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Abstract 
Mapping short reads to a reference genome is an essential step in many next-

generation sequencing (NGS) analysis. In plants with large genomes, a large fraction of 
the reads can align to multiple locations of the genome with equally good alignment 
scores. How to map these ambiguous reads to the genome is a challenging problem with 
big impacts in the downstream analysis. Traditionally, the default method is to assign an 
ambiguous read randomly to one of the many potential locations. In this study, we explore 
an enrichment method that assigns an ambiguous read to the location that has produced 
the most reads among all the potential locations. Our results show that the enrichment 
method produced better results than the default random method in the discovery of single 
nucleotide polymorphisms (SNPs). Not only did it produce more SNP markers, but it also 
produced markers with better quality, which was demonstrated by higher trait-marker 
correlation in genome-wide association studies (GWAS). 

1 Introduction 
Next-generation sequencing (NGS) technologies enable researchers to conduct high-throughput 

DNA sequencing with low costs (Nielsen et al., 2011). NGS has been widely used in various 
applications, such as whole-transcriptome sequencing (RNA-seq), chromatin immunoprecipitation 
followed by sequencing (ChIP-seq) and methylated DNA sequencing (methyl-seq) (Treangen and 
Salzberg, 2012). NGS is very important for the discovery of single nucleotide polymorphisms (SNPs) 
(Metzker, 2010), which is the fundamental and most abundant genetic variation (Kaur et al., 2012). 
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NGS provides efficient methods to discover large-scale SNPs to support high-density linkage map 
construction, genome-wide association studies (GWAS) and genomic selection in plants (Kaur et al., 
2012). Genotyping-by-sequencing (GBS) is a widely used SNPs discovery method, in which restriction 
enzymes are used to cut genome into fragments and then sequencing is performed using NGS 
technologies (Poland and Rife, 2012). In most applications of GBS, sequencing reads are aligned to a 
reference genome and genotypes are assigned to individuals based on the alignment. Thousands of SNP 
markers have been revealed by GBS in many species, including maize, wheat, barley, rice, potato and 
cassava (He et al., 2014). 

The alignment of short reads to the reference genome is a key step in various NGS analyses 
(Mielczarek and Szyda, 2016). Many programs have been developed for this task, such as Bowtie2 
(Langmead and Salzberg, 2012), BWA (Li and Durbin, 2009), SOAP2 (Li et al., 2009) and Stampy 
(Lunter and Goodson, 2011). These alignment algorithms are either based on hashing or Burrow-
Wheeler transform. For plants with large genomes, mapping short reads to the reference genome is very 
challenging. Due to polyploidy and numerous repetitive sequences in the genome, many reads can align 
to multiple locations with equally good alignment score and quality. Simply discarding these ambiguous 
reads will be a waste of valuable resources and result in low coverage, which will in turn cause problems 
in the downstream analysis. Existing aligners like Bowtie2 resolve ambiguity by randomly reporting 
one of the best hits. Given the large amount of ambiguous reads, wrongly mapping them to sites other 
than their true locations will result in significant errors in the subsequent SNP calling and genotyping. 
This issue becomes even more severe when the coverage level is low. 

Here, we propose an innovative method to map ambiguous reads to the reference genome. When a 
read can be mapped to multiple locations with equal scores, for each of the potential hits this method 
counts the number of reads mapped to the neighborhood of the hit, and choses the hit that has the most 
reads in its neighborhood. Due to experimental and instrumental biases, different regions of the genome 
have different levels of coverage during sequencing. When a read can be mapped to multiple locations, 
we presume that the read more likely belongs to a region that has generated more reads. We evaluated 
our approach using GBS data from durum wheat and compared it with the default method that randomly 
picked a hit. The results show that our approach was able to identify more SNP markers that had higher 
association levels with various traits in GWAS. 

2 Materials And Methods 

2.1 Plant Materials, Phenotyping And GBS Library Construction 
The plant materials were taken from a previous study (Fiedler et al., 2017). In summary, a total of 

1,220 breeding lines of durum wheat from the North Dakota State University durum wheat breeding 
program were used. This population panel consisted of several breed cycles from 2012 to 2016. Five 
traits, including test weight (TW), semolina extraction rate (SER), semolina protein content (SPC), 
semolina color (SC), and sedimentation volume (SV) were evaluated in the phenotyping process. The 
Best Linear Unbiased Estimator (BLUE) was estimated for each trait of each individual. The plant 
materials were genotyped using GBS. Details of DNA isolation and library preparation can be found in 
(Fiedler et al., 2017). In brief, DNA was digested by two restriction enzymes, PstI and MseI, and then 
a unique barcoded adaptor and common adaptor were ligated to samples. After pooled PCR 
amplification, pooled sample was sent into sequencer (Illumina HiSeq 2500) for unpaired sequencing. 
All sequences were submitted to the National Center for Biotechnology Information Short Read 
Archive (experiment #SRP103303). 
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2.2 Methods To Handle Ambiguous Mapping 
In Bowtie2, minimal alignment score threshold was set to -12, with mismatch penalty -6, and gap 

opening penalty -5 and extension penalty -3. We compared two different ways to handle ambiguous 
mapping. In the random mode, Bowtie2 randomly selected a hit when there were multiple hits that 
satisfied the alignment criteria. This is the default mode in Bowtie2. In the enrichment mode, when 
there were multiple hits for a read, we considered at most 20 hits to reduce computational time. For 
each of the hits, we looked at an interval of 1000 bp centered at the hit location and counted the total 
number of reads mapped to that interval. Then, the hit with most reads in its interval was chosen. 

2.3 SNPs Discovery And Genotyping 
SNPs discovery and genotype calling were conducted using TASSEL-GBS pipeline (Glaubitz et al., 

2014) with Triticum aestivum IGWSC RefSeq v1.0 as reference genome. Reads with quality score less 
than 20 were discarded. Barcode of raw reads was trimmed off, and 80-bp sequences were retained. 
Reads with identical sequence were collapsed into one unique tag for reducing computational time. 
Unique tags with at least 10 count of reads were mapped to the reference genome using Bowtie2. 
Default criteria of SNP discovery in TASSEL were used, specifically, locus coverage > 0.1, minor allele 
frequency > 0.01. Genotype calling was conducted based on the results from SNP discovery. Markers 
with less than 50% missing values were retained for GWAS. 

2.4 Genome-Wide Association Studies (GWAS) 
GWAS was conducted for each trait using SNP markers obtained from the previous step using 

TASSEL V.5 (Bradbury et al., 2007). The linear mixed model including population structure and 
kinship matrix (PK model) was used. The false discovery rate (FDR) was calculated from p-values 
using the p.adjust function in R package (Benjamini and Hochberg, 1995). For markers and trait 
association analysis, the significant threshold was determined by FDR with q value less than 0.01. 

3 Results 

3.1 Reads Alignment 
The sequencing produced an average of 1.8 million reads per line, ranging from 0.6 to 4.9 million. 

A total of 2,440,550 unique tags were produced after trimming off barcode adaptor and collapsing 
identical reads. When Bowtie2 was used to aligned them to the reference genome (Triticum aestivum 
IGWSC RefSeq v1.0), 759,204 tags (31% of the total) were unmapped, 796,213 (33% of the total) were 
uniquely mapped, meaning each tag was mapped to only one location, and 885,133 (36% of the total) 
were ambiguously mapped, meaning each tag could map to more than one location. When the 
enrichment mode was used, 778,882 (that is, 88.0%) of the ambiguous tags were mapped to locations 
different than when the random mode was used. 

3.2 SNP Markers Discovery 
SNPs discovery and genotyping were conducted using TASSEL-GBS pipeline. When the random 

mode alignment was used, 196,300 SNP markers were found. This number increased more than three-
fold to 721,509 when enrichment mode was used for alignment. One important parameter in SNP 
discovery is missing tolerance threshold, that is, the maximum fraction of the population that are 
allowed to miss data in that locus. Lower values for missing tolerance threshold correspond to more 
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stringent criteria. Fig. 1 shows that as the missing tolerance threshold decreases, more and more SNP 
markers are filtered out. Over the whole range, the enrichment mode was able to discover substantially 
more SNP markers than the random mode. When 10% missing tolerance threshold was used, the 
enrichment mode discovered 124,762 markers, resulting in an 18-fold increase comparing with the 
6,935 markers discovered by the random mode. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.3 Genome-wide Association Studies (GWAS) 
In an effort to evaluate the quality of the SNP markers discovered in the previous step, we used them 

to conduct GWAS for five traits, including test weight (TW), semolina extraction rate (SER), semolina 
protein content (SPC), semolina color (SC), and sedimentation volume (SV). For this purpose, we used 
50% as the missing tolerance threshold to filter the SNPs. Under this threshold, 371,989 and 58,859 
SNP markers were discovered by the enrichment mode and random mode, respectively. There was an 
overlap of 32,419 between the SNPs discovered by the two modes. Marker-trait association with q value 
less than 0.01 was considered significant association. Table 1 shows the results. No significant 
association was observed between the SNPs and semolina protein content (SPC) under both alignment 
modes. For all other traits, the enrichment mode was able to discover more SNP markers associated 
with the traits than the random mode did. Moreover, the SNP markers discovered by the enrichment 
mode had stronger correlation (i.e. with lower q values) with the traits. For example, the random mode 
did not discover any SNP markers correlated with trait SER, while the enrichment mode found 44. The 
random mode only found 5 SNP markers associated with trait TW, with the best SNP marker having q 
value of 5.30×10-3. In comparison, the enrichment mode discovered 377 SNP markers, with the best 
marker having q value of 9.70×10-5. 

These results indicate that the enrichment mode was better than the random mode in SNP discovery. 
Not only did it discover more SNP markers, but it also discovered better markers that were more 
strongly associated with the traits. 

 

 
Figure 1 SNPs produced under two alignment modes 
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Table 1 Genome-wide association studies (GWAS) between SNP Markers and five traits: semolina 
color (SC), semolina extraction rate (SER), sedimentation volume (SV), semolina protein content 
(SPC), and test weight (TW). 

Trait
s 

 
Alignment mode 

Number of markers 
with significant 
correlation 

Best q value of the 
markers 

SC  Random 111 4.44×10-11 
  Enrichment 197 1.06×10-13 
     
SER  Random 0 NA 
  Enrichment 44 1.06×10-13 
     
SV  Random 131 3.41×10-14 
  Enrichment 267 5.81×10-23 
     
SPC  Random 0 NA 
  Enrichment 0 NA 
     
TW  Random 5 5.30×10-3 
  Enrichment 377 9.70×10-5 

4 Discussion 
The alignment of short reads to the reference genome is a critical step in many NGS analyses. In 

plants with large genomes, a large fraction of the reads can be aligned to multiple locations with equally 
good scores. How to assign these ambiguous reads to genome locations is a challenging problem that 
have great impacts in the downstream analyses. Up to date, the default way to handle these ambiguous 
reads is to assign them randomly to one of the many potential locations. In this study, we explore an 
enrichment method to map ambiguous reads to the genome. When a read can align to multiple locations 
with equal score, we evaluate the possibility of the read being generated by each of these regions. Due 
to experimental and instrumental biases, different regions of the genome may have different levels of 
coverage during sequencing. The possibility of a read being generated by a region is approximately 
proportional to the total amount of reads that the region has produced. Based on this principle, the 
enrichment method assigns an ambiguous read to a region that has produced the most reads among all 
potential regions. In this study, for each of the hit location, we looked at an interval of 1000 bp. This 
interval size was picked arbitrarily for the sake of simplicity. Ideally, the interval size should be chosen 
based on the cutting sites of the restriction enzymes, the length of the reads, and sequencing depth. A 
thorough evaluation of this parameter is beyond the scope of this paper. 

The results of this study show that the enrichment method is a better way to handle ambiguous reads 
than the random method. Not only did the enrichment mode discover more SNP markers than the 
random mode, but it also produced markers with higher quality, with was demonstrated by stronger 
correlation with the traits in GWAS studies. Another reason that we implemented enrichment method 
in GBS is that restriction endonuclease designed for reducing genome complexity doesn’t perfectly 
randomly shear genome, and the rate of cleaving may be influenced by flanking sequences (Gingeras 
and Brooks, 1983). To our knowledge, no evidence indicates how flanking sequences impact cleaving 
with restriction enzyme, but there is resistance to cleavage of DNA sequence (Forsblom et al., 1977; 
Brown and Smith, 1977). 
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GBS often suffers from a high amount of missing data (Poland and Rife, 2012). Too much missing 
data will reduce the quality of the discovered SNPs. Therefore, in practical study, researchers often use 
a stringent criterion (that is, lower missing tolerance threshold) to remove SNPs that have too much 
missing data. However, this will significantly reduce the number of SNP markers. Results from Fig. 1 
confirm that as the missing tolerance threshold decreases, the number of SNPs decreases rapidly. 
However, when we compared the SNPs decreasing rates of the two alignment modes, we can find that 
the enrichment mode decrease at a slower pace. For example, when the missing tolerance threshold 
decreased from 100% to 50%, 70% of the total markers were removed (that is, the number of SNP 
markers reduced from 196,300 to only 58,859). In comparison, only 48.5% of the total markers were 
discarded in the enrichment mode over the same interval (that is, a decrease from 721,509 to 371,989). 
When missing tolerance threshold decreased to 10%, the random mode has lost 96.5% of the markers 
(i.e. a decrease from 196,300 to 6,935), while the enrichment mode only lost 82.7% (i.e. a decrease 
from 721,509 to 124,762). Therefore, the enrichment mode not only discovered more SNP markers than 
the random mode, it also produce higher fraction of markers that has less missing data. This will in turn 
help improve the quality of the discovered SNP markers. 
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