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Abstract. Inspired by novel applications of radio-frequency sensing
in healthcare, smart homes, rehabilitation, and augmented reality, we
present an FMCW radar-based passive step counter. If a person walks
or performs other activities, the individual body segments, such as head,
torso, legs, arms, and feet, move at different radial speeds. Owing to the
Doppler effect, the individual body segments in motion cause distinct
Doppler shifts that can be used to recognize and analyze the performed
activities. We compute the time-variant Doppler spectrogram of a walking
activity of a person and extract the high energy Doppler components that
mainly describe the torso movements during walking. From the computed
Doppler spectrogram, we then compute the mean Doppler shift. To detect
and count steps, we apply the peak detection algorithm to the mean
Doppler shift. Our approach is evaluated using a walking activity data
set. We have used ground truths and a commercially available wrist-worn
human activity tracker to validate the results of our approach. Our results
show that our system is capable of passively counting 97.71%–98.51%
steps within a 12 m range. Therefore, our proposed system can be used
as a passive step counter in indoor environments. Besides, it can also
contribute to indoor localization and human tracking applications.

Keywords: FMCW radar · Mean Doppler shift · Peak detection · Spec-
trogram · Step counting.

1 Introduction

The World Health Organization (WHO) statistics1 on obesity and overweight
reveal that 1.9 billion individuals, 18 years and above, were overweight in 2016.
Out of these, 34.2% were obese. Research has shown that the obese people are
at higher risk for various diseases and health conditions including hypertension,
type 2 diabetes, coronary heart disease, mental illness, sleep disorders, and low
quality of life [20]. Regular physical exercise, especially walking, and a healthy
diet are among the best ways to treat obesity. Walking is one of the simplest

1 https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight
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forms of physical activity that can easily be carried out in indoor and outdoor
settings. Long term studies have found evidence that regular counselling, step
goals, and pedometer-based interventions are useful to increase and maintain
walking levels among low active Scottish individuals [10]. Another study [5]
reports that pedometer users tend to walk approximately one mile (or 2000
steps) more compared to people who do not use pedometers. According to [23],
in WHO European region, people spend just about 90% of their time in indoor
environments. Out of which approximately 60% time is spent at home.
The widely available and commonly used pedometers are body-worn and consist
of sensors such as accelerometers and gyroscopes. These sensors record the
acceleration and variation in orientation due to the walking activity and process
the recorded data to count the steps of the user. Moreover, many people use their
smartphones with built-in pedometers to count their steps. People need to wear
these pedometers all the time for continuously registering their steps, which may
be uncomfortable for some people in in-home settings. As studies have shown
[10, 5] the pedometers act as a motivational tool for increasing physical activity.
Therefore, to promote an active life-style in indoor environments, there is a need
to develop a user-friendly step counting system that can unobtrusively count
steps of users in in-home settings. In addition to that a passive step counter can
also contribute in developing more robust indoor human tracking and localization
solutions.
Compared to vision and wearable sensing modalities, the radio-frequency (RF)
sensing modality has emerged as an attractive alternative in a lot of applications,
such as human activity recognition (HAR) [11, 9], gesture recognition [21], vital
signs monitoring [22], and security and surveillance [12]. There exist various
reasons that have led to the wide acceptance of RF-sensing in human-centric
applications. First and foremost, RF sensing is truly unobtrusive in nature, which
means users do not need to wear or carry additional sensors. Moreover, the
RF-sensing modality is far more privacy-preserving compared to other available
sensing methods such as vision, wearable, and acoustics. In addition to that,
the RF sensing can operate in poor lighting conditions, see-through obstacles
and its performance is not affected by anthropocentric variations and changes
in the environment. Within the context of RF sensing, Wi-Fi and frequency
modulated continuous wave (FMCW) radars are commonly used for perceiving
human activities. Although Wi-Fi is ubiquitous and low-cost, it offers a lower
bandwidth, which results in a lower spatial resolution and therefore Wi-Fi-based
activity recognition methods struggle in recognizing fine-grained human activities.
On the other hand, FMCW radars generally enjoy much larger bandwidth, which
results in higher spatial resolution and thus they can effectively be employed to
identify fine-grained human activities with higher precision and accuracy [18].
Besides, FMCW radars are also capable of identifying the range and speed (or
Doppler frequencies) of the target. These properties are the key enablers that have
led to the wide adoption of FMCW radars for the aforementioned applications
compared to Wi-Fi, continuous wave, and ultra-wide-band pulse radars.
As we know, the electromagnetic waves emitted by the FMCW radar reflect off
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both static and moving objects present in the environment. Owing to the Doppler
effect, different movements of a moving object result in distinct Doppler shift
patterns [8]. Various studies have demonstrated that these distinct Doppler shift
patterns can effectively be exploited to not only discern humans [19, 7], animals
[3], and vehicles [13, 15] but also to recognize different human activities [9, 11, 16,
18], such as walking, sitting, standing, running, jumping, etc.

In this paper, we investigate the novel idea of using Doppler shifts caused by
a walking person to count the number of steps and provide preliminary results.
As we know, the human walk is cyclic in nature and during each step-to-step
transition, the moving body segments exhibit repetitive cycles of movements.
Thus, a cyclic gait pattern will manifest itself in velocities (or cyclic Doppler
variations) of the body segments. We first process the recorded RF sensing data
of a walking activity to reduce the noise impact, and then we compute the
spectrogram of the data. The spectrogram shows the time-variant micro-Doppler
patterns associated with movements of different human body segments, such
as torso and legs. Next, we compute the time-variant mean Doppler shift from
the spectrogram. Finally, we apply a peak (or valley) detection algorithm to
detect and count the number of steps. We use a human walking activity data set
to evaluate our approach. We use ground truths to validate the results of our
approach. Besides, we also use an accelerometer-based wrist-worn step counter
to compare the performance of our radar-based step counter with an existing
off-the-shelf step-counter.

Our results show that the proposed step-counter can count 97.71%–98.51%
steps in a 12 m range. Note that, to accurately count the number steps, it is
crucial to first identify when a person is walking. This information can be obtained
using a HAR recognition system developed in our previous works [16–18], which
is able of recognizing the walking activity with almost 100% precision and recall.
This work enable us to combine HAR and passive step counter to develop a
solution that is not only able to recognize human activities but also capable of
implicitly counting the steps.

The rest of the paper is organized as follows. In Section 2, we describe the
basic principle of FMCW radar systems, explain the various steps of radar
signal processing, and present expressions for computing spectrogram and mean
Doppler shift. The details of our experimental setup and data collection process
are given in Section 3. The results of our approach are presented in Section 4.
The limitations of this work are presented in Section 5. Finally, in Section 6, we
conclude this work and present its future outlook.

2 System Description and Radar Signal Processing

In this work, we have used an FMCW radar system as an RF sensor to capture
the micro-Doppler effects caused by a walking person. The FMCW radar uses
a synthesizer to generate a frequency modulated (FM) electromagnetic wave
(known as chirp), which is transmitted in the environment via a transmit antenna
Tx [22]. The instantaneous frequency of the chirp changes linearly over a fixed



4 M. Muaaz et al.

time period (know as sweep time Tsw) by a modulating signal [6]. The transmitted
signal sTx

(t′) can be expressed as [1]

sTx(t′) = exp[j2π(f0t
′ +

α

2
t′2)] (1)

where f0 indicates the start frequency, α is the chirp rate, and t′ denotes the
fast-time. The chirp rate is expressed as α = (f1 − f0)/Tsw, where f1 stands for
the stop frequency. The bandwidth B of the radar is the difference between the
stop frequency f1 and the start frequency f0, i.e., B = f1 − f0. The transmitted
wave reflects from different static and moving scatterers that are present in the
environment, as shown in Fig. 1. The reflected electromagnetic wave is received
by the receive antenna Rx with a time delay τ = 2R/c, where R is the distance
of the scatterer from the radar and c is the speed of light [22]. The received
electromagnetic wave sRx

(t′) that is reflected from a single scatterer is a τ delayed
version of the transmitted signal [1]

Low-pass filter
Beat signal

ADC Signal processing

Synthesizer

Tx

Rx

Fig. 1. A block diagram of an FMCW radar system.

sRx(t′) = a exp[j2π(f0(t′ − τ) +
α

2
(t′ − τ)2)] (2)

where symbol a in (2) represents the amplitude, which depends on the physical
properties of the system, such as the transmission losses and the radar cross-
section of the scatterer. As per the principle of the FMCW radar, the transmitted
signal sTx

(t′) and the received sRx
(t′) signal are mixed together and passed

through a low pass filter to obtain the so-called beat (or intermediate frequency)
signal which can expressed as [1, 22]

sb(t
′) = a exp[j(2πατt′ + 2πf0τ)] = a exp[j(2πf ′bt

′ + ψ)] (3)

where f ′b is the beat frequency and ψ is the phase of the beat signal. The beat
signal is then sampled by an analog to digital converter (ADC). The output of
ADC is stored in an n×m matrix sb, where n denotes the number of samples per
sweep (or fast-time data) and m represents the number of transmitted sweeps (or
chirps). For the following discussion, we consider the beat signal sb as a function
of fast-time t′ and slow-time t, such as sb(t

′, t). As shown in (3), the fundamental
frequency of a single point moving scatterer is present at f ′b = ατ . Therefore, we
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can obtain the range information of a scatterer by computing the fast Fourier
transform (FFT) of the beat sb(t

′, t) with respect to fast-time data, i.e.,

Sb(fb, t) =

Tsw∫
0

sb(t
′, t)exp[−j2πfbt′]dt′. (4)

The Doppler frequency of the moving scatterer is estimated over a series of
continuously transmitted sweeps (or chirps). The result obtained after applying
the FFT according to (4), undergoes an additional FFT (known as the Doppler
FFT), which is applied on the windowed range profile along the slow-time, i.e.,

X(fb, f, t) =

∞∫
−∞

Sb(fb, t)Wr(x− t)exp[−j2πfx]dx (5)

where Wr(·) indicates the rectangular window function, x is the running time,
and f denotes the Doppler frequency. The short-time Fourier transform (STFT)
of the range profile provides us with the range and Doppler information of the
moving scatterer. To obtain the time-variant Doppler frequencies, we agglomerate
the range information as follows

X(f, t) =

fb,max∫
0

X(fb, f, t)dfb (6)

where fb,max denotes the maximum beat frequency that an FMCW radar can
resolve [14]. In the next step, we compute the spectrogram S(f, t), which is
defined in [4] as the absolute square of X(f, t), i.e.,

S(f, t) = |X(f, t)|2. (7)

The spectrogram presents the time-varying micro-Doppler signature of the moving
scatterer. Finally, the time-variant mean Doppler shift Bf (t) is computed as

Bf (t) =

∞∫
−∞

fS(f, t)df

∞∫
−∞

S(f, t)df

. (8)

3 Experimental Setup and Data Collection

In this work, we considered an indoor environment, where we used the Ancortek
SDR-KIT2400T2R4 [2] (SDR-KIT) as shown in Fig. 2 to collect RF sensing data.
The SDR-KIT is a software-defined FMCW radar that operates in the K-band
within 24–26 GHz. The SDR-KIT consists of two transmit and four receive units
where two Tx and four Rx antennas can be connected.
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Ancortek SDR-KIT2400T2R4

ANC-W42-10 Horn Antenna 

Fig. 2. Hardware setup for collecting radar-sensing data in the presence of a walking
person.

Within the scope of this work, we only used a single transmit and a single
receive unit. The Tx and Rx antennas were connected to the SDR-KIT using
1 m RF cables. We attached the Tx and Rx antennas to two separate tripods
and set the height of both antennas to 110 cm from the floor. The SDR-KIT
is connected to a laptop using a universal serial bus cable. The laptop runs a
program that provides a graphical user interface (GUI) to interact with the
SDR-KIT. Using the GUI, the users can set different parameters of the radar and
issue commands to start and stop recording the data. The recorded data are in
the form of ADC samples and stored on the laptop. We placed our hardware setup
in a corridor as shown in Fig. 3. We used the co-located2 antenna configuration,
and set the bandwidth B, centre carrier frequency f0, and sweep time Tsw to
250 MHz, 24.125 GHz, 1 ms, respectively.

We collected walking activity data from two participants. For the first par-
ticipant, we recorded walking activity data in two separate sessions. In the first
session, we asked the participant to walk in front of the Tx and Rx antennas from
Point A to Point B, as shown in Figs. 3. The distance from Point A to Point
B was 8 m, where the participant needed to take exactly 10 steps at a normal
walk pace to cover this distance. The participant walked in total 150 times from

2 By co-located antenna configuration, we mean that the Tx and Rx antennas were
placed close to each other, as can be seen in Fig. 3.
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Fig. 3. Indoor radar sensing of a person walking along a floor: (a) antenna configuration
and (b) walking activity.

Point A to Point B and 150 times back from Point B to Point A. This actually
provides us the ground truth, as we know, the participant took 3000 steps while
walking back and forth between points A and B. For the second session, we asked
the participant to walk from Point A to Point C, which are shown in Fig. 3(a).
The distance from Point A to Point C was 12 m. To walk 12 m distance, the
participant needed to take exactly 15 steps at a normal walking speed. In the
second session, the participant again walked 3,000 steps, by walking 100 times in
each direction. In each session, the data corresponding to each walk were stored
in a separate file to keep the size of each data file manageable. This means, we
stored the walking RF data in 300 files in the first session and in 200 files in the
second session.

For the second participant, the walking activity data was recorded only in a
single session. Just like the first participant, the second participant walk 12 m
from Point A to Point C. To walk 12 m distance, the second participant needed
to take exactly 17 steps and walked 59 times back and forth between points
A and C. The data corresponding to each walk was stored in a separate file.
This means, the second participant took a total of 1,0033 steps while walking

3 Note that, our goal is to compare the total number of steps taken by a participant in
reality with the total number of steps recorded by the wrist-worn activity tracker and
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back and forth between Points A and C. Also, to compare the results of our
approach with commercially available activity trackers, we asked the participants
to wear a Garmin Forerunner 935 watch on the non-dominant wrists to register
the steps taken during data recording sessions. The watch uses its internal 3-axis
acceleromter to measure dynamic arm movement and translates each complete
arm swing into two steps.

4 Step Detection and Step Counting Results

We processed each recorded walking activity data file. At first, we removed the
impact of ambient noise by subtracting the sample mean from the raw radar data.
Besides, the mean subtraction also removes the contributions of fixed scatterers
to a certain extent. Moreover, we applied a high-pass filter to fully remove the
contributions of fixed scatterers, such as walls, ceiling, and furniture. Thereafter,
we estimated the range of the moving scatterers by computing the range-FFT
as presented in (4). From the range-profile (see Fig. 4), we can observe that the
person was first standing still for the first three seconds at a distance of 2.4 m
distance from the radar, and then the person started walking away from the
radar’s Tx and Rx antennas. The person walked for 6.5 seconds and covered a
distance of approximately 8 m. The last five seconds of the range-profile plot
show that the person stood still at a distance of 10.24 m. The range-profile is

0 2 4 6 8 10 12 14
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Fig. 4. The measured range profile of an 8 m long walking activity performed by the
first participant.

the proposed radar-based step counter. Therefore, each participant does not need to
take the same number of steps.
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Fig. 5. The spectrogram of an 8 m long walking activity performed by the first par-
ticipant. Note that, the negative Doppler shift is due to the fact that participant was
walking away from the away from the co-located Tx and Rx antennas.

useful for determining how the distance of a walking person changes over time.
However, the number of steps cannot directly be counted from the range profile.
We use the spectrogram method to extract the micro-Doppler signature of the
walking activity from the range profile, as presented in (5)—(7). The spectrogram
of the walking activity is shown in Fig. 5, which gives an impression of the
micro-Doppler signatures associated with different limbs in motion during the
walking activity. The negative frequencies in the micro-Doppler signatures are
due to the fact that the person is walking away from the Tx and Rx antennas of
the radar.

The high energy component of the spectrogram (see Fig. 5) can be associated
with the micro-Doppler signature of the repetitive movement of the torso. Whereas,
the low energy components are due to the movements of the feet, legs, and arms.
We threshold the spectrogram to remove these low energy components and then
compute the time-variant mean Doppler shift (see Fig. 6) by using (8). The
minima of the time-variant mean Doppler shift coincides with the steps of the
person. If the person is walking towards the Tx and Rx antennas of the radar,
the Doppler shift will be positive and each peak of the mean Doppler shift will
indicate a step of the person.

We apply the Matlab’s “findpeaks” algorithm to detect the peaks of the
time-variant mean Doppler shifts that correspond to the steps. By default, the
“findpeaks” peak detection algorithm will detect all peaks of the mean Doppler
shift. Therefore, to prune peaks that do not correspond to the true steps, we set
the four parameters of the “findpeaks” algorithm, i.e., minimum peak height,
minimum peak separation, minimum peak prominence, and minimum peak
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Fig. 6. The time-variant mean Doppler shift of a person walking away from the co-
located Tx and Rx antennas.
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Fig. 7. The steps identified by the peak detection algorithm for the case that the person
walks towards the co-located Tx and Rx antennas. Each identified step is marked by
the symbol.

height difference to 20, 0.005, 15, 0.001, respectively. We use the exhaustive grid
search approach to optimize the aforementioned parameters of the peak detection
algorithm. As shown in Fig. 7, the peak detection algorithm is able to correctly
identify steps in the time-variant mean Doppler shift. We iterate over all recorded



Title Suppressed Due to Excessive Length 11

Table 1. A comparison of the step-count results of the Garmin Forerunner 935 activity
tracker and our FMCW radar-based approach.

Session
Walking
distance

True step
count

Steps counted
by the Garmin
Forerunner 935

Steps counted
using the proposed

approach

Results of participant 1

1 8 m 3000 2880 (96.00%) 2948 (98.27%)
2 12 m 3000 2975 (99.17%) 2955 (98.51%)

Results of participant 2

1 12 m 1003 939 (93.61%) 980 (97.71%)

walking activity data files and accumulate the identified steps in each file. The
results of our approach are presented in Table. 1.

For the first participant’s 8 m walking scenario, both the Garmin Forerunner
935 activity tracker and the FMCW radar were not able to count all steps. In
this case, our FMCW-radar-based approach registered a total of 2948 steps out
of the 3000 steps, which are 2.27% more compared to the Garmin 935 activity
tracker. For the 8 m walks, our FMCW-radar-based approach and the Garmin
935 activity tracker under-reported 1.73% and 4.0% steps, respectively.

For the first participant’s 12 m walking scenario, the step count accuracy of
the Garmin 935 activity tracker is 99.17%, whereas the accuracy of our FMCW-
radar-based system is 98.51%. We can observe a 3.17% improvement in the
accuracy of the Garmin 935 activity tracker for 12 m walks compared to 8 m
walks. Whereas, we do not notice a significant change in the performance of
our FMCW-radar-based step counter. The radar-based-system performs slightly
(0.24%) better for 12 m walks compared to 8 m walks. This is due to the reason
that a very slowly taken step does not result in a significant-peak of the time-
variant mean Doppler shift. Thus, it cannot be detected as a step by the peak
detection algorithm. Such extremely slow steps may occur either at the beginning
or at the end of a walk. As, there are fewer start and stop steps in the 12 m
walks compared to the 8 m walks, it is therefore plausible that the peak detection
algorithm made slightly fewer errors for 12 m walks.

Similarly, upon analysing the step counting results of the second participant,
we notice that our radar-based step counter reported a total of 980 steps. Whereas
the Garmin 935 activity tracker reported a total of 935 steps. Moreover, we also
observe that the step counting accuracy of the Garmin 935 activity tracker
significantly varies not only from scenario to scenario but also from person
to person. On the contrary, our radar-based step counter reports very similar
results for both participants. Note that, for both participants, we used the same
thresholds for the "findpeaks" algorithm as mentioned earlier in this section.
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5 Limitations

Based on the preliminary results (see Table 1), we argue that the radar-based
step counter devised in this work can potentially be used for indoor settings step
counting applications. However, there are some limitations. Currently, the pro-
posed system can only count the number of steps of a single person walking back
and forth in front of the co-located Tx and Rx antennas. To achieve orientation
independence, in future, we will use a distributive multiple-input multiple-output
(MIMO) radar system. During the experiments, the participants were asked to
walk at their routine-life normal walking speeds. In our future work, we will
analyse the influence of fast and slow walking speeds on the devised approach.

6 Conclusion and Future Work

In this paper, we proposed an RF-based system to passively count human steps.
Our system uses an FMCW radar for its capability to estimate the range and
Doppler information of a moving person. We used the spectrogram approach to
compute the time-variant mean Doppler shift and then applied a peak detection
algorithm to detect and count the steps taken by a person. To evaluate our
approach, we used a 24 GHz FMCW radar to record the measurements while a
person was walking in front of the Tx and Rx antennas of the radar. We used
ground-truths to validate the results of our system. Besides, as a reference, we
also used an accelerometer-based wrist-worn physical step counter to compare the
performance of our system with one off-the-shelf step counters. The experimental
results show that the overall step counting accuracy of our system ranges from
97.71%–98.51% if the walking activity is performed within a range of 12 m. The
comparative analysis of the results of our system and the wrist-worn activity
tracker (used in this work) demonstrates the reliability of our RF-sensing system.
Therefore, our system can potentially be used as an in-home passive step counter
and for indoor localization. In future, we will further analyze the Doppler shifts
to determine gait stability of walking persons. Besides, we will integrate the step
counter developed in this work with our previously developed human activity
recognition system, such that our indoor human activity recognition system can
implicitly count human steps.
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