
Termination Checking in the Presence of

Nested Inductive and Coinductive Types

Thorsten Altenkirch and Nils Anders Danielsson
University of Nottingham

Abstract

In the dependently typed functional programming language Agda one can easily mix
induction and coinduction. The implementation of the termination/productivity checker is
based on a simple extension of a termination checker for a language with inductive types.
However, this simplicity comes at a price: only types of the form X .Y .F X Y can be
handled directly, not types of the form Y .X .F X Y . We explain the implementation of
the termination checker and the ensuing problem.

1 Introduction

This short and speculative note discusses how one can—apparently—extend a termination
checker which accepts structurally recursive programs so that it also accepts guarded corecursive
programs (and proofs), and even mixed recursive/corecursive definitions. However, we will also
point out a problem with the extended checker: the “obvious” way to represent a coinductive
type nested within an inductive type does not work.

Some familiarity with total, dependently typed languages, induction, coinduction, structural
recursion and guarded corecursion is assumed.

2 foetus

Originally the termination checker of the dependently typed functional programming language
Agda (Norell 2007; Agda Team 2010) only supported structural recursion. The checker was
based on foetus (Abel and Altenkirch 2002), which will now be explained using the following
two, mutually recursive (and contrived) functions:

mutual

f :
f m zero = m
f m (suc n) = f m n + g m

g :
g zero = zero
g (suc n) = f n n

The definitions of f and g are accepted by foetus, which works roughly as follows:

• For every function clause h p1 pm and every call site i e1 en in the right-hand side of
the clause, the following information is noted for every pattern-argument pair (pi, ej): Is
ej structurally strictly smaller than pi, or is it equal to pi? The former case is denoted
by <, the latter by =, and otherwise the symbol ? is used.

E. Komendantskaya, A. Bove, M. Niqui (eds.), PAR-10 (EPiC Series, vol. 5), pp. 101–106 101

Termination Checking in the Presence of Nested Ind. and Coind. Types Altenkirch and Danielsson

In the case of our example we have three calls. If we write the information using call
matrices it looks as follows (one row per caller argument, one column per callee argument):

f f :

(
= ?
? <

)
f g :

(
=
?

)
g f :

(
< <

)
• This information is then combined into information about every (kind of) call path from

a function to itself.

For our example we get three kinds of call paths, denoted as vectors with one element per
argument:

1. (=, <), which corresponds to f ’s call to itself,

2. (<, ?), which includes the call sequence f g f , and

3. (<), which includes the call sequence g f g .

• Finally we need to check if, for every function, there is some lexicographic combination
of arguments such that every kind of call path is strictly decreasing.

In the case of f we need to choose the lexicographic combination (first argument, second
argument), and in the case of g the only argument is strictly decreasing.

3 Coinductive Definitions in Agda

This section contains a crash course on the approach to coinduction taken in Agda. For more
information, see Danielsson and Altenkirch (2010, Section 2).

First consider the following Agda definition of the type of infinite streams:

data Stream (A : Set) : Set where
: A (Stream A) Stream A

The use of the type constructor : Set Set makes Stream coinductive. The best way to get an
intuition about may be to view it as the suspension type constructor which is sometimes used
to encode non-strictness in strict languages (Wadler et al. 1998). The type constructor comes
with a force function and a (tightly binding) delay constructor:

: {A : Set} A A
: {A : Set} A A

Now consider the following definition of stream processors (Hancock et al. 2009):

data SP (A B : Set) : Set where
get : (A SP A B) SP A B
put : B (SP A B) SP A B

A stream processor is either a command to read (get) another element from the input stream,
and use this element to guide the rest of the computation, or a command to output (put) an
element, and continue with another stream processor. The use of only for put means that a
stream processor may contain an infinite number of consecutive put constructors, but only a
finite number of consecutive get constructors. This is ensured by the termination checker.1

Agda supports structural recursion for inductive types, and guarded corecursion for coinduc-
tive types. These recursion principles can also be combined “lexicographically”, as explained
in the next section.

1Perhaps. Neither Agda’s meta-theory nor its implementation have been formally verified to be correct.

102

Termination Checking in the Presence of Nested Ind. and Coind. Types Altenkirch and Danielsson

4 An Extension of foetus Which Handles Guarded Core-
cursion

When Agda was extended to support coinductive data types and guarded corecursion Andreas
Abel just made a small change to the termination checker: an extra row and column was added
to the call matrices, representing guardedness.

An example will illustrate the change. Consider the following definition of the semantics of
a stream processor:

: {A B : Set} SP A B Stream A Stream B
get f (a as) = f a (as)
put b sp as = b sp as

The first recursive call is not guarded by the coinductive constructor , but no non-constructor
function is used between the left-hand side and the call, so we say that it preserves guardedness
(=). On the other hand, in the second clause the recursive call is guarded (<). We get the
following call matrices, where the topmost, leftmost element represents guardedness, and the
remainder of the first rows and columns do not represent anything; the rest of the matrices
represent structural relations between the four arguments of :

:


= ? ? ? ?
? = ? ? ?
? ? = ? ?
? ? ? < ?
? ? ? ? ?

 :


< ? ? ? ?
? = ? ? ?
? ? = ? ?
? ? ? ? ?
? ? ? ? =


Note that sp is not viewed as structurally smaller than put b sp (this measure only applies to
the inductive parts of types), and that f a is viewed as structurally strictly smaller than get f
(higher-order primitive recursion).

The call matrices above give rise to three kinds of call paths:

1. (=,=,=, <, ?), corresponding to the first recursive call,

2. (<,=,=, ?,=), corresponding to the second recursive call, and

3. (<,=,=, ?, ?), corresponding to call paths which involve both recursive calls.

It is easy to see that one gets a strictly decreasing combination by lexicographically pairing the
first component (guardedness) with the fourth (the inductive structure of the stream processor).

We have not seen a proof of correctness for the extended termination checker described
above. It is plausible that it ensures totality, at least if the rest of the language is restricted in
a suitable way. However, we have not tried to prove this. The reason is that the checker makes
the language somewhat strange, as described in the next section.

5 Quantifier Inversion

Consider the following definitions of colists and potentially infinitely branching trees:

data Colist (A : Set) : Set where
[] : Colist A

: A (Colist A) Colist A

data Tree : Set where
node : Colist Tree Tree

103

Termination Checking in the Presence of Nested Ind. and Coind. Types Altenkirch and Danielsson

One might believe that the type Tree should be read as the nested fixpoint X . Y . 1 + X Y
(in the category of sets and total functions). However, the termination checker described above
accepts the following definition:

mutual
bad : Tree
bad = node (node [] bads)

bads : Colist Tree
bads = bad bads

The tree bad could not be defined if Tree defined the type X . Y . 1 + X Y : bad is used in the
definition of itself. The problem seems to be that the termination checker is too untyped—it
only cares about delay constructors, not about which fixpoint they “belong” to. In this case
the delay constructors for the inner fixpoint (Y) work as guards also for the outer fixpoint.

We conjecture that one can understand (a first-order fragment of) Agda’s data type defini-
tions—in the presence of the termination checker described above—by the following translation
into a simpler core theory. For a given program we first define a type of codes for all the data
types in the program (including). In the case of the example above we get the following type
(where the notation (c1 : T1) + . . . + (cn : Tn) is used for labelled sums):

Type : Set
Type = T . (colist : T) + (tree : 1) + (inf : T)

The three constructors represent Colist , Tree, and . The second step is to translate all data
type definitions into a single nested fixpoint, indexed by type codes:

Data : Type Set
Data = C . I . t . ([] : (t : Type) . t colist t)

+ (: (t : Type) . t colist t I t I (inf (colist t)))
+ (node : t tree tt I (colist (tree tt)))
+ (: (t : Type) . t inf t C t)

Here we have, for instance, that Data (tree tt) represents Tree (tt is the only closed inhabitant
of 1).

Note that, under the translation above, all data types have the form Y . X . F X Y . In
particular, the termination checker seems to invert the quantifiers of Tree so that it behaves
more like Tree:

data SnocList (A : Set) : Set where
[] : SnocList A

: SnocList A A SnocList A

data Tree : Set where
node : SnocList (Tree) Tree

When translating SnocList and Tree we get the following types:

Type : Set
Type = T .

(snocList : T)
+ (tree : 1)
+ (inf : T)

Data : Type Set
Data = C . I . t .

([] : (t : Type) . t snocList t)
+ (: (t : Type) . t snocList t I (snocList t) I t)
+ (node : t tree tt I (snocList (inf (tree tt))))
+ (: (t : Type) . t inf t C t)

104

Termination Checking in the Presence of Nested Ind. and Coind. Types Altenkirch and Danielsson

mutual
from1 : Tree SnocList (Tree)
from1 (node ts) = from2 ts

from2 : Colist Tree SnocList (Tree)
from2 [] = []
from2 (t ts) = from1 t node (from2 (ts))

from : Tree Tree
from t = node (from1 t)

mutual
to1 : Tree Colist Tree
to1 (node ts) = to2 ts

to2 : SnocList (Tree) Colist Tree
to2 [] = []
to2 (ts t) = node (to2 ts) to1 (t)

to : Tree Tree
to t = node (to1 t)

Figure 1: Functions witnessing the isomorphism between Tree and Tree.

It is not too hard to see that Data (tree tt) and Data (tree tt) are isomorphic (and not only be-
cause the types have the same size; the proof works also if we make Tree and Tree parametrised).
As an indication that Agda actually behaves in accordance with the translation we can also
prove (inside Agda) that Tree and Tree are isomorphic; for functions witnessing the isomor-
phism, see Figure 1.

As a final remark we note that the termination checker does seem to handle types like Tree
correctly, i.e. like the fixpoint Y . X . 1 + X Y : one cannot make (direct) use of delay construc-
tors to define infinitely long snoc-lists, because the left argument of has type SnocList A,
not (SnocList A).

6 Discussion

We have sketched a simple method, due to Andreas Abel, for extending a termination checker
aimed at structural recursion so that it also handles guarded corecursion. We have also pointed
out a problem with the method: it leads to “quantifier inversion”, which means that nested
fixpoints of the form X . Y . F X Y cannot in general be handled directly.

Given the simplicity of the extension of the termination checker we raise a question: is
it possible to make a further small modification to it so that it can handle arbitrary nested
fixpoints in a nice way? Note that this involves two things: rejecting definitions like bad , but
also accepting other, currently rejected, definitions, corresponding to the recursion principles
associated with types like X . Y . F X Y .

References

Andreas Abel and Thorsten Altenkirch. A predicative analysis of structural recursion. Journal
of Functional Programming, 12(1):1–41, 2002.

The Agda Team. The Agda Wiki. Available at http://wiki.portal.chalmers.se/agda/,
2010.

Nils Anders Danielsson and Thorsten Altenkirch. Subtyping, declaratively; an exercise in mixed
induction and coinduction. To appear in the proceedings of the Tenth International Confer-
ence on Mathematics of Program Construction (MPC’10), 2010.

105

http://wiki.portal.chalmers.se/agda/

Termination Checking in the Presence of Nested Ind. and Coind. Types Altenkirch and Danielsson

Peter Hancock, Dirk Pattinson, and Neil Ghani. Representations of stream processors using
nested fixed points. Logical Methods in Computer Science, 5(3:9), 2009.

Ulf Norell. Towards a practical programming language based on dependent type theory. PhD
thesis, Chalmers University of Technology and Göteborg University, 2007.

Philip Wadler, Walid Taha, and David MacQueen. How to add laziness to a strict language,
without even being odd. In Proceedings of the 1998 ACM SIGPLAN Workshop on ML, 1998.

106

	Introduction
	foetus
	Coinductive Definitions in Agda
	An Extension of foetus Which Handles Guarded Corecursion
	Quantifier Inversion
	Discussion

