
EPiC Series in Computing

Volume 57, 2018, Pages 604–619

LPAR-22. 22nd International Conference on Logic for
Programming, Artificial Intelligence and Reasoning

The Triguarded Fragment of First-Order Logic

Sebastian Rudolph1 and Mantas Šimkus2

1 Computational Logic Group, TU Dresden, Germany
sebastian.rudolph@tu-dresden.de

2 Institute of Logic and Computation, TU Wien, Austria
simkus@dbai.tuwien.ac.at

Abstract

Past research into decidable fragments of first-order logic (FO) has produced two very
prominent fragments: the guarded fragment GF, and the two-variable fragment FO2. These
fragments are of crucial importance because they provide significant insights into decidabil-
ity and expressiveness of other (computational) logics like Modal Logics (MLs) and various
Description Logics (DLs), which play a central role in Verification, Knowledge Represen-
tation, and other areas. In this paper, we take a closer look at GF and FO2, and present
a new fragment that subsumes them both. This fragment, called the triguarded fragment
(denoted TGF), is obtained by relaxing the standard definition of GF: quantification is
required to be guarded only for subformulae with three or more free variables. We show
that, in the absence of equality, satisfiability in TGF is N2ExpTime-complete, but becomes
NExpTime-complete if we bound the arity of predicates by a constant (a natural assump-
tion in the context of MLs and DLs). Finally, we observe that many natural extensions of
TGF, including the addition of equality, lead to undecidability.

1 Introduction

Function-free first-order logic (which we will denote by FO in this paper) plays a central role in
Logic and exhibits many favorable properties. However, satisfiability checking of FO formulae
is undecidable, which motivates the search for expressive, yet decidable fragments of FO. Such
fragments play a crucial role in the studies of various practically relevant (computational)
logics like various Modal Logics (MLs), and the big family of Description Logics (DLs). The
latter are logic-based knowledge representation languages, usually suitably limited to ensure the
decidability of basic reasoning problems [2, 3, 19]. Many computational and model-theoretic
properties of MLs and DLs can be explained by seeing them as fragments of FO. In fact, most
MLs and DLs fall into well-known decidable fragments of FO, implying not only decidability, but
also complexity results, model-theoretic properties, and limits of expressiveness. For instance,
many standard MLs and DLs are subsumed by FO2, the fragment of FO with at most two
variables [6, 8]. For FO2 without equality, the satisfiability problem has been known to be
decidable for over five decades thanks to Scott [21]. The decidability of satisfiability in FO2 in
the presence of equality is known since 1975 due to Mortimer [16], with the worst-case optimal
NExpTime upper bound known since over two decades [13].

G. Barthe, G. Sutcliffe and M. Veanes (eds.), LPAR-22 (EPiC Series in Computing, vol. 57), pp. 604–619

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

Another explanation for the decidability of MLs and DLs is the fact that they can often be
translated into the guarded fragment GF of FO [1] (see also [11] for a discussion). Satisfiability
checking in GF is 2ExpTime-complete in general, but it is ExpTime-complete under the as-
sumption that the arities of predicates are bounded by a constant [12, 23]. The latter is notable
as it implies the ExpTime upper bound for consistency checking in many standard DLs, since
their translations into FO use predicate symbols of arity at most two. It has been observed
that the above mentioned connection of knowledge representation formalisms to GF is somewhat
more robust than their connection to FO2, which becomes more clear when looking at reasoning
problems beyond consistency checking. Most notably, conjunctive query answering, which is
decidable for most DLs, remains decidable for GF, but becomes undecidable for FO2 [4, 18].

Given the importance of GF and FO2, this paper takes a deeper look at them, and studies
a new, very expressive fragment of FO that subsumes both GF and FO2. The fragment, called
the triguarded fragment (denoted TGF), is obtained by relaxing the standard definition of GF.
In GF, existential and universal quantification can only be used in (sub)formulae of the form
∃x.(R(t) ∧ ψ) or ∀x.(R(t)→ ψ), where R(t) is an atomic formula such that t contains all free
variables of ψ (the atom R(t) “guards” the formula ψ). In TGF, guardedness of quantification
is required only in case ψ has three or more free variables (hence the name “triguarded”). This
entails that quantification can be used in an unrestricted way for formulae with at most two
free variables, and hence FO2 gets included in TGF seamlessly.

After providing the definition of TGF, we study the satisfiability problem for TGF formulae.
To this end, we first consider a syntactic variant of the problem: we study satisfiability of GF
formulae in the presence of a built-in predicate U that must be interpreted as the set of all pairs
of domain elements. In DL parlance, we consider the extension of GF with the universal role,
and thus this fragment is denoted GFU. Since the predicate U can be used to provide “spurious”
guards to formulae with up to two free variables, GFU adds to GF precisely the expressivity
needed to capture TGF. Therefore, in the paper, we mainly focus on GFU instead of TGF.

We show that in the equality-free case, satisfiability of formulae in GFU (and thus in TGF)
is N2ExpTime-complete. We establish the upper bound using a characterization of the satisfi-
ability of a formula in GFU via mosaics, where a mosaic is a special (finite) collection of types
that can be used to build a model for the input formula. The upper bound is then established
via a procedure that guesses and verifies an appropriate mosaic. The matching lower bound
can be obtained by a reduction from the tiling problem for a doubly exponential grid. We then
consider the assumption that predicate arities are bounded by a constant. In this case, the mo-
saic construction gives rise to a NExpTime upper bound for satisfiability of formulae without
equality. We note that FO2 is already NExpTime-hard (even without equality), which means
that in the bounded-arity setting, TGF and GFU do not have higher complexity than their
sublogic FO2. Subsequently, we show that satisfiability of TGF and GFU formulae becomes
undecidable in the presence of equality (whereas, interestingly, the complexity of satisfiability
in GF and FO2 is insensitive to the presence of equality).

The fragment GFU is similar to the fragment GF×2 of [10], which extends GF with cross
products (allowing to capture statements like “all elephants are bigger than all mice” as in [20]).
The difference is that GF×2 , inspired by the database view, imposes a separation into a set of
ground facts (the data) and a constant-free theory (the schema) [9]. Under this restriction
on expressiveness (which is only implicit in [10]), GF×2 is in fact subsumed by the fragment
GF|FO2 from [14]. Using a resolution-based procedure, satisfiability in GF|FO2 was shown
to be in 2ExpTime, and in NExpTime in case of bounded predicate arities [14]. Instead
of resolution, the proof of the 2ExpTime upper bound for GF×2 in [10] uses a reduction to
satisfiability in plain GF. As we shall see, the unrestricted availability of constants is key in
the N2ExpTime-hardness of full GFU and TGF, and thus is the main distinguishing feature

605

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

of the fragments introduced in this paper. We note that the undecidability of GFU and TGF
in the presence of equality can be inferred from [14] (Section 4.2.3), where a reduction from
satisfiability in the Goldfarb class is presented, and it can be applied to our fragments. Instead,
in this paper we provide a more direct undecidability proof by a reduction from the tiling
problem for an infinite grid.

2 Preliminaries

We assume the reader is familiar with the syntax and semantics of FO, and thus we only
present some notation. We use NP, NC and NV to denote countably infinite, mutually disjoint
sets of predicate symbols, constants and variables, respectively. We will mostly use (possibly
subscripted) P , R, B and H as predicate symbols. Given a formula ϕ, we use NC(ϕ) and NP(ϕ)
to denote the set of constants and the set of predicate symbols that appear in ϕ, respectively.
Elements of NC ∪ NV are called terms. An atom (or, atomic formula) is an expression of the
form R(t), where t is an n-tuple of terms, where n is the arity of the predicate symbol R ∈ NP.
An atom is ground, if it has no variables. For convenience, given a tuple t = 〈t1, . . . , tn〉
of terms, we sometimes view t as the set {t1, . . . , tn}. Given a tuple x of variables, an x-
assignment is any function f : NC ∪ NV → NC ∪ NV such that (i) f(y) ∈ NC for all y ∈ x,
and (ii) f(t) = t for all t 6∈ x. Given a tuple t = 〈t1, . . . , tn〉 of terms and an x-assignment f ,
we let f(t) = 〈f(t1), . . . , f(tn)〉. The semantics to formulae is given using interpretations. An
interpretation is a pair I = (∆I , ·I), where ∆I is a non-empty set (called domain), and ·I is a
function that maps (i) every constant c ∈ NC to an element cI ∈ ∆I , and (ii) every predicate
symbol R ∈ NP to an n-ary relation over ∆I , where n is the arity of R. We assume that 0-ary
predicate symbols > and ⊥ belong to NP, and they have the usual (built-in) meaning. The
equality predicate ≈ also belongs to NP, and has the fixed meaning ≈I= {(e, e) | e ∈ ∆I} for
all interpretations I. We write I |= ϕ, if an interpretation I is a model of a closed formula
(or, a sentence) ϕ. We use free(ϕ) to denote the set of free variables in a formula ϕ. Given a
formula ϕ, we sometimes write ϕ[x] to indicate that x is an enumeration of free(ϕ).

3 The Triguarded Fragment

We are now ready to introduce the triguarded fragment of FO. Essentially, it is a relaxed variant
of GF where guards are only required when quantifying over (sub)formulae with three or more
free variables.

Definition 1. The triguarded fragment TGF of first-order logic is defined as the smallest set
of formulae closed under the following rules:

(1) Every atomic formula belongs to TGF.

(2) TGF is closed under the propositional connectives ¬, ∧, ∨ and →.

(3) If x is a variable, and ϕ is a formula in TGF with |free(ϕ)| ≤ 2, then ∃x.ϕ and ∀x.ϕ also
belong to TGF.

(4) If x is a non-empty tuple of variables, ϕ is a formula in TGF, α is an atom, and free(ϕ) ⊆
free(α), then ∃x.(α ∧ ϕ) and ∀x.(α→ ϕ) also belong to TGF.

606

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

Observe that if we consider only the items (1), (2) and (3) in Definition 1 as legal rules
to construct formulae, we can build all formulae of FO that use at most 2 variables, and thus
FO2 ⊆ TGF. If we consider the items (1), (2) and (4) in Definition 1, we can create all guarded
formulae, and thus GF ⊆ TGF. The syntax of TGF also allows us to build formulae that are
neither in GF nor in FO2, witnessed by formulae like

∀x∀y.((R1(x, a) ∧R2(y, b))→ ∃z.R3(x, y, z, c)). (1)

Our main goal in this paper is to understand the computational complexity of satisfiability in
TGF. To this end, we concentrate on a slightly different logic, which is effectively equivalent
to TGF, but which makes presentation significantly easier. In particular, there is a simple
extension of GF that allows us to capture TGF. Intuitively, TGF 6⊆ GF because TGF allows
“unguarded” quantification in front of formulae ϕ, but only in case ϕ has no more than 2
free variables. Now, if our logic provided a “built-in” binary predicate whose extension always
contains all pairs of domain elements, we could use it to guard ϕ. In particular, we consider
next the binary universal role predicate U ∈ NP, whose extension is fixed to be UI = ∆I ×∆I

for all interpretations I. Naturally, we don’t allow U to be used in GF formulae, but note that
in FO, FO2 and TGF, the built-in predicate U does not add expressiveness, because it can be
axiomatized using a fresh ordinary binary predicate U and the FO2 sentence

φ = ∀x∀y.U(x, y) (2)

Thus we can safely allow U to be used as a predicate symbol in formulae of FO, FO2 and TGF.
Since φ is not in GF, the addition of the built-in U to GF makes a big difference (as we shall
see from complexity results). We now formally define GFU, which extends GF with U, and in
fact adds to GF the necessary expressivity to capture TGF.

Definition 2. Let GFU be the set of formulae of TGF that can be built using the items (1),
(2) and (4) of Definition 1 only, possibly using the predicate U in atomic formulae.

By using the U predicate as a guard for formulae with at most 2 free variables, we can
convert any TGF formula into an equivalent formula in GFU. For instance, the above example
formula (1) can be transformed into the equivalent GFU formula

∀x∀y.(U(x, y)→ ((R1(x, a) ∧R2(y, b))→ ∃z.R3(x, y, z, c))). (3)

Proposition 3. For any ϕ ∈ TGF, we can build in polynomial time an equivalent formula
ϕ′ ∈ GFU. Moreover, NP(ϕ′) ⊆ NP(ϕ) ∪ {U}.

Proof. (Sketch) We obtain ϕ′ from ϕ by replacing

• every subformula of the form ∃x.ϕ[x] by ∃x.(U(x, x) ∧ ϕ[x]),

• every subformula of the form ∃x.ϕ[x, y] by ∃x.(U(x, y) ∧ ϕ[x, y]),

• every subformula of the form ∃xy.ϕ[x, y] by ∃xy.(U(x, y) ∧ ϕ[x, y]),

• every subformula of the form ∀x.ϕ[x] by ∀x.(U(x, x)→ ϕ[x]),

• every subformula of the form ∀x.ϕ[x, y] by ∀x.(U(x, y)→ ϕ[x, y]),

• every subformula of the form ∀xy.ϕ[x, y] by ∀xy.(U(x, y)→ ϕ[x, y]).

In other words, we replace every unguarded quantification by a U-guarded one. It is easy to
see that this translation does not change the meaning of the formula.

607

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

Note that any GFU theory can be efficiently translated—while preserving satisfiability—into
TGF by adding the axiomatization of the binary universal predicate (2) above and replacing
U by U . Note that the transformations do not just preserve satisfiability but also modelhood
(modulo the freshly introduced U). Hence TGF and GFU are equally expressive.

4 Characterizing Satisfiability via Mosaics

Thanks to Proposition 3, in order to check satisfiability in TGF, it suffices to consider the
satisfiability problem for GFU, and thus in the rest of the paper we focus on GFU. In this
section, we study GFU in the equality-free setting, and provide a finite representation of models
of satisfiable GFU formulae, which will be the basis of the satisfiability checking algorithm. In
particular, we show that an equality-free GFU formula ϕ has a model iff there exists a mosaic
for ϕ, which is a relatively small set of building blocks that can be used to construct a model for
ϕ. In this way, checking satisfiability of ϕ reduces to verifying the existence of a mosaic for ϕ.

To simplify the structure of GFU formulae, we introduce a suitable (Scott-like) normal form,
which is not much different from the ones used, e.g., in [13, 12].

Definition 4 (Normal Form). A sentence ϕ ∈ GFU is in normal form if it has the form∧
ψ∈A ψ ∧

∧
ψ∈E ψ, where A contain sentences of the form

∀x.(R(t)→ (¬H1(v1) ∨ . . . ∨ ¬Hn(vn) ∨Hn+1(vn+1) ∨ . . . ∨Hm(vm))), (4)

and E contain sentences of the form

∀x.(R(u)→ ∃y.H(v)). (5)

We use A(ϕ) and E(ϕ) to denote the sets A and E of a formula ϕ as above. For a sentence
ψ = ∀x.(R(u) → ∃y.H(v)), we let width(ψ) denote the number of variables that appear in v.
For a formula ϕ as above, width(ϕ) is the maximal width(ψ) over all ψ ∈ E(ϕ).

As usual, in case m = 0, the empty disjunction in (4) stands for ⊥. Note that since (4) and
(5) are in GFU, each variable that appears in v1, . . . ,vm also appears in t, and each variable
that appears in v also appears in u. Observe that the sentence in (4) can be equivalently
written as

∀x.(R(t) ∧H1(v1) ∧ . . . ∧Hn(vn)→ Hn+1(vn+1) ∨ . . . ∨Hm(vm)). (6)

For presentation reasons, in what follows we will mostly use the form (6) instead of (4) when
speaking about sentences in A. Note that (6) closely resembles a (guarded) disjunctive Datalog
rule with R(t) a guard atom.

The following statement ensures that we can focus our attention on formulae in normal
form.

Proposition 5. For any sentence ϕ ∈ GFU, we can construct in polynomial time a sentence
ϕ′ ∈ GFU in normal form such that (a) ϕ is satisfiable iff ϕ′ is satisfiable, and (b) the translation
does not increase the arity of predicates, i.e., there is no predicate symbol in ϕ′ whose arity is
strictly greater than the arity of every predicate in ϕ.

In order to prove Proposition 5, we provide the following normalization:

Definition 6. Let χ be a GFU sentence. W.l.o.g., we assume χ does not use → and is in nega-
tion normal form. We define the sets Aχ and Eχ as follows, introducing for certain subformulae
ψ[z] with free variables z fresh predicates pψ of arity |z|.

608

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

• We let Aχ contain the sentence
→ pχ (7)

• For every subformula ϕ1[x] ∧ ϕ2[y] of χ, we add to Aχ the sentences

∀xy.(pϕ1∧ϕ2(x ∪ y)→ pϕ1(x)) (8)

∀xy.(pϕ1∧ϕ2
(x ∪ y)→ pϕ2

(y)) (9)

• For every subformula ϕ1[x] ∨ ϕ2[y] of χ, we add to Aχ the sentence

∀xy.(pϕ1∨ϕ2(x ∪ y)→ pϕ1(x) ∨ pϕ2(y)) (10)

• For every subformula of χ that is a non-guard atom α(x) we add to Aχ the sentence

∀x.(pα(x)(x)→ α(x)) (11)

• For every subformula of χ that is a negated non-guard atom ¬α(x) add the sentence

∀x.(p¬α(x)(x)→ ¬α(x)) (12)

• For every subformula of χ with the shape ∀x.¬α(x,y)∨ϕ(x,y) we add to Aχ the sentence

∀xy.(α(x,y)→ ¬p∀x.¬α(x,y)∨ϕ[x,y](y) ∨ pϕx,y) (13)

• For every subformula of χ with the shape ∃x.ϕ[x,y] we add to Eχ the sentence

∀y.(p∃x.ϕ[x,y](y)→ ∃x.pϕx,y) (14)

Proof. (Proof sketch for Proposition 5) Given ϕ, we let ϕ′ =
∧
ψ∈Aϕ

ψ ∧
∧
ψ∈Eϕ

ψ. Equisatis-

fiability of ϕ and ϕ′ follows from the fact that (i) every model of ϕ′ is a model of ϕ and (ii)
every model of ϕ can be extended to a model of ϕ′ by choosing the interpretation of each aux-
iliary predicate such that it coincides with the valid variable assignments of the corresponding
subformula.

Preservation of the maximal arity follows from the fact that by definition, for any set of
variables that occur freely in some subformula of ϕ, there must be a joint guard for all of them,
hence, for each freshly introduced predicate in ϕ′ we find a guard predicate in ϕ with the same
or higher arity.

To define mosaics, we need the notion of a type for a formula ϕ. Types will form mosaics,
and they can be seen as patterns (interpretations of restricted size) for building models of ϕ.

Definition 7 (Types). A type τ for a formula ϕ is any set of ground atoms with predicate
symbols from NP(ϕ). We let dom(τ) denote the set of constants that appear in a type τ , and let
I(τ) denote the interpretation such that (i) ∆I(τ) = dom(τ), and (ii) P I(τ) = {t | P (t) ∈ τ}
for all predicate symbols P . For a sentence ϕ, we write τ |= ϕ if I(τ) |= ϕ. Given a set of
constants F , we let τ |F = {P (t) ∈ τ | t ⊆ F}, i.e., τ |F is the restriction of τ to atoms whose
all arguments are included in F .

Of particular interest in our treatment is how a distinguished element of some type “looks
like” in terms of the predicates it satisfies and its relationship to constants. This information
is captured using the notion of unary types, in which we abstract from the concrete target
constant by replacing it with a special variable.

609

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

Definition 8 (Unary Types). Assume a formula ϕ ∈ GFU, and let xϕ be a special variable
associated with ϕ. We let base(ϕ) denote the set of all atoms P (t) such that t ⊆ NC(ϕ)∪ {xϕ}
and P ∈ NP(ϕ). Any subset σ ⊆ base(ϕ) is called a unary type for ϕ. Assume a constant c,
and let f be the function such that (i) f(xϕ) = c, and (ii) f(d) = d for all d ∈ NC. For a type
τ , we define the unary type τ |ϕc = {R(t) ∈ base(ϕ) | R(f(t)) ∈ τ}.

We are now ready to define mosaics, which will act as witnesses to satisfiability of GFU
formulae (without equality). Roughly, a mosaic for a formula ϕ is a pair (M,X), where X is
a collection of “placeholder” constants, and M is a set of types for ϕ. In order to be a proper
witness to satisfiability, a mosaic must satisfy a collection of conditions. In particular, they
ensure that in case ϕ is satisfiable, we will be able to construct a model by arranging together
(possibly multiple) instances of types from M. Intuitively, by an instance of a type τ ∈M we
mean a concrete structure that is obtained by replacing the placeholder constants from X with
concrete domain elements.

Definition 9 (Mosaic). A mosaic for a sentence ϕ ∈ GFU in normal form is a pair (M,X),
where M is a set of types for ϕ and X ⊆ NC \ NC(ϕ), satisfying the following:

(A) |X | ≤ width(ϕ);

(B) For all τ ∈M, dom(τ) ⊆ NC(ϕ) ∪ X ;

(C) For all τ, τ ′ ∈M, τ |NC(ϕ) = τ ′|NC(ϕ);

(D) U(t, v) ∈ τ for all τ ∈M and each pair t, v ∈ dom(τ);

(E) τ |= ψ for all τ ∈M and all ψ ∈ A(ϕ);

(F) If τ ∈ M, ∀x.(R(t) → ∃y.H(v)) ∈ E(ϕ), and R(g(t)) ∈ τ for some x-assigment g, then
there is some τ ′ ∈M such that:

(a) H(h(g(v))) ∈ τ ′ for some y-assignment h;

(b) τ |F = τ ′|F , where F = NC(ϕ) ∪ {g(x) | x ∈ x ∩ v}.

(G) If t1 ∈ dom(τ1) ∩ X and t2 ∈ dom(τ2) ∩ X for some τ1, τ2 ∈ M, then there exists a type
τ ∈M and a pair v1, v2 with dom(τ)∩X = {v1, v2} such that (i) v1 6= v2, (ii) τ1|ϕt1 = τ |ϕv1 ,
(iii) τ2|ϕt2 = τ |ϕv2 .

Intuitively, the conditions (A-G) ensure the following: (A) requires that only a small number
of placeholder constants is used. Due to (B), types in mosaics only refer to original constants
of the formula and the small number of place holder constants. The conditions (A) and (B) are
important to ensure the relatively small size of mosaics. The condition (C) forces the types to
agree on the participation of constants in predicates. (D) requires U to be correctly interpreted
locally (i.e., within the individual types), and (E) requires each type to (locally) satisfy all
sentences from A(ϕ). The condition (F) ensures that for each type locally satisfying the body
of some sentence from E(ϕ), we find a matching type where also the head of that sentence is
satisfied. Using (G) we make sure that any two representatives of unnamed domain elements
(in terms of unary types) found across the types also occur together in one type.

The following soundness and completeness theorems show that mosaics properly characterize
satisfiability of equality-free GFU formulae (and, due to Proposition 3, of equality-free TGF
formulae).

610

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

Theorem 10 (Completeness). Let ϕ ∈ GFU be a formula in normal form. If ϕ is satisfiable,
then there exists a mosaic (M,X) for ϕ.

Proof. Assume that ϕ has some model J . Since ϕ is equality-free, we can make the standard
name assumption (SNA): NC(ϕ) ⊆ ∆J and cI = c for all c ∈ NC(ϕ). Now, let I be obtained
from J by duplicating all anonymous individuals. Formally, let ∆anon = ∆J \ NC(ϕ) and
∆I = NC(ϕ) ∪ {1, 2} × ∆anon (where we assume w.l.o.g. {1, 2} × ∆anon ⊆ NC and {1, 2} ×
∆anon ∩ NC(ϕ) = ∅). Let π : ∆I → ∆J such that π(c) = c for c ∈ NC(ϕ) and π((i, e)) = e
otherwise. Now, for every c ∈ NC(ϕ), we let cI = cJ = c and for each n-ary P , we let
P I = {t ∈ (∆I)n | π(t) ∈ PJ }. As ϕ does not contain equality, J |= ϕ implies I |= ϕ. This
duplication of anonymous individuals makes sure that for every non-constant domain element
e, I contains a twin element ẽ different from e but with the same unary type. This property
turns out to be crucial when dealing with the condition (G) from the definition of mosaics.

We show how to extract from I a mosaic (M,X) for ϕ. Note that, by construction, I
satisfies the SNA.

Let X be any set with X ⊆ NC, X ∩∆I = ∅, and |X | = width(ϕ). We say a type τ can be
extracted from I if τ can be obtained from I in 4 steps:

(a) Take any S ⊆ ∆I such that NC(ϕ) ⊆ S and |S| − |NC(ϕ)| ≤ width(ϕ).

(b) Let τ∗ = {P (t) | t ⊆ S ∧ t ∈ P I}.

(c) Let f be any injective function from dom(τ∗) \ NC(ϕ) to X .

(d) Let τ be the type obtained from τ∗ by replacing every occurence of c ∈ dom(τ∗) \ NC(ϕ)
by f(c).

The set M contains all types τ that can be extracted from I. We now proceed to show that
the constructed (M,X) is a mosaic for ϕ. To this end, we separately verify the properties from
Definition 9:

(A) |X | ≤ width(ϕ) is directly satisfied by construction (choice of X).

(B) For all τ ∈ M, dom(τ) ⊆ NC(ϕ) ∪ X . This is another immediate consequence from the
construction.

(C) For all τ, τ ′ ∈ M, τ |NC(ϕ) = τ ′|NC(ϕ). This is ensured by the fact that NC(ϕ) ⊆ dom(τ) as
well as NC(ϕ) ⊆ dom(τ ′) and the uniform construction from I.

(D) U(t, v) ∈ τ for all τ ∈ M and each pair t, v ∈ dom(τ). This is a direct consequence of the
construction.

(E) τ |= ψ for all τ ∈M and all ψ ∈ A(ϕ).

Note that I |= ψ by assumption. By definition, I(τ∗) is an induced substructure of I,
therefore I(τ∗) |= ψ (since ψ is a formula in prenex form with only universal quanti-
fiers). By construction, I(τ∗) and I(τ) are isomorphic, therefore I(τ) |= ψ as well, and
consequently τ |= ψ.

(F) If τ ∈ M, ∀x.(R(t) → ∃y.H(v)) ∈ E(ϕ), and R(g(t)) ∈ τ for some x-assigment g, then
there is some τ ′ ∈M such that:

(a) H(h(g(v))) ∈ τ ′ for some y-assignment h;

(b) τ |F = τ ′|F , where F = NC(ϕ) ∪ {g(x) | x ∈ x ∩ v}.

611

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

Let τ be created from Sτ and fτ as described. From R(g(t)) ∈ τ follows f−1τ (g(t)) ∈ RI .
Then, since I must satisfy the above formula, we must find some y-assignment hI such that
hI(f−1τ (g(v))) ∈ HI . We now let Sτ ′ = NC(ϕ)∪{hI(f−1τ (g(v))) | v ∈ v}. Furthermore, we
choose fτ ′ such that it coincides with fτ on all elements from Sτ ∩Sτ ′ \NC(ϕ). Let now τ ′

be the type extracted via Sτ ′ and fτ ′ . Then (a) is satisfied via the y-assignment h mapping
every y to fτ ′(hI(y)), and (b) is satisfied due to the choice of fτ ′ and the definition of type
extraction.

(G) If t1 ∈ dom(τ1) ∩ X and t2 ∈ dom(τ2) ∩ X for some τ1, τ2 ∈ M, then there exists a type
τ ∈M and a pair v1, v2 with dom(τ)∩X = {v1, v2} such that (i) v1 6= v2, (ii) τ1|ϕt1 = τ |ϕv1 ,
(iii) τ2|ϕt2 = τ |ϕv2 ;

For a domain element e ∈ ∆I , we let I|ϕe = {R(t) ∈ base(ϕ) | f(t) ∈ RI with f = {ẋ →
e} ∪ {c→ cI | c ∈ NC}}.
Assume, τ1 has been extracted via Sτ1 and fτ1 such that fτ1(e1) = t1 while τ2 has been
extracted via Sτ2 and fτ2 such that fτ2(e2) = t2. Note that then I|ϕe1 = τ |ϕt1 and I|ϕe2 = τ |ϕt2 .

In case e1 6= e2 we let S′τ = NC(ϕ) ∪ {e1, e2} and fτ map e1 to v1 and e2 to v2 for two
arbitrary distinct elements v1, v2 from X . Then τ satisfies all requirements (i)-(iii).

Now consider the case e1 = e2. As argued above, ẽ2 ∈ ∆I with ẽ2 6= e2 = e1 and
I|ϕẽ2 = I|ϕe1 = τ1|ϕt1 = τ2|ϕt2 . Let now Sτ = NC(ϕ) ∪ {e1, ẽ2} and fτ map e1 to v1 and ẽ2 to
v2 for two arbitrary distinct elements v1, v2 from X . We again see that all requirements
(i)-(iii) are satisfied.

Theorem 11 (Soundness). Let ϕ ∈ GFU be a formula in normal form. If there exists a mosaic
(M,X) for ϕ, then ϕ is satisfiable.

Proof. Assume a mosaic (M,X) for ϕ. An instantiation for a type τ ∈ M is any injective
function δ from dom(τ)∩X to NC \X . Given such τ and δ, we use δ(τ) to denote the type that
is obtained from τ by replacing every occurrence of a constant c ∈ dom(τ) ∩ X by δ(c). Our
goal is to show how to inductively construct a possibly infinite sequence S = (τ0, δ0), (τ1, δ1), . . .
of pairs (τj , δj), where τj ∈M and δj is an instantiation for τj , such that

⋃
i≥0 δi(τi) |= ϕ.

In the base case, we let τ0 be an arbitrary type from M, and let δ0 be any instantiation
for τ0.

For the inductive case, suppose (τ0, δ0), . . . , (τi−1, δi−1) have been defined, where i > 0. We
show how define the next segment (τi, δi), . . . , (τm, δm) of S, where m ≥ i (we indeed may attach
to S multiple new elements in one step). To this end, choose the smallest index 0 ≤ j ≤ i− 1
satisfying the following condition: there is ∀x.(R(t)→ ∃y.H(v)) ∈ E(ϕ), and R(g(t)) ∈ δj(τj)
for some x-assignment g. If such j does not exist, the construction of S is complete, and we
can proceed to (?) below, where we argue that

⋃
0≤k<i δk(τk) |= ϕ. We assume that the above

j exists. We first show in (†) how to define (τi, δi), and then in (‡) how to define the remaining
(τi+1, δi+1), . . . , (τm, δm).

(†) From the x-assignment g construct the following x-assignment h. For every x ∈ x, (i)
let h(x) = g(x), if g(x) ∈ dom(τj), and (ii) let h(x) = δ−j (g(x)), if g(x) 6∈ dom(τj). Since
R(g(t)) ∈ δj(τj), we get R(h(t)) ∈ τj . Since the condition (F) is satisfied by the mosaic, there
exists a type τ ′ ∈M such that

(a) H(f(g(v))) ∈ τ ′ for some y-assignment f ;

612

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

(b) τ |F = τ ′|F , where F = NC(ϕ) ∪ {g(x) | x ∈ x ∩ v}.

We let τi = τ ′, and define an injective function δi from dom(τi) ∩ X to NC \ X as follows. For
every c ∈ dom(τi) ∩X , we let δi(c) = δj(c) in case c ∈ {h(x) | x ∈ x ∩ v}, and otherwise we let
δi(c) be a fresh constant, i.e., a constant that does not appear in NC(ϕ) or in the range of any
instantition built so far.

(‡) Let N be the set of all constants that were freshly introduced in S by δi, i.e., N is the set
of all δi(c) such that c ∈ dom(τi)∩X but c 6∈ {h(x) | x ∈ x∩v}. Intuitively, in order to properly
deal with the U predicate, we need to find in M proper types to connect every c ∈ N with
the relevant remaining constants of the sequence S constructed so far. Let (d1, d

′
1), . . . , (dn, d

′
n)

be an enumeration of all pairs (d, d′) such that d ∈ N and d′ ∈
⋃

0≤k≤i−1 ran(δk). That is, d′

is any constant that appears in the sequence S constructed so far but d′ 6∈ N ∪ NC(ϕ). The
definition of the segment (τi+1, δi+1), . . . , (τm, δm) of S in this inductive step is as follows. We
let m = i+ n, and for each 1 ≤ k ≤ n, we select (τi+1+k, δi+1+k) as described next.

Assume an arbirary 1 ≤ k ≤ n. We let c = δ−i (dk), and let τ = τl for some 0 ≤ l ≤ i such that
d′k ∈ ran(δl). Let c′ = δ−l (d′k). Due to Condition (G) in the definition of mosaics, there exists a
type τ∗ ∈M such that (i) dom(τ)∩X = {v1, v2} for some v1, v2 with v1 6= v2, (ii) τi|ϕc = τ∗|ϕv1 ,
and (iii) τ |ϕc′ = τ∗|ϕv2 . ‘ Then we set τi+1+k = τ∗, and let δi+1+k = {(v1, dk), (v2, d

′
k)}.

The above completes the construction of a candidate model J for ϕ defined by
⋃
i≥0 δi(τi).

We now show that J is indeed a model of ϕ.
First, observe that t ∈ PJ exactly if P (t) ∈ δi(τi) for some i. Due to the definition of mosaic

and the construction of S, this is exactly the case if P (t) ∈ δi(τi) for all i where t ∈ ran(δi).
We note two consequences of our construction:

(i) Every δi(τi) is an induced substructure of J .

(ii) For any two elements e1, e2 ∈ ∆J , there is at least one (τi, δi) in S with {e1, e2} ∈ ran(δi).

We now show that the predicate U is interpreted in the intended way. Thanks to Fact
(ii), we know that any two elements of ∆J co-occur in one type, hence condition (D) ensures
UJ = ∆J ×∆J .

Next we show J |= ϕ.
We start with some sentence ψ = ∀x.(B1(t1) ∧ . . . ∧ Bn(tn) → H1(v1) ∨ . . . ∨ Hm(vm))

coming from A(ϕ). W.l.o.g. we assume B1(t1) to be the guarding atom, i.e. x ⊆ t1. Now
assume there is an arbitrary x-assignment f such that f(ti) ∈ BIi for 1 ≤ i ≤ n. Let (τ, δ)
be the sequence element for which B1(f(t1)) ∈ δ(τ). As δ(τ) is an induced substructure of
I containing all elements from f(x) as well as all constants, it follows that Bi(f(ti)) ∈ δ(τ)
for all i > 1 as well, therefore Bi(δ

−1(f(ti))) ∈ τ . Due to Condition (E), we have τ |= ψ,
therefore Hj(δ

−1(f(vj))) ∈ τ for some j with 1 ≤ j ≤ m. This ensures Hj(f(vj)) ∈ δ(τ) and
consequently f(vj) ∈ HJj . Hence we have shown J |= ψ.

Now consider some sentence ψ = ∀x.(R(t) → ∃y.H(v)) coming from E(ϕ). Assume an
arbitrary x-assignment g such that g(t) ∈ RI . Let (τ, δ) be the sequence element for which
R(g(t)) ∈ δ(τ). By construction (†) of S there must be a later sequence element (τ ′, δ′) such
that H(f(g(v))) ∈ δ′(τ ′) for some y-assignment f . Hence we have shown J |= ψ.

5 Complexity of TGF without Equality

Using the characterization of the previous section, we can infer worst-case optimal upper bounds
for satisfiability checking in GFU, and thus in TGF.

613

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

Theorem 12 (Complexity). Deciding satisfiability of TGF and of GFU formulae without
equality is N2ExpTime-complete. The problem is NExpTime-complete under the assumption
that predicate arities are bounded by a constant.

Proof. Due to Propositions 3 and 5, it suffices to show the two upper bounds for GFU formulae
in normal form. Due to Theorems 10 and 11, we can decide the satisfiability of a formula
ϕ ∈ GFU in normal form by checking the existence of a mosaic for ϕ. Our approach is to
non-deterministically guess a pair (M,X) of a set M of types over NP(ϕ) together with a
set of constants X of cardinality at most width(ϕ), and then verify that (M,X) is indeed a
mosaic for ϕ. Note that given a candidate (M,X) as input we can check in polynomial time
whether (M,X) satisfies all the conditions given in Definition 9. Observe that the number of
ground atoms over the signature of ϕ with arguments from NC(ϕ) ∪ X is bounded by |NP(ϕ)| ·
(|NC(ϕ)| + width(ϕ))k, where k is the maximal arity of predicates in ϕ. Consequently, we can

restrict ourselves to candidates (M,X), where M has no more than 2|NP(ϕ)|·(|NC(ϕ)|+width(ϕ))k

types. Since this bound is double exponential in the size of ϕ, but only single exponential under
the assumption that k is a constant, the two upper bounds follow.

The matching lower bound for the bounded arity follows from the complexity of FO2 [13].
N2ExpTime-hardness for unbounded arity follows from a reduction from the tiling problem of
a grid of doubly exponential size [7] shown in the following.

Let k be a natural number. We will construct a GFU theory describing a tiling of a 2(2
k) ×

2(2
k) grid. We will have domain elements corresponding to elements of this grid. To identify the

position of each of those grid elements, we have to assign them x- and y-coordinates between

0 and 2(2
k) − 1. We will express them in binary encoding, i.e. as 2k-dimensional bitvectors.

In order to express that the `th position in the bitvector corresponding to the x-coordinate of
some grid element e carries a 0, we let Sel0(e, 0, `binary) hold, where `binary is a list of length k
containing 0s and 1s, expressing the binary encoding of `. That is, the arity of Sel0 is k+ 2. In
order to express that the `th bit is 1, we use Sel1(e, 0, `binary). To express the corresponding
information for the y-coordinate, we use Sel0(e, 1, `binary) and Sel1(e, 1, `binary), respectively.

In the following, we omit leading universal quantifiers; all formulae are sentences. We make
use of two distinguished constants, 0 and 1.

First, we will make sure that for every pair of x- and y-coordinates, a corresponding grid
element exists. We do so by creating a binary tree structure of exponential depth, where at the
`th level two Next-successors are created: one where the `th bit is set to 0 and one where it is
set to 1. All the previously set bits are propagated toward the leaves of the tree, which then
correspond to the grid elements.

We create the tree root.
∃x.ToSelect(x, 0k+1) (15)

At the `th level (z = `binary), two successors are created with the `th bit set to 0 and 1,
respectively (b ∈ {0, 1}).

ToSelect(x,z) → ∃y.Next(x, y) ∧ Sel(y,z) ∧ Selb(y,z) (16)

At the `+1st level (where the `th bit has just been selected), we indicate that in the next step,
the `+1st bit is to be selected (0 ≤ i ≤ k − 1).

Sel(x,z, 0, 1i) → ToSelect(x,z, 1, 0i) (17)

The next two rules create versions of the Next predicate which carry all possible (k + 1)ary
bitvectors as additional parameter. We will need them as guards later.

Next(x, y) → Next ′(x, y, 0k+1) (18)

Next ′(x, y,z, 0, 1i) → Next ′(x, y,z, 1, 0i) (19)

614

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

We propagate earlier choices made for the bits along the Next predicate, making use of the
auxiliary Next ′ predicate, to keep everything guarded.

Selb(x,z) ∧ Next ′(x, y,z) → Selb(y,z) (20)

Once the last bit is set, we indicate that we have reached a leaf.

Sel(x, 1k+1) → Complete(x) (21)

This finishes the creation (and “coordinatization”) of the grid elements. In the next step, we
enforce that any two grid elements with the same y-coordinate and subsequent x-coordinates
are connected via a H predicate (b ∈ {0, 1} and 0 ≤ i ≤ k − 1).

U(x, y) ∧ Complete(x) ∧ Complete(y) → ChkH (x, y, 0, 0k) (22)

ChkH (x, y, 0,z, 0, 1i) ∧ Sel1(x, 0,z, 0, 1i) ∧ Sel0(y, 0,z, 0, 1i) → ChkH (x, y, 0,z, 1, 0i) (23)

ChkH (x, y, 0,z, 0, 1i) ∧ Sel0(x, 0,z, 0, 1i) ∧ Sel1(y, 0,z, 0, 1i) → ChkH ′(x, y, 0,z, 1, 0i) (24)

ChkH ′(x, y, 0,z, 0, 1i) ∧ Selb(x, 0,z, 0, 1
i) ∧ Selb(y, 0,z, 0, 1

i) → ChkH ′(x, y, 0,z, 1, 0i) (25)

ChkH ′(x, y, 0, 1k) ∧ Selb(x, 0, 1
k) ∧ Selb(y, 0, 1

k) → ChkH ′′(x, y, 1, 0k) (26)

ChkH ′′(x, y, 1,z, 0, 1i) ∧ Selb(x, 1,z, 0, 1
i) ∧ Selb(y, 1,z, 0, 1

i) → ChkH ′′(x, y, 1,z, 1, 0i) (27)

ChkH ′′(x, y, 1, 1k) ∧ Selb(x, 1, 1
k) ∧ Selb(y, 1, 1

k) → H(x, y) (28)

Thereby, the atom ChkH (x, y, 0, `binary) is supposed to hold for all grid elements x and y for
which the lowest ` bits of their x-coordinate have the shape 1` and 0`, respectively. Moreover,
the atom ChkH ′(x, y, 0, `binary) is supposed to hold for all grid elements x and y for which the
lowest ` bits of x and y represent consecutive binary numbers. Finally, ChkH ′′(x, y, 1, `binary)
is supposed to hold for any x and y with consecutive x-coordinates and coinciding lowest `
bits of the y-coordinate. Consequently, H(x, y) follows for every x and y with consecutive
x-coordinates and coinciding y-coordinates.

In the same way, we make sure that any two grid elements with the subsequent y-coordinates
and equal x-coordinates are connected via a V predicate (b ∈ {0, 1} and 0 ≤ i ≤ k − 1).

U(x, y) ∧ Complete(x) ∧ Complete(y) → ChkV (x, y, 1, 0k) (29)

ChkV (x, y, 1,z, 0, 1i) ∧ Sel1(x, 1,z, 0, 1i) ∧ Sel0(y, 1,z, 0, 1i) → ChkV (x, y, 1,z, 1, 0i) (30)

ChkV (x, y, 1,z, 0, 1i) ∧ Sel0(x, 1,z, 0, 1i) ∧ Sel1(y, 1,z, 0, 1i) → ChkV ′(x, y, 1,z, 1, 0i) (31)

ChkV ′(x, y, 1,z, 0, 1i) ∧ Selb(x, 1,z, 0, 1
i) ∧ Selb(y, 1,z, 0, 1

i) → ChkV ′(x, y, 1,z, 1, 0i) (32)

ChkV ′(x, y, 1, 1k) ∧ Selb(x, 1, 1
k) ∧ Selb(y, 1, 1

k) → ChkV ′′(x, y, 0, 0k) (33)

ChkV ′′(x, y, 0,z, 0, 1i) ∧ Selb(x, 0,z, 0, 1
i) ∧ Selb(y, 0,z, 0, 1

i) → ChkV ′′(x, y, 0,z, 1, 0i) (34)

ChkV ′′(x, y, 0, 1k) ∧ Selb(x, 0, 1
k) ∧ Selb(y, 0, 1

k) → V (x, y) (35)

This way, we have established a doubly exponential grid. Encoding a tiling on top of such a
grid is standard.

6 Undecidability of TGF with Equality

In the presence of equality, we can show the undecidability of satisfiability of GFU (and hence
of TGF) by a reduction from the tiling problem for an infinite grid [7].1 We can construct a
GFU formula with equality such that its universal model represents an N×N grid. Thereby, the

1As mentioned in the introduction, this undecidability result can be inferred from the undecidability of the
Goldfarb class, using the reduction in [14] (Section 4.2.3).

615

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

domain elements of the model correspond to grid positions and every position is connected to
its upper neighbor by a binary predicate V and to its right neighbor by a binary predicate H .

In the following, we omit leading universal quantifiers; all formulae are sentences. We start
our modeling by ensuring there is exactly one leftmost, bottommost position of the grid, i.e.,
the “origin”.

∃x.Orig(x) (36)

U(x, y) ∧Orig(x) ∧Orig(y)→ x ≈ y (37)

Any two domain elements co-occur together with the origin in a ternary auxiliary predicate
ChkFunc.

U(x, y)→ ∃z.ChkFunc(x, y, z) ∧Orig(z) (38)

Intuitively, ChkFunc(x, y, z) indicates that we will enforce that if z is connected with both x and
y by predicate V (or H), then x and y must coincide; in other words, as x and y are arbitrary
elements, z has only one outgoing V -connection and one outgoing H -connection. The following
two sentences implement this.

ChkFunc(x, y, z) ∧H (z, x) ∧H (z, y) → x ≈ y (39)

ChkFunc(x, y, z) ∧V (z, x) ∧V (z, y) → x ≈ y (40)

In particular, this makes sure that the origin has exactly one right and one upper neighbor.
Also, we propagate this “local funtionality” enforcing predicate along the (known to be unique)
V - and H -connections.

ChkFunc(x, y, z) → ∃w.ChkFunc(x, y, w) ∧H (z, w) (41)

ChkFunc(x, y, z) → ∃w.ChkFunc(x, y, w) ∧V (z, w) (42)

With these axioms alone, the corresponding universal model would resemble an infinite binary
tree, with the origin as root and every node having (exactly) one H -successor and (exactly)
one V -successor. The next axioms make sure that for every element e in our structure, the
element reached from e via an H -V -path coincides with the element reached from e via a
V -H -path, using another auxiliary 5-ary predicate ChkSq which is handled in a way that
ChkSq(x, y, z1, z2, z3) is only entailed whenever z1 has z2 as right neighbor and z3 as upper
neighbor.

Again, we start ensuring this for e being the origin and then work our way through the
structure along the (unique) H - and V - connections.

U(x, y)→ ∃z1z2z3.ChkSq(x, y, z1, z2, z3) ∧Orig(z1) ∧H (z1, z2) ∧V (z1, z3) (43)

ChkSq(x, y, z1, z2, z3)→ ∃w1w2.ChkSq(x, y, z2, w1, w2) ∧H (z2, w1) ∧V (z2, w2) (44)

ChkSq(x, y, z1, z2, z3)→ ∃w1w2.ChkSq(x, y, z3, w1, w2) ∧H (z3, w1) ∧V (z3, w2) (45)

Finally, we ensure that if ChkSq(x, y, z1, z2, z3) holds and x is the right neighbor of z2 and y is
the upper neighbor of z3, that then x and y must coincide.

ChkSq(x, y, z1, z2, z3) ∧V (z2, x) ∧H (z3, y)→ x ≈ y (46)

This finishes our modeling of the infinite grid. It is now straightforward to model a tiling on
top of this, and we obtain the following theorem.

Theorem 13 (Undecidability with Equality). Checking satisfiability of TGF formulae with
equality is undecidable. The same applies to GFU formulae with equality.

616

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

7 Further Undecidable Extensions

We review here some further natural extensions of TGF and find that they lead to undecidability.

Relaxing guardedness further. Unguarded quantification of subformulae with three vari-
ables would allow to express any formula of the three-variable fragment of FO, denoted FO3,
for which satisfiability is undecidable (as FO3 contains the class of FO sentences with quantifier
prefix ∀∃∀ which is undecidable [15]).

Counting. FO2 can be extended by counting quantifiers of the shape ∃=n, ∃≤n, and ∃≥n,
yielding a logic denoted C2. This extension (which helps to capture DLs with cardinality
restrictions) by itself does not lead to an increase in complexity of satisfiability checking [17].
Yet, this enrichment is detrimental when mixing it with the guarded fragment: via the C2

sentence ∀x.∃=1y.F (x, y) we can enforce that F must be interpreted as a functional binary
relation. Yet, adding a functional relation to GF is known to cause undecidability [12].

Conjunctive Queries. Instead of asking for satisfiability of a TGF theory, an often consid-
ered problem stemming from database theory is also if it entails a Boolean conjunctive query
(i.e., an existentially quantified conjunction of atoms). However, conjunctive query entailment
has been shown to be undecidable already for FO2 alone [18]. This also shows that any attempt
of extending TGF such that it incorporates FO fragments that can express negated Boolean
conjunctive queries (such as the unary negation fragment [22] or the guarded negation fragment
[5]) will lead to undecidability.

Loose guardedness. It has been shown that GF remains decidable if the guardedness restric-
tion is relaxed, leading to notions such as the loosely guarded fragment, the packed fragment or
the clique-guarded fragment. For most restrictive notion of those, the loosely guarded fragment
[24], the guard does not need to be one atom containing all free variables, rather it can be a
conjunction of atoms with the property that any pair of free variables occurs together in one
of those conjuncts. It is not hard to see that in the presence of the U predicate (or if such a
predicate can be axiomatized as in TGF), we can create a “loose guard”

∧
{x,y}⊆x U(x, y) for

any set x of free variables. This allows to quantify over the full domain, hence every FO formula
is equivalent to such a loosely guarded one. Consequently, a hypothetical “loosely triguarded
fragment” would be as expressive as FO, hence undecidable.

8 Conclusion

In this paper, we have introduced the triguarded fragment of FO which subsumes both GF and
FO2. We clarified the computational complexity of satisfiability checking in this fragment, both
for the bounded and unbounded arity case. We discussed that diverse natural extensions of the
fragment lead to undecidability.

We foresee several avenues of future work. It seems that, while full equality leads to undecid-
ability, it should be possible to allow for equality atoms of the form x ≈ c with c ∈ NC without
impacting the complexity results. This would allow to capture a modeling feature known as
nominals in DLs.

While both GF [12] and FO2 [16] are known to have the finite model property, the status of
TGF in this respect is open. On a first glance, it seems the arguments for establishing the finite
model property of the two fragments are incompatible and neither can be easily adapted to show
that property for TGF. Still, we conjecture that TGF has the finite model property which would
imply that satisfiability and finite satisfiability (and their respective complexities) coincide.

617

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

Acknowledgments

We thank Emanuel Kieroński and the anonymous reviewers of this work for the valuable com-
ments. We are also grateful to Pierre Bourhis, Michael Morak, and Andreas Pieris for clarifying
some questions regarding their paper [10].

Sebastian Rudolph has been supported by the Institute of Logic and Computation (E192)
at TU Wien and received funding from the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant agreement No 771779).
Mantas Šimkus has been supported by the Austrian Science Fund (FWF) projects P30360 and
P30873.

References

[1] Hajnal Andréka, Johan F. A. K. van Benthem, and István Németi. Modal languages and bounded
fragments of predicate logic. J. of Philosophical Logic, 27(3):217–274, 1998.

[2] Franz Baader, Diego Calvanese, Deborah McGuinness, Daniele Nardi, and Peter Patel-Schneider,
editors. The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, second edition, 2007.

[3] Franz Baader, Ian Horrocks, Carsten Lutz, and Ulrike Sattler. An Introduction to Description
Logic. Cambridge University Press, 2017.

[4] Vince Bárány, Georg Gottlob, and Martin Otto. Querying the Guarded Fragment. Logical Methods
in Computer Science, Volume 10, Issue 2, May 2014.

[5] Vince Bárány, Balder ten Cate, and Luc Segoufin. Guarded negation. J. of the ACM, 62(3):22:1–
22:26, 2015.

[6] Patrick Blackburn and Johan Van Benthem. Modal logic: a Semantic Perspective. In Frank Wolter
Patrick Blackburn, Johan van Benthem, editor, Handbook of Modal Logic, pages 1–82. Elsevier,
2006.

[7] Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Springer, 1997.

[8] Alexander Borgida. On the relative expressiveness of description logics and predicate logics. Artif.
Intell., 82(1-2):353–367, 1996.

[9] Pierre Bourhis, Michael Morak, and Andreas Pieris. Personal Communication (23rd of July 2018).

[10] Pierre Bourhis, Michael Morak, and Andreas Pieris. Making cross products and guarded ontology
languages compatible. In Proc. of IJCAI 2017, 2017.

[11] Erich Grädel. Description logics and guarded fragments of first order logic. In Proc. of DL 1998,
1998.

[12] Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.

[13] Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-variable
first-order logic. Bulletin of Symbolic Logic, 3(1):53–69, 1997.

[14] Yevgeny Kazakov. Saturation-Based Decision Procedures for Extensions of the Guarded Fragment.
PhD thesis, Universität des Saarlandes, Saarbrücken, Germany, March 2006.

[15] Harry R. Lewis. Unsolvable Classes of Quantificational Formulas. Addison-Wesley, 1979.

[16] Michael Mortimer. On languages with two variables. Math. Log. Q., 21(1):135–140, 1975.

[17] Ian Pratt-Hartmann. Complexity of the two-variable fragment with counting quantifiers. J. of
Logic, Language and Information, 14:369–395, 2005.

[18] Riccardo Rosati. The limits of querying ontologies. In Thomas Schwentick and Dan Suciu, editors,
Proc. 11th Int. Conf. Database Theory (ICDT’07), volume 4353 of LNCS, pages 164–178. Springer,
2007.

[19] Sebastian Rudolph. Foundations of description logics. In Axel Polleres, Claudia d’Amato, Marcelo
Arenas, Siegfried Handschuh, Paula Kroner, Sascha Ossowski, and Peter F. Patel-Schneider, ed-

618

The Triguarded Fragment of First-Order Logic Rudolph and Šimkus

itors, Reasoning Web. Semantic Technologies for the Web of Data – 7th International Summer
School 2011, volume 6848 of LNCS, pages 76–136. Springer, 2011.

[20] Sebastian Rudolph, Markus Krötzsch, and Pascal Hitzler. All elephants are bigger than all mice.
In Proc. of DL 2008, 2008.

[21] Dana Scott. A decision method for validity of sentences in two variables. Journal of Symbolic
Logic, 27(377):74, 1962.

[22] Luc Segoufin and Balder ten Cate. Unary negation. Logical Methods in Computer Science, 9(3),
2013.

[23] Balder ten Cate and Massimo Franceschet. Guarded fragments with constants. Journal of Logic,
Language and Information, 14(3):281–288, 2005.

[24] Johan van Benthem. Dynamic bits and pieces. Technical Report LP-97-01, ILLC, University of Am-
sterdam, 1997. Available at http://www.illc.uva.nl/Publications/reportlist.php?Series=

LP.

619

http://www.illc. uva.nl/Publications/reportlist.php?Series=LP
http://www.illc. uva.nl/Publications/reportlist.php?Series=LP

	Introduction
	Preliminaries
	The Triguarded Fragment
	Characterizing Satisfiability via Mosaics
	Complexity of TGF without Equality
	Undecidability of TGF with Equality
	Further Undecidable Extensions
	Conclusion

