and Gg, are given by a payoff matrix,
which produces a reward depending on the values of r; and e;.

e The test returns a score as the average payoffs for agent E after a given number of
interactions (or any other specified stopping criterion).

The payoff matrix is crucial for making the game informative and useful for getting some
information about the behaviour of R and E. In the case where the interaction is set to binary
strings of length 1, then we have a typical situation in game theory, where many special cases
can be derived, as shown in Figure

By changing the payoff matrix, we have many different games where we can analyse the
abilities of two players®. In the case of matching pennies, it is pure competition what we
evaluate. In the case of battle-of-the-sexes, co-ordination is important but there is some degree
of selfishness. Some combinations are completely useless for evaluating agents, such as the pure
co-ordination case (Figure [2] middle), where there is a pure Nash equilibrium by both agents
agreeing on their outputs. In the terminology of the adversarial game (matching pennies) used
in the previous section, it would be like having two predictors or two evaders.

As an evaluation test, we are precisely interested in those combinations where there is no
pure or mixed Nash equilibrium. In the case of matching pennies, we have a mixed strategy
equilibrium when both agents make a true random choice between Os and 1s. However, for
deterministic agents without a true source of randomness the matching pennies game can be
exploited as an interesting problem which can be used as a very pure and simple way of observing
some prediction abilities and intelligent behaviour.

Consequently, definition becomes useful for comparing agents as long as there is no easy
equilibrium in general (or it simply does not exist), payoff can be increased by a good prediction
of the opponent moves and possibly avoiding being predicted by the opponent.

The next step seems to be three-agent game.

For instance, we can just set the game with one generator and two predictors, as in Figure
(left). This is virtually the same case as discussed above, when we had a generator and a

4Also, all these games are stateless (or static) games. More complex things take place with games for which
rewards depend on previous states.
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— O
interrogator predictor

Figure 4: An adaptive test: one interrogator and a predictor.

predictor. The problem of using a generator is that it is not adaptive and the ‘queries’ (outputs)
chosen a priori may be useless to tell between reference and evaluee. Similarly, we could figure
out a generator, a predictor and an imitator, as shown in Figure [3| (right) where the result
of the test is given by how well the imitator resembles the predictor. While this does not go
much beyond the case with a generator and two predictors, it is more convoluted, because
we have many different outcomes. For instance, the generator may issue queries which can be
generally captured by the predictor, and then the imitator will just behave as another predictor.
In other cases, the generator may issue queries which are difficult for the predictor, then the
behaviour of the predictor will be easy or difficult depending on how the predictor really is. For
instance, a predictor can just behave randomly in these cases (perhaps intentionally), making
it very difficult for the imitator to follow. The role of the imitator, which we will explore in
more depth in the next section, is special in the sense that it may know the answers for the
generator but it may answer them wrong in order to better resemble a bad predictor. The
problem of this setting is that the generator has influence on the predictor, and the generator
and the predictor have influence on the imitator, but the imitator has no influence on the other
two agents. Consequently, it cannot properly be seen as a three-way test, since generator and
imitator could be encapsulated by a single agent.

4.2 Turing Tests by interrogation

One of the distinct features of the Turing Test is that there is a special agent (originally a
human) who must conduct the test with the goal of guessing who is who in the game.

So we now explore the possibilities with ‘interrogators’. Interrogators can be understood in
many ways and can have many different goals. In fact, the relevance of interrogators is not only
that they seek to maximise information but also that the evaluee may have an effect of them,
turning the evaluee into an active participant of the evaluation®.

First, if we only consider two agents, we can just set one as interrogator and the other as
the evaluee, as shown in Figure [l This pictures an automated interrogator, trying to adapt
the complexity of the exercises to the responses of the predictor is frequent in the area of
Computerised Adaptive Testing in psychometrics. It is also one of the features of the anytime,
adaptive, test in [10].

In order to explore this with three agents, a simple setting would be to have one interrogator
and two predictors, as shown in Figure 5| (left). The goal of the interrogator might be to
maximise the cases where one predictor is right and the other is wrong. An alternative, more
detailed, option would be to determine for which kinds of problems (or difficulties), both agents
differ. One possible procedure would be to adjust (increase or decrease) the Kolmogorov (or
Kt) complexity of the problems in order to find the complexity where the difference between
the expected accuracy of both agents is highest. This idea has some problems. First, it is
not clear that the difference between the performance of the two predictors has a maximum
as a function of any measure of complexity of the outputs issued by the generator. Second,

5Ray Solomonoff used to say that a test is also testing the tester (personal communication). In what follows,
we assume that the interrogator is not the evaluee, but yet again this is related to the problem of telling between
intelligent and non-intelligent agents, which might require intelligence (especially if this is meant to be done
efficiently).
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Figure 5: Left: A three-agent bidirectional setting with two predictors. Right: a two-agent
bidirectional setting with one predictor and one imitator.

there might be (infinitely) many local minima. Some of the problems are inherited from (and
are well-known in) the area of adaptive testing, as in the case with one interrogator and one
predictor, already mentioned above.

A next step, following the standard interpretation of the Turing Test, would be to introduce
the figure of an ‘imitator’. The gist of this role is linked to the existence of a good reference,
since an imitator could look stupid in order to imitate a less skilled reference ability, such
as a computer program having to slow down when multiplying two 5-digit numbers together
in order to impersonate a human. As already mentioned, while there is a dependency, the
difficulty of imitation is not proportional to the intelligence of the imitated subject. However,
we are especially interested (as Turing was) in the ability of imitating intelligent agents, since
this is a sufficient (but not necessary) condition for intelligence. A way out of this situation is
to figure out a setting where ‘purposed’ evaluees need to imitate agents that are forced to act
intelligently (or, at least, to predict well). A setting which includes an imitation role in this
way is shown in Figure [5| (right).Here we have three players: a reference subject, which plays
the predictor role, and an evaluee subject, which plays the imitator role.

Definition A Turing Test with Turing machines as imitator and interrogator is defined as an
instance of definition [} where

e The interaction goes as follows. A finite string (query) is output by interrogator J, then
R and E must output a string simultaneously, then J issues another query, and so on.
The three agents ‘see’” what the other agents have output so far.

e The goal of the interrogator, G, is defined as a reward function which directly depends
on how similar the outputs of J and R are, and how dissimilar the outputs of R and F
are. These two components of the reward function could have a weight a, where a =1
means that only the similarity between the outputs of J and R is used and o = 0 means
that only the dissimilarity between the outputs of R and E are considered.

e the goal of the reference subject, G is defined as a function which depends on how
similar the outputs of J and R are. As we can see, the reward functions for .J and R are
‘compatible’ (we can improve both at the same time).

e the goal of the evaluee subject, Gg is defined as a function of the similarity between R
and E. Note that this could be incompatible with part of the reward for the interrogator.

e The test returns a score as the average payoffs for agent F after a given number of
interactions (or any other specified stopping criterion).

It is not clear which value of « is most reasonable. It seems clear that it cannot be 1, because
in that case the interrogator would just make very simple questions and all the rewards would
be compatible, leading to a (Nash) equilibrium. A value of o = 0 is possible, but it may lead to
J outputting very difficult sequences (e.g. random), so R would be completely lost and would
answer almost randomly, whereupon E would have many problems to imitate R.
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As we see, the three players have different characteristics and different reward systems. The
game is also asymmetric, and the interrogator knows who the reference is and who the evaluee
is. In order to make it symmetric, the test could be defined as a series of executions of definition
3, where the roles of R and E are exchanged.

Again, as in the predictor-evader case (e.g., matching pennies), whenever we have interaction
the output has influence on future inputs, so agents need to determine the best outputs for future
rewards. This means that in some occasions some agents may act suboptimally (non-rationally
in the terminology of game theory) for a local decision in order to maximise global rewards. This
is exactly what happens in reinforcement learning. In fact, we could say that being a generator is
not demanding at all, being a good predictor is demanding as we know from passive, sequential
prediction in Solomonoff’s sense, being a good imitator is more demanding since it sets the
setting in a kind of input-output query structure where the agent does not have influence on
the inputs (so it is not query learning but interactive learning, as, e.g., reinforcement learning)
and finally, the interrogator is the most demanding of all.

In this three-agent game we have many possibilities. If the predictor is able to predict
well and the imitator follows the predictor, then the reward for the interrogator will not be
optimal (depending on «). If the predictor performs well and the imitator cannot cope with
the predictor the rewards for the interrogator will be high. If the predictor is not able to
predict well, and the imitator does not follow the predictor the reward for the interrogator will
not be optimal (depending on «). Reducing the difficulty of the queries is a possible solution.
Finally, if the predictor is not able to predict well and the imitator follows the predictor, then
the interrogator will have to reduce the difficulty of the queries, but this may not improve the
situation for the interrogator. However, any of the three agents can take suboptimal actions in
order to maximise the overal reward (for this it is relevant whether the agents know what the
stopping criterion for the test is).

5 Monotonicity, total orders and intelligence scales

As we have seen, not many settings of the Turing test work for Turing machines, especially
because some combinations lead to easy equilibrium, evaluation is inefficient or imitation does
not have a purposed reference. The previous instances also make it more explicit that the
distribution Dy over the agents that the evaluee has to imitate or compete with is crucial. And
the way in which the interrogator is chosen (D) is also important for the efficiency of the test.

Let us first explore one of the cases where things seem better delimited: the matching pennies
case. One should expect that if an agent a is more intelligent than b then the comparison would
give a better score to a than b. From here, especially if we want to create a scale from pairwise
comparisons, we would like to have the transitivity property, i.e., using < as an order relation,
we would like that for every a, b and ¢ we have that a < b and b < ¢ implies a < c¢. We see that
this is not the case, as the following example shows:

Example: Let us consider an agent a1 which always outputs 1. Consider a second agent
as which starts with a 0 and then switches to 1 (forever) if the opponent started with 1 or stays
with 0 (forever) if the opponent started with 0. Finally, a third agent az starts with a 0 and
then switches to 1 (forever) if the opponent started with 0 or stays with 0 if the opponent started
with 1. The game is always between a predictor and an evader, and the previous description is
given for the role of predictor. When they play as evaders, the output bits are just the opposite.
For instance, if a1 plays as predictor and as as evader, the outputs would be 11111... for a; and
10000... (the opposite of 01111...) for ay. Clearly, the outputs of a1 and as always differ from
the second bit and hence as, which is playing the evader, wins from that moment on. If a1 plays
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as evader and ay as predictor, the outputs would be 00000... (the opposite of 11111...) for a; and
00000... for as. Clearly, the outputs of a1 and as always match from the second bit and hence
a2, which is playing the predictor, wins from that moment on. Following the same procedure
for the rest of cases, it is easy to see that right from the second bit, the relation with expected
rewards (averaging games with opponents playing both roles) are E(3 r(a1)) < E(3 r(az)),
E(X_r(az)) = E(QCr(as)) but B} r(as)) <E(QCr(ar)).

This clearly shows a lack of monotonicity even for deterministic agents.

While this excludes the possibility of finding a complete order, we may still find partial
orders. For instance, in [I4], a hierarchy of agents is constructed by using some proper definition
of finite intelligence (by using finite states or finite time). This work specifically shows that
every agent in a certain class has a finite intelligence and that there are agents at every level of
intelligence. In order to belong to a class at a level of intelligence, an agent has to defeat (learn
to predict) all agents of a given complexity. So here we can induce a partial order, where we
can compare all elements at different classes (in the hierarchy). Inside each class we may just
solve the issue by just putting all the elements in the same equivalence class and say that they
are of comparable intelligence. For instance, the three machines above would clearly be at the
lowest class.

Nonetheless, this hierarchy, in practice, may be misleading. Imagine an agent a; which is
able to defeat all agents of class < n, and an agent as which is able to defeat all agents of
class < m, with n << m. Now imagine a third agent a3 which is exactly equal as as but that
whenever it identifies a specific third agent a4 in class 0, it generates an output in such a way
that it loses. With this simple scenario, we would have to put as in class 0, even though on
average it is much better than a; (in class n) and almost identical to as (in class m). With
a similar rationale, we could put humans in class 0 as well. The previous rationale can be
extended to any of the other complex settings in previous section.

All this gives support to the notion of average results as a more meaningful way of deriving a
scale or measure for agents. This is what many game and sports competitions do, by arranging
pairings and averaging (or summing results), such as a league or other hierarchical methods.
But any averaging method over an infinite set (of Turing machines) requires a distribution.

A first idea might be a universal distribution (or computable approximations based on, e.g.,
Levin’s Kt). A universal distribution would lead to assigning more intelligence to those agents
which are very good at identifying and beating very simple opponents (while still losing against
more complex opponents).

Putting some order (literally) here requires a process where we can start from very simple
agents but eventually we can build some structure here. Omne easy option is to use some
well-established reference, as the standard Turing Test does, by setting humans as reference.
However, as discussed elsewhere (see, e.g., [9]), this is useless below and beyond this level.
An alternative approach which does not require any arbitrary reference leads to the recursive
proposal in the following section.

6 Recursive Turing Tests for Turing machines

The idea of recursive populations where higher intelligence levels have been selected as an
application of a test can be linked to the notion of recursive Turing Test [28] sec. 5.1], where
the agents which have succeeded at lower levels could be used to be compared at higher levels.
However, there are many interpretations of this informal notion of a recursive Turing Test. The
fundamental idea is to eliminate the human reference from the test using recursion, either as
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the subject that has to be imitated or the judge/interrogator which is used to tell between the
subjects. We need to define an agent distribution Dy where we can sample from.

Let us start with the case where we only have two agents (reference and evaluee) playing
the matching pennies game (see definition .

Definition The distribution Dy can be recursively obtained as follows:

Set My equal to a startup probability measure over TMs, (e.g. a universal distribution)
Set i =0

repeat

Generate a set Sg of machines from M;

forall the E; € Sg do
Generate a set Sg of machines from M;

forall the Ry € Sk do
Apply the test in definition with the reference machine Ry to the evaluee
Ej
end
E;’s intelligence at degree ¢, denoted by Y;(E;) is just averaged from this set of

tests
end

Seti=1+1
Calculate a new distribution M; for each agent E; € Sg:

’I“Mi_l(Ej) + (1 — ’I“)Ti_l(Ej)

Ml(E]) - ZELESE ’I”Mifl(El) + (1 - T)’rifl(El)

where r is a rate parameter
until StoppingCriterion;

When the StoppingCriterion is met (e.g. a given value for i), the distribution Dp is
calculated from the probability measure M;.

The outcome and properties of the previous algorithm depend on many issues. For instance,
the first set taken from the distribution Sk can be populated until M (Sg) > ¢ with ¢ sufficiently
close to 1 (this means taking a large proportion of the probability mass). The size of the second
set can also be important as well as how much time (or steps) are left for each test. Similarly,
the rate parameter r can be used to modify the distibution with a different pace.

The previous definition is clearly related to the field of evolutionary game theory [38].
Nonetheless, strictly speaking, we do not have replicator equations and we do not try to build
any agent, just to categorise them. We just define a distribution for Turing machines with the
goal of having a sequence of distributions (or measures) M; which give higher probability to
agents with higher intelligence as long as ¢ is greater.

Even if reasonable samples, heuristics and step limitations are used, the previous approach
seems intractable. A better approach to the problem would be some kind of propagation system,
such as Elo’s rating system of chess [7], which has already been suggested in some works and
competitions in artificial intelligence. A combination of a soft universal distribution, where
simple agents would have slightly higher probability, and a one-vs-one credit propagation system
such as Elo’s rating (or any other mechanism which returns maximal expected information with
a minimum of pairings), could feasibly aim at having a reasonably good estimate of the relative
abilities of a big population of Turing machines, including some Al algorithms amongst them.
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With more and more actual machines and Al algorithms being assessed, non-anthropocentric
Turing Tests could be implemented using these (distributions of) machines.

The discussion on recursive Turing Tests has focussed on the adversarial version of the game
as in definition However, the role of the interrogator is fundamental to make the test more
effective and more efficient, so it is then advantageous to use interrogators with high intelligence.
Instead of ‘evolving’ another distribution for interrogators separately, a better idea may be to
use general agents (e.g., reinforcement learning agents) which can take any of the roles we have
discussed in this paper: predictor/evader, imitator and interrogator, and let a same recursion
algorithm work for them, by exchanging roles for each iteration.

7 Final Remarks

An imitation game is based on a reference subject (or population) which clearly has a property,
and the test is conducted in such a way that the evaluee has to show that it can also have
the property, by imitating the reference (in general behaviour, and not only for the property).
While this is a much too general approach for many properties, it makes sense for intelligence,
since imitation and prediction are closely related, and both are ultimately related to learning
and intelligence. In this context, this paper has investigated the expression of Turing Tests
where references and interrogators are Turing machines.

This view of the (recursive) Turing test in terms of Turing machines has allowed us to connect
the Turing test with fundamental issues in computer science and artificial intelligence, such as
the problem of learning (as identification), Solomonoff’s theory of prediction, the MML princi-
ple, game theory, etc. These connections go beyond to other disciplines such as (neuro-)biology,
where the role of imitation and adversarial prediction are fundamental, such as predator-prey
games, mirror neurons, common coding theory, etc. In addition, this has shown that the line of
research with intelligence tests derived from algorithmic information theory, some games such
as matching pennies, and the recent Darwin-Wallace distribution are also closely related to this
as well. This (again) links this line of research to the Turing test, where humans have been
replaced by Turing machines.

This sets up many avenues for research and discussion. For instance, the idea that the
ability of imitating relates to intelligence can be understood in terms of the universality of a
Turing machine, i.e. the ability of a Turing machine to emulate another. If a machine can
emulate another, it can acquire all the properties of the latter, including intelligence. Imitation
is then a sufficient condition for intelligence. The difference between a UTM and a, let us say,
a universal imitating TM is that the latter ‘learns’ to behave like any other machine, and it is
not programmed to do so. This is at the core of Turing’s discussion about learning machines
in section 7 of the very same paper [33] where he introduced the Turing Test.
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