
EasyChair Preprint
№ 6411

Towards a Graphical DSL for Tracing Supply
Chains on Blockchain

Stefano Bistarelli, Francesco Faloci and Paolo Mori

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

August 26, 2021



Towards a graphical DSL for tracing supply

chains on blockchain

Stefano Bistarelli1, Francesco Faloci2, and Paolo Mori3

1 Dipartimento di Matematica e Informatica - University of Perugia
2 Dipartimento di Informatica - University of Camerino

3 Istituto di Informatica e Telematica - National Research Council

Abstract. Nowadays, supply chain tracing notarization is among the

most used non-financial blockchain applications. However, creating a

blockchain based system for the management of a supply chain remains

a complex task. In this paper, we propose a graphical domain specific

language (DLS) and a tool allowing the supply chain domain expert to

easily represent the supply chain he needs to trace. The graphical rep-

resentation of the supply chain is then translated in automatic way in a

set of solidity smart contracts implementing it. A small intervention of a

programmer is required to customize and finalize such smart contracts.

The obtained semi-automatic process of smart contract generation will

boost the blockchain usage for supply chain traceability.

Keywords: Supply chain management · Blockchain · Smart Contract · graphi-

cal DSL

1 Introduction

According to the definition of Stadtler and Kilger [12], a supply chain (SC) is a

“network of organizations that are involved, through upstream and downstream

linkages, in the different processes and activities that produce value in the form

of products and services in the hands of the ultimate consumer”. From an ana-

lytic point of view, we can define a SC as a flow of goods or services generated by

the processes that transform raw objects into intermediate objects, and such ob-

jects into final products. Hence, depending on the specific scenarios where they

are applied, different types of SC can be defined, e.g., production, distribution,

maintenance and sales supply chains. Several studies and applications propose

to implement supply chain management systems exploiting the blockchain tech-

nology [11,1,9], but according to the same researches, they provide solutions that

are not general enough.

This paper proposes a general model aimed at easily representing any specific

SC. This model will be then exploited for automatizing SC management systems



design and development over a blockchain. The design phase will be facilitated by

a graphical interface enabling the SC manager to represent the objects (assets)

involved in the supply chain process as basic components, the operations that can

be done on these objects as relations among objects, and their constraints. The

development phase will be facilitated because a set of smart contracts skeletons

representing the objects, the operations, and the constraints of the supply chain

are automatically derived from its graphical representation. Programmers will

then finalize and customize these skeletons according to the specific supply chain

features.

The paper is organized as follows. Section 2 describes SC features and typolo-

gies. In Section 3 we propose our model and framework for blockchain based SC

design and development, while Section 4 describes a real use case exploiting our

model. Section 5 describes the tool we developed which implements the model

we defined. Finally, Section 7 draws the conclusions and describes possible future

works.

2 Background

A SC is a system of organizations, people, activities, information and resources

involved in the process of transferring or supplying a product or service from

the supplier to the customers [12]. In this sense, a SC is a representation of a

real system where some “agents” participate to fulfill the service. An agent is

any entity involved in the SC including abstract or real subjects like: producers,

vendors, warehouses, transportation companies, distributions centers, or retail-

ers [8]. To analyze the definition of SC we study characteristics and properties

of SC already classified in literature.

Production supply chains are designed to organize the creation of a prod-

uct. This type traces the phases in which the asset under analysis undergoes

transformations: from the origin point to the end of the life cycle of production.

This chain describes in detail the changes, the time required for transformations,

the information required for production. These models generally include produc-

tion of both goods and services [6]. Production supply chain is often represented

by a flowchart, where there is always a well-known (defined) initial state, and

possibly one or multiple final states.

Distribution supply chains type aims to organize and manage the trace-

ability of resources. A supply chain of this type highlights channels for each

macro termination area, and specifies all the agents or the intermediaries in-

volved an asset from the producer to the customer. Distribution channels can

include wholesalers, retailers, deliverers, and even the Internet [5][13].

Sales supply chains describe the relationships between distribution nodes

of an asset; it does not deal with changes in the asset or possible substantial



changes, but only with the path chain that a product undergoes in its sales

or delivery cycle: generally we speak of a finished product from producer to

consumers [14]. This topology generally tracks back all the trades of many prod-

ucts in order to analyze their life cycle. This involves analysis such as market

overview, production planning and financial strategies [15][2].

Distributed Ledger Technology (DLT) refers to systems and protocols that al-

low simultaneous access, validation, and updating with immutable data across a

network. DLT, more commonly known as Blockchain Technology (BT), given its

potential across industries and financial sectors. In simple words, the DLT is all

about the idea of a ”decentralized” network against the conventional monolithic

centralized mechanism. The BT offers great potential to foster various sectors

with its unique combination of characteristics as decentralization, immutability,

and transparency. So far, the most prominent attention the technology received

was through news from industry and media about the development of cryp-

tocurrencies (such as Bitcoin 4, and Monero 5), which all are having remarkable

capitalization. BT, however, is not limited to cryptocurrencies; there are already

existing blockchain based applications in industry and the public sector. Also,

BT can have applications on non-financial sector, such as traceability problems

and workflow organization. A smart contract is a self-executing contract (script)

with the terms of the agreement between two actors, generally a buyer and a

seller, directly written into lines of code. The code and the agreements contained

in the script exist across a distributed decentralized blockchain system. One of

the most popular coding languages for describing smart contracts is Solidity 6,

widely used for Ethereum 7 systems.

Fig. 1. Scheme of the Supply chain used on soybeans traceability study [9].

Figure 1 shows an example of a real use case of supply chain representing the

soybeans life cycle, from the seed production phase, to the end customer sell.

This use case has been used in [9] to develop a blockchain based application able

to represent supply chains for agricultural products. On the supply chain schema

4 Bitcoin Project: https://bitcoin.org
5 Monero project: https://www.getmonero.org
6 Solidity white paper: https://docs.soliditylang.org/en/v0.8.6/
7 Ethereum project: https://ethereum.org/en/

https://bitcoin.org
https://www.getmonero.org
https://docs.soliditylang.org/en/v0.8.6/
https://ethereum.org/en/


of Figure 1 we can highlight different phases that describe three different type

of supply chain: transitions from a point to another characterize moving opera-

tion (highlight in green); the passing from an owner to another represents sales

phases (highlight in red); the various phases where the object under examination

changes its properties are transformation phases (highlight in yellow).

3 Supply Chain model and graphical representation

Our approach analyzes SC structures in order to highlight their typical elements

and to identify recurrent patterns in the interactions among them. As a matter

of fact, analysing the existing literature, we found out that there are a number

of interaction patterns among the elements building up a SC that are general,

i.e., they are not strictly related to the specific business case represented by the

supply chain. For instance, a typical pattern is the one which represents the

packaging of a number of items in one single traceable package. The identified

patterns are exploited to define the basic components of our model. The idea be-

hind our model is to be able to define the workflow of a SC by simply composing

the components representing the identified patterns.

We identified the following families of elements involved in a SC: Assets,

Containers (packaging), Operations, and Roles. To ease the usage of the proposed

model, we define a graphical DSL representing a supply chain model. In this

way, users will be able to define the workflow representing their specific SCs by

properly combining the graphical components representing the constructs of our

model.

Assets They are the objects that the supply chain treats: they typically

represent the goods involved in the operations on the supply chain. As a matter

of fact, some goods are loaded in the supply chain at the beginning of the pro-

cess (e.g., raw materials), some operations are applied to such goods to obtain

semi-finished products, further operations are applied until the final product is

obtained. The assets that, in order to be tracked, must be contained into con-

tainers are called uncountable (e.g., the milk needs to be stored in a bottle). If

an asset involves any kind of destruction as a consequence of its use or transfor-

mation, it is called “consumable”.

Containers Whenever an asset is inserted or accumulated into another ob-

ject, the latter is referred as “container”. Examples of containers are: silos,

haulers, ships, and packagings. Containers are used in two cases: i) when an

asset, for its own nature, must be necessarily contained in a support (for in-

stance, the water must be contained in a bottle), this is the case of uncountable

asset; ii) when an asset is contained into a package in order to be transported,

stored or cataloged (for instance a case of water bottles) Containers are countable

and traceable objects. Each asset or container on a supply chain can be “con-

sumable” or “non-consumable”. An egg, a liter of milk, a bag of seeds, bucket



Fig. 2. Assets and containers graphical representation.

of manure, are examples of consumable objects. A tree, a field, a vineyard, are

instead examples of non-consumable objects.

Figure 2 shows a diagram of how assets and containers are graphically rep-

resented according to the proposed model, based on their properties.

Operations are the components of our model which allow to represent up-

dates, modifications or transformations of an asset. Figure 3 shows some exam-

ples of the main operations defined in our model: each operation has specific

properties, parameters, and outputs, all described in the following.

(a) asset move() (b) asset pack() (c) asset unpack() (d) asset flow()

(e) asset transform()

(countable asset)

(f) asset transform()

(uncountable asset)

(g) asset monitor()

(h) asset compose() (i)

asset decompose()

(j) asset destroy()

Fig. 3. Examples of possible operations defined on the model.

– asset move (Figure 3(a)) this operation concerns the update of the posi-

tion - or the geolocalization - of the asset. Figure 3(a) shows the operation

applied over a countable asset, but it is also applicable to containers (with

uncountable asset inside).

– asset pack (Figure 3(b)) This operation represents the packaging or collec-

tion of the asset inside an object suitable for transport or tracking. There is

no change of original asset information. The asset is inserted into a further

object which in turn can be a source of operations and traceability. This



operation can obviously be repeated several times, with different container

objects; it could be also applied to each pair formed by any object and any

type of container.

– asset unpack (Figures 3(c)) In this case an asset is extracted from a con-

tainer. When a non consumable container releases all the assets it contains,

it is destroyed. The object contained is removed from the package.

– asset flow (Figures 3(d)) This operation represent the transfer of an asset

from one package to another package.

– asset monitor (Figure 3(g)) This operation is used when an object requires

a control operation. Therefore this operation does not change the traits of

an asset, nor its geolocation: the operation keeps track of information of the

asset, relevant for its traceability.

– asset transform (Figures 3(e) 3(f)) The transformation operations are

meant to change features of an asset, and they are typically dependent on

the specific asset and supply chain. Hence, transformations imply a substan-

tial change of properties and traits of an asset. If the operation is applied

to consumable assets, it has the main effect to destroy the original asset

and to create the new one (or ones). Sometimes, a non consumable assets

may generate assets: in this use, the “transform()” operation has the task of

generating the new asset.

– asset compose and asset decompose (Figure 3(h) 3(i)) Assembly oper-

ations exploits existing assets to create a new asset without destroying them.

In the opposite way. the operation designed to disassemble objects previously

assembled with a composition operation, is defined decomposition. Notice

the similarly of the “asset compose()” with the “asset transform()”: in both

cases a new asset is created. However, the transform operation destroys the

previous asset, while in the compose operation the original assets are still

there.

– asset destroy (Figure 3(j)) when an object has to be destroyed and is no

longer part of the supply chain, it is destroyed.

4 Representing a real case

This section shows how the proposed model can be exploited to represent the

supply chain defined in [9] and represented in Figure 1.

Here we suppose that the Soy Bean Producer, SBP , wants to track the

soybean production process, from the acquisition of the seeds to their commer-

cialization. For this reason, SBP exploits our framework to represent the main

steps of the production process, thus automatically obtaining the skeletons of

the smart contracts that represent each asset of the supply chain. Figures 4 and

5 show the graphical representation of the soybean production process using our

framework.



Fig. 4. Representation of the soybeans supply chain use case [9], seen in Figure 1, with

the proposed framework (part I).

The first asset of the supply chain represented in Figure 4 is Seed (the leftmost

box in the figure), which is an uncountable asset and hence it is enclosed in a

container, called Sack. This asset does not have any incoming arrow. This means

that the production of this asset is not tracked using our framework, and this

asset is simply created by a subject. Our framework allows to set constraints on

the role of the subject who can create/buy an asset. In the reference example,

the subjects allowed to create Seed assets must have the role Seed Company.

As a matter of fact, in the figure we can see the constraint Role(owner)=Seed

Company paired with the Seed assets.

The operation that is done on the Seed asset is Sell, which is paired with

the operation Move. Hence, in the graphical representation of the supply chain

we have a second instance of the Seed asset on the right of the first instance,

and these two instances are directly connected through a Move arrow, which

represent the physical transfer of the asset and, at the same time, the owner

properties of the two instances are connected with a red arrow representing the

Sell operation. The framework, by default, imposes the constraint that only the

owner of an asset can perform the Sell operation. This constraint is not explicitly

reported in the supply chain graphical representation. In the reference example,

a further constraint is defined on the role of the entity which can buy Seed. This

constraint is represented in the Figure 4 as Role(owner) = Farmer, and it is

paired with the second instance of the Seed asset.

Fig. 5. Representation of the soybeans supply chain use case [9], seen in Figure 1, with

the proposed framework (part II).



The second operation in the soybeans supply chain represented in Figure 4

is the Plant one. This operation is a transformation (as shown by the dashed

line) because the Seed asset is transformed in Crop asset when it is planted in

the field. The Crop asset is uncountable as well, and hence it is included in a

Field container, which represents the place where the seeds have been planted.

The Field container is, obviously, Non-consumable and hence it is represented

by a rectangle in the figure. More than one Field container can be defined in

the supply chain, and the ID of the one to be used is specified in the invocation

of the Plant operation. Our framework, by default, imposes the constraint that

only the controller of an asset can perform an operation on such asset (with the

exception of the Sell one which requires the invoking entity to be the owner, as

previously explained). The reason is that the controller is the entity who have

the physical availability of the asset. This constraint is automatically embedded

in the smart contract representing the asset. Moreover, since the Plant opera-

tion can be executed only by entities having the role of Farmer, this additional

constraint is explicitly paired with the Plant operation, and in Figure 4 is rep-

resented by the constraint Role(controller)=Farmer paired with the Crop asset.

However, differently from the Sell operation, in this case the constraint is im-

posed on the Controller of the asset, i.e., on the entity who has the physical

availability of the asset. Another constraint that is imposed on this operation is

that a given ratio between the weight of the seeds and the dimension of the field

must be respected. Hence, a constraint taking into account the weight property

of the Seed asset and the dimension property of the Field container is defined

by the SBP on the Plant operation. More than one seed sack could be planted

in the same field, generating multiple Crop assets included in the same Field

container. Hence, the constraint will take into account the total weight of all the

seed sacks already planted in the field to decide whether the Plant operation can

be executed. Our framework, when producing the smart contract representing

the assets, defines the methods representing the operations and the constraints,

and the related invocations. The programmers will then customize such methods

by writing the code implementing the required constraint checks.

The third operation of the supply chain is Harvest crop, and its features are

very similar to the Plant operation. The result of the Harvest crop operation

applied to each Crop asset is a new asset, called Harvest. The Harvest assets

are stored in a Grain Elevator Non-consumable container. More than one Grain

Elevator containers can be defined in the supply chain, and the ID of the one to

be used is specified in the invocation of the Harvest crop operation.

The next operations are very similar the ones we have already described,

hence we will not provide a detailed description.



Fig. 6. A screenshot example of the proposed tool.

5 Describing the tool

The developed tool point to describe the SC, and translate it into smart con-

tracts. The user has only to draw the equivalent model of the supply chain : solid

blocks that represent assets, linked particles for the properties of assets; arrows

to represents the operations; roles and constraints that enrich each function

specified with arrows. The tool translates the components into code suitable for

creating smart contracts for a related framework. The smart contract structure

is procedurally generated in solidity-like language, starting from blocks, arrows,

constraints, and roles.

First set of available functions to the user is the representation of the assets:

the three different classifications of an asset -described in the proposed model-

are available through the “Asset” button. On this button selection, is possible

to choose among the characteristic: uncountable or countable, consumable or

non-consumable. Another basic feature is the “Package” draw option. In this

case, there are only two options: consumable and non-consumable. Because a

package is considered always a countable asset. Once a package object has been

placed, any asset object could be dragged into it (or any other package object

with its relative content).

Another basic set of functions is operations. In this subset it is possible to

draw each operation of the model according to each family: move, transform,

compose. Also, it is possible to select the “sell” operation, which is enabled only

between two “owner properties” of the same asset in two different instances. To

characterize the various operations of a SC it is possible to assign roles with and



impose constraints on access to certain functions at a given time. Through the

“roles” panel it is possible to build the set of roles necessary for the specific SC.

Role constraints are only one specific constraint that can be defined. Interface

prompt to set constraint and any defined property of the assets. Any object

drawn in the main panel can be edited. By clicking on one of them, the green

editing area will appear which the names and properties of each object can be

changed: as already mentioned, selecting an operations it is possible in this area

to add constraints an authorizations.

Otherwise, in cases of the assets, packages, or properties, the editable options

are limited to appearance, nomenclature, and handling properties.

To make the tool more user-friendly and to make the model easily editable

over time, two functions allow saving and loading the drawn schema. The func-

tion “Save model” saves the drawing and the properties of the SC thus con-

structed, translated in JSON format. The function “Load model” loads a JSON

file on the tool, then automatically redraws the schema.

The function “Export” translates the model into smart contract prototypes,

which is based on the recently released solidity standard. The translator parses

the saves file JSON as a starting point. Based on assets, operations, roles, and

constraints, it generates a Solidity code.

6 Relevant Related Work

One of the most similar study[7] presents a solution by a tool capable to design

solidity code based on predetermined logic blocks: since models are usually easier

to understand than software source code. This solution is based on a virtual

environment that allows to build a smart contract, giving easily understandable

bricks. Unlike this approach, our solution does not include a few pre-set bricks

or a few common combinations of solidity code. Our graphical DSL aims to be as

general as possible such that the framework can represent multiple combinations

and types of supply chains.

In[10], a model based on the Business Process Model and Notation (BPMN)

representation is shown. The developed graphical DLS translates blockchain

smart contracts using the graphical representation of the DEMO modelling

language[4]. This representation makes it easier for the user to represent a work-

flow or the transaction operations of the same asset. Due to the nature of the

BPMN representation, through this is not possible to design various types of

supply chains.

This study[3] presents an automatic smart contract template generation

framework that uses ontologies and semantic rules to encode specific transaction

problems. The template uses the structure of abstract syntax trees to organise

the constraints in the generated template in a solidity script. The minimum atom



of the constraint is the declaration of the owner and his/her ownership of an ob-

ject. Similarly to our model, the study describes how the roles and minimum

relations (atoms) can build more complex operations.

7 Conclusion and Future work

Given the various natures of SCs, it is difficult to design a SCMS general enough

to be able to represent all possible types of SCs. We present a universal model

for SCs ; this model represents every aspect of the most used SC such as pro-

duction processes or in business management. The model constitutes a graphical

DSL for the representation of SCs. Through this model, we analyze and recon-

struct a well-known use case: soybean traceability schema. its SC is translated

through the presented model, also adding more detail to the original schema.

Furthermore, we developed an easy-to-use graphic framework: the proposed tool

allows a manager to design the various components of a CS and to specify their

relationships and constraints.

As future work we plan to better analyze the proposed model, comparing it

with several other general schemes, aiming to underline the differences in use or

similarities. Our task is to refine the tool and make the graphical interface easier

to handle, especially for inexperienced managers who lack specific knowledge of

the model.

Also, we plan to analyze a specific use case such as “DOPUP: Dop Olive oil

for a new Presence of Umbria on the Planet”, about Umbria’s olive supply chain.

As a successive step we plan to translate into other code languages for DLT,

such as Chaincode 8.

References

1. Azzi, R., Chamoun, R.K., Sokhn, M.: The power of a blockchain-based

supply chain. Computers & Industrial Engineering 135, 582–592 (2019).

https://doi.org/10.1016/j.cie.2019.06.042

2. Brennan, L., Rakhmatullin, R.: Global Value Chains and Smart Spe-

cialisation Strategy: Thematic Work on the Understanding of Global

Value Chains and their Analysis within the Context of Smart Special-

isation. JRC Working Papers JRC98014, Joint Research Centre (Seville

site) (Dec 2015). https://doi.org/https://doi.org/10.2791/44840, https://ideas.

repec.org/p/ipt/iptwpa/jrc98014.html

3. Choudhury, O., Rudolph, N., Sylla, I., Fairoza, N., Das, A.: ”auto-generation of

smart contracts from domain-specific ontologies and semantic rules” (09 2018).

https://doi.org/10.1109/Cybermatics 2018.2018.00183

8 White paper of Chaincode: https://hyperledger-fabric.readthedocs.io/en/

release-1.3/chaincode.html

https://doi.org/10.1016/j.cie.2019.06.042
https://doi.org/https://doi.org/10.2791/44840
https://ideas.repec.org/p/ipt/iptwpa/jrc98014.html
https://ideas.repec.org/p/ipt/iptwpa/jrc98014.html
https://doi.org/10.1109/Cybermatics_2018.2018.00183
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html
https://hyperledger-fabric.readthedocs.io/en/release-1.3/chaincode.html


4. Dietz, J.L.: Demo: Towards a discipline of organisation engineering.

European Journal of Operational Research 128(2), 351–363 (2001).

https://doi.org/https://doi.org/10.1016/S0377-2217(00)00077-1, https:

//www.sciencedirect.com/science/article/pii/S0377221700000771, com-

plex Societal Problems

5. Govindan, K., Soleimani, H., Kannan, D.: Reverse logistics and closed loop supply

chain: A comprehensive review to explore the future. Eur. J. Oper. Res. 240(3),

603–626 (2015). https://doi.org/10.1016/j.ejor.2014.07.012

6. Malik, S., Kanhere, S.S., Jurdak, R.: Productchain: Scalable blockchain framework

to support provenance in supply chains. In: 17th IEEE International Symposium on

Network Computing and Applications, NCA 2018, Cambridge, MA, USA, Novem-

ber 1-3, 2018. pp. 1–10. IEEE (2018). https://doi.org/10.1109/NCA.2018.8548322

7. Mao, D., Wang, F., Wang, Y., Hao, Z.: Visual and user-defined smart contract

designing system based on automatic coding. IEEE Access 7, 73131–73143 (2019).

https://doi.org/10.1109/ACCESS.2019.2920776

8. Ph.D., Rutner, and Shepherd, C.: Is Marketing Still Part of Supply Chain Man-

agement, and Should Marketing Academics and Practitioners Care? (09 2017)

9. Salah, K., Nizamuddin, N., Jayaraman, R., Omar, M.: Blockchain-based soybean

traceability in agricultural supply chain. IEEE Access 7, 73295–73305 (2019).

https://doi.org/10.1109/ACCESS.2019.2918000

10. Skotnica, M., Klicpera, J., Pergl, R.: ”towards model-driven smart contract systems

– code generation and improving expressivity of smart contract modeling” (2020)

11. Solarte-Rivera, J., Vidal-Zemanate, A., Cobos, C., Chamorro-Lopez, J.A., Velasco,

T.: Document management system based on a private blockchain for the support

of the judicial embargoes process in colombia. In: Matulevicius, R., Dijkman, R.M.

(eds.) Advanced Information Systems Engineering Workshops - CAiSE 2018 In-

ternational Workshops, Tallinn, Estonia, June 11-15, 2018, Proceedings. Lecture

Notes in Business Information Processing, vol. 316, pp. 126–137. Springer (2018).

https://doi.org/10.1007/978-3-319-92898-2 10

12. Stadtler, H., Kilger, C.: Supply Chain Management and Advanced Planning: Con-

cepts, Models, Software, and Case Studies. Springer Publishing Company, Incorpo-

rated, 4th edn. (2008). https://doi.org/https://doi.org/10.1007/978-3-540-74512-9

13. Tetteh, A.: Supply chain distribution networks: single-, dual- and omni-channel

(05 2014)

14. Trautmann, N., Fündeling, C.: Supply chain management and advanced planning

in the process industries. In: Waldmann, K., Stocker, U.M. (eds.) Operations Re-

search, Proceedings 2006, Selected Papers of the Annual International Conference

of the German Operations ResearchSociety (GOR), Jointly Organized with the

Austrian Society of Operations Research (ÖGOR) and the Swiss Society of Oper-

ations Research (SVOR), Karlsruhe, Germany, September 6-8, 2006. pp. 503–508

(2006). https://doi.org/10.1007/978-3-540-69995-8 80

15. Wang, T., Lan, Q., Chu, Y.: Supply chain financing model:

Based on china’s agricultural products supply chain. Ap-

plied Mechanics and Materials 380-384, 4417 – 4421 (2013).

https://doi.org/https://doi.org/10.4028/www.scientific.net/AMM.380-384.4417

https://doi.org/https://doi.org/10.1016/S0377-2217(00)00077-1
https://www.sciencedirect.com/science/article/pii/S0377221700000771
https://www.sciencedirect.com/science/article/pii/S0377221700000771
https://doi.org/10.1016/j.ejor.2014.07.012
https://doi.org/10.1109/NCA.2018.8548322
https://doi.org/10.1109/ACCESS.2019.2920776
https://doi.org/10.1109/ACCESS.2019.2918000
https://doi.org/10.1007/978-3-319-92898-2_10
https://doi.org/https://doi.org/10.1007/978-3-540-74512-9
https://doi.org/10.1007/978-3-540-69995-8_80
https://doi.org/https://doi.org/10.4028/www.scientific.net/AMM.380-384.4417

	Towards a graphical DSL for tracing supply chains on blockchain

