
EasyChair Preprint
№ 4558

Mathematical Assessment of the Impact of
Vaccination and Personal Protection on the
Dynamical Transmission of Avian Influenza A
(H7N9)

Calvin Tadmon, Berge Tsanou and Arnaud Fossi Feukouo

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

November 15, 2020



UNIVERSITY

OF DSCHANG

Enterprise, Research and Development Forum
(EREDEF-2020)

Artificial Intelligence, Digital Economy and African
Transformation

Algebra • Analysis • Computer Science
mailto://dept.math-info@univ-dschang.org

MATHEMATICAL ASSESSMENT OF THE IMPACT OF VACCINATION
AND PERSONAL PROTECTION ON THE DYNAMICAL
TRANSMISSION OF AVIAN INFLUENZA A (H7N9).

Arnaud Fossi Feukouo1 , Calvin Tadmon1,2,* and Berge Tsanou1,3,*
1 URMA, Department of Mathematics and Computer Science, University of Dschang, Cameroon

2 The Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
3 Department of Mathematics and Applied Mathematics, University of Pretoria, Pretoria 0002, South Africa

* Corresponding author : bergetsanou@yahoo.fr, tadmonc@yahoo.fr.

ABSTRACT: In this article, we investigate the impact of vaccination and personal protection on the
dynamical transmission of avian influenza A (H7N9) within a human community. We propose a math-
ematical model for the dynamical transmission of AI which integrates the key epidemiological and
biological features of AI such as vaccine efficacy and the efficiency of personal protection. We provide
a theoretical study of the model. We derive the basic reproduction number R0 which determines the
extinction and persistence of the disease. We show that the disease-free equilibrium is globally asymp-
totically stable wheneverR0 ≤ 1, while whenR0 > 1, the disease-free equilibrium is unstable and there
exists an endemic equilibrium point which is locally or globally (depending on the case) asymptotically
stable on a positively invariant region of the positive orthant. The sensitivity analysis of the model has
been performed in order to determine the impact of related parameters on outbreak severity. Theo-
retical results are supported by numerical simulations, which further demonstrate that some proposed
control strategies will not lead to disease eradication, however, if we only employ vaccination, it will
require slightly longer to eradicate the disease than applying a combination of pharmaceutical (vacci-
nation) and non-pharmaceutical (personal protection) control methods. In conclusion, it is important
to adopt a combination of control methods to fight an avian influenza outbreak.

KEYWORDS: Avian influenza, Mathematical models, Sensitivity analysis, Stability, Personal
protection, Vaccination.

1. Introduction

In general, the avian influenza virus does not infect humans. Influenza viruses are widespread
and due to their high mutation rate there are many subtypes. In addition, H5N1, H7N4,
H7N7, H7N9, H9N2 viruses and other avian influenza viruses with pathogenicity represent
a significant potential threat to humans. In particular, the H7N9 subtype virus is mainly
transmitted through the respiratory tract. Infected poultry and their secretions, feces and
water contaminated with the virus are the main sources of transmission of avian influenza.
In February 2013, 3 people were infected for the first time and as of May 31, 132 cases
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have been found, including 37 deaths, and the death rate even reaches 30%. [1, 2, 3, 8].
At present, humans infected with avian influenza A (H7N9) are still sporadic and he has
yet to find the capacity for the virus to spread among humans. Sporadic infections al-
most affect poultry mainly in farms, live poultry markets, wet markets and other areas
[9, 10, 11, 12, 13]. In humans, the bird flu virus causes symptoms similar to those of other
types of flu. These include fever, cough, sore throat, muscle pain, conjunctivitis and, in
extreme cases, severe breathing problems and pneumonia which can be fatal [4, 5]. The
incubation period of a human infected with the H7N9 influenza virus is about seven days
and there are currently drugs available to combat this virus. Although these antiviral drugs
are clinically effective against H7N9 avian influenza, mortality from avian influenza H7N9
is still very high. Normally, the H7N9 virus is not thought to have a strong capacity for
efficient human to-human propagation, but it were two cases of family aggregation. In
such circumstances, it is important to study what may be the best policies available for the
prevention and control of transmission avian influenza A (H7N9).

Instead of culling the poultry, control strategies that may control and prevent the spread
of avian influenza out to be taken into consideration. Thus, several types of mathematical
models have been studied. Nunõ et al [14] analysed a model to examine the role of
hospital and community control measures, antiviral drugs and vaccination in combating
a potential flu pandemic in a population. Gumel considered the dynamics of a two strain
influenza model and conclude that the influenza-related burden in humans increased as
the mutation rate increased. Liu et al [15, 16] and Zhang et al [17] modeled the spread
of avian influenza H7N9 using both semilinear and half-saturation incidence rate. Chong
et al [39] and Liu et al [34] considered saturation incidence rate to investigate the effect
on transmission dynamics of avian influenza were both established. Chong et al [39]
examined the effect of phamaceutical and non pharmaceutical control strategies whereas
Liu et al[34] considered the psychological effect on humans in reponse to the outbreaks of
avian influenza (H5N1). Recently, Lee et al [40] modeled the transmission dynamics and
control strategies assessment of avian influenza A (H5N6) in the Philippines.

In the present study, motivated by the works of [39, 40], we built an extension of
the mathematical model done by [18] by taking into account two control strategies: The
personal protection by humans since there are several potential modes of avian influenza
transmission such as the consumption of raw or undercooked infected poultry products,
contact with oral/nasal mucous membrane or conjunctiva (for example, through swim-
ming or bathing in a contaminated pond/pool), inhalation of contaminated dust or fine wa-
ter droplets and human-to-human transmission [7]. Although the exact mode of human-
to-human transmission remains unclear, there is reason to believe that unprotected contact
with an infected person, respiratory secretions, body fluids or waste poses a higher risk for
transmission, especially for health-care workers (HCWs) who are first responders [7, 3].
To reduce the mortality and infection rate of avian influenza, the general public especially,
health-care workers and workers and employers who are involved in poultry agriculture
or have frequent contact with wild birds is advised to follow trict guidelines for personal
protection. For example, one should take precautions for hygiene, using gloves, masks and
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other protective gear [3]. Controlling and diminishing the spread of avian influenza is a
challenging task, as the disease is very infectious and able to mutate into highly pathogenic
strains [21]. Consequently, vaccination of poultry or humans as a tool to manage, prevent
or eradicate the disease has been recommended by the United Nations [6]. The resulted
model is deeply analyzed both theoretically and computationally. From the analytical per-
spectives, we established the threshold dynamic of the system and transcritical bifurcation
using Lyapunov-LaSalle, Poincaré-Bendixson techniques and center manifold approxima-
tion, respectively.

The paper is organized as follows. After the formulation of the model in Section 2, we
present its quantitative and qualitative analysis in Section 3. Section 4 deals with sensi-
tivity analysis of the model. Section 5 presents a model analysis with personal protection
only. Theoretical results are illustrated by numerical simulations in Section 6. The last
section is devoted to concluding remarks on how our work fits in the literature and on
possible extensions.

2. Model formulation

The dynamics of Avian Influenza (AI) is governed by the following set of biological as-
sumptions: (i) the vaccine confer a total immunity to all vaccine recipients; (ii) vaccinated
poultry whose vaccination has failed may be infected with the virus. We consider seven
distinct populations, according to their disease status: susceptible poultry Sp (poultry who
are susceptible to the disease), vaccinated poultry Vp (healthy poultry who have been vac-
cinated acquiring immunity), Infectious poultry Ip (infected poultry who show the symp-
toms of the infection), susceptible humans Sh, latent humans Eh (healthy humans who
carry AI virus and are infectious), infectious humans Ih , and the concentration of virus C
into the farms environment. Thus, the total poultry and humans population respectively
Np(t) and Nh(t) at time t is

Np(t) = Sp(t) + Vp(t) + Ip(t) and Nh(t) = Sh(t) + Eh(t) + Ih(t). (1)

Poultry and human are recruited respectively at constant rate Λp and Λh. A mass vaccina-
tion programme may be initiated whenever there is an increase of the risk of an epidemic.
The introduction of a vaccine in a poultry population living in an endemic situation is not
considered. We suppose that a fraction 0 ≤ π ≤ 1 of the entire susceptible poultry is being
continuously vaccinated. Thus, the population of vaccinated poultry is increased by the
vaccination of susceptible poultry at constant rate π.
Most of the theory about disease evolution is based on the assumption that the host pop-
ulation is homogeneous. Poultry hosts, however, may differ and they may constitute very
different habitats. In particular, some habitats may provide more resources or be more vul-
nerable to virus exploitation [56]. The use of models with imperfect vaccines can describe
better this type of poultry heterogeneity. The vaccination may reduce but not completely
eliminate susceptibility to infection. For this reason, we consider a factor ν as the vaccine
efficacy. When ν = 1, the vaccine is perfect while, when ν = 0, the vaccine has no effect at
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all. The value 1−ν can be understood as the inefficacy level of the vaccine. Since, a major-
ity of the available vaccines for the human population does not produce 100% success in
the disease battle [57, 53, 52, 51], we suppose that the available vaccines for the poultry
population does not produce 100% success. Usually, the vaccines are imperfect, which
means that a minor percentage of cases, in spite of vaccination, are infected [57, 53]. The
susceptible and vaccinated poutry population are decreased due to the AI infection at rates
λSp and (1− ν)λVp, respectively where λ is the force of infection given by

λ = βv
Ip

Hp + Ip
+ βe

C

He + C
, (2)

βv is the transmission coefficient, such that βvIp measures the infection force of the infec-
tive poultry, Hp is the half-saturation constant, that is, the density of infected individuals in
the population that yields 50% possibility of contracting avian influenza. In the latter satu-
rated incidence function, βe is the transmission coefficient such that (βe � βv); 1/(He +C)
represents saturation due to the cleaning of the farm when the concentration of excretion
becomes larger; He is the concentration of V. avian viruses attached to aerosol particles in
the farm which 50% chance of catching the infection. In fact the transmission potential of
the later is higher because they can freely establish contacts with susceptible individuals
since they may not be aware of their disease status. The population of infected poultry is
increased by the infection of susceptible and vaccinated poultry at rates λSp and (1−ν)λVp,
respectively, and is diminished by natural death at constant rate δp and AI induced poul-
try mortality at constant rate µp. The infected poultry infect the farm at constant rate φ
and the natural death rate of virus (or shedding rate) is ξ. The susceptible humans are de-

creased due to the spillover at rates (1−cq)τp
Sh

Hph + Ip
and (1−cq)τe

Sh
Heh + C

; where τp and

τe is the transmission coefficient of this disease respectively from poultry and pathogenic
or infectious environment to humans; Here, 0 ≤ c ≤ 1 is the fraction of population that
has adopted personal protection and 0 ≤ q ≤ 1 is the efficiency of personal protection. For
c = 1, all the people in a particular community employ personal protection, whereas c = 0
means there is no one practicing personal protection. Further, the value q = 1 shows that
the efficiency of personal protection is 100%. Hence, the values of c and q are reciprocal
to the rate of avian influenza transmission [58]. The population of latent humans is in-

creased by the infection of susceptible at rate (1−cq)τp
Sh

Hph + Ip
and (1−cq)τe

Sh
Heh + C

and

is diminished by natural death at constant rate δh and recover (moving to the susceptible
class Sh) at rate a. The population of infectious (moving to the infectious class Ih) is in-
creased by latent who develop the disease at rate ε and is diminished by recovery from the
disease (moving to the susceptible class Sh) at constant rates γ, natural death and spillover
induced humans mortality at constant rates δh and µh, respectively.

A schematic model flowchart is depicted in Figure 1.
From this, the AI transmission model is described by the following system of nonlinear
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Figure 1: Structure of the model: Sp−Vp−Ip−Sh−Eh−Ih−C; λ = βv
Ip

Hp + Ip
+βe

C

He + C
.

ordinary differential equations

dSp
dt

= (1− π)Λp − (δp + λ)Sp,

dVp
dt

= πΛp − [δp + (1− ν)λ]Vp,

dIp
dt

= [Sp + (1− ν)Vp]λ− (δp + µp)Ip,

dSh
dt

= Λh + aEh + γIh − (1− cq)τp
ShIp

Hph + Ip
− (1− cq)τe

ShC

Heh + C
− δhSh,

dEh
dt

= (1− cq)τp
ShIp

Hph + Ip
+ (1− cq)τe

ShC

Heh + C
− (a+ δh + ε)Eh,

dIh
dt

= εEh − (γ + µh + δh)Ih,

dC

dt
= φIp − ξC.

(3)
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where λ is the infection force defined in Equation (2). Which is the combination of the
poultry system (4) and the human system (5).

dSp
dt

= (1− π)Λp − (δp + λ)Sp,

dVp
dt

= πΛp − [δp + (1− ν)λ]Vp,

dIp
dt

= [Sp + (1− ν)Vp]λ− (δp + µp)Ip,

dC

dt
= φIp − ξC.

(4)



dSh
dt

= Λh + aEh + γIh − (1− cq)τp
ShIp

Hph + Ip
− (1− cq)τe

ShC

Heh + C
− δhSh,

dEh
dt

= (1− cq)τp
ShIp

Hph + Ip
+ (1− cq)τe

ShC

Heh + C
− (a+ δh + ε)Eh,

dIh
dt

= εEh − (γ + µh + δh)Ih.

(5)

Table 1 summarizes the model variables and parameters.

3. Mathematical analysis

3.1. Basic properties

Herein, we study the basic properties of the solutions of model system (3), which are
essential in the proofs of stability results. We have the following result.

Theorem 1 Model system (3) is a dynamical system on the biologically feasible compact
domain:

Ω =
{

(Sp, Vp, Ip, Sh, Eh, Ih, C) ∈ R7
+/Sp + Vp + Ip ≤M1 ; Sh + Eh + Ih ≤M2 ; C ≤M3

}
.

M1 = max

{
Λp

δp
;Np(0)

}
, M2 = max

{
Λh

δh
;Nh(0)

}
, M3 = max

{
φM1

ξ
;C(0)

}
Proof. The proof is provided in two steps.

Step 1: We show that the solution variables (Sp, Vp, Ip, Sh, Eh, Ih, C) of model system
(3) corresponding to initial conditions such that Sp(0) > 0, Vp(0) > 0, Ip(0) > 0, Sh(0) >
0, Eh(0) > 0, Ih(0) > 0 and C(0) > 0 are non-negative. Define

t1 = sup{t > 0/∀u ∈ [0; t[ Sp(u) > 0, Vp(u) > 0, Ip(u) > 0, Sh(u) > 0, Eh(u) > 0, Ih(u) > 0, C(0) > 0}.
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The initial conditions above and the continuity of the functions Sp, Vp, Ip, Sh, Eh, Ih, C
ensure the existence of t1. If t1 = +∞ then, all solutions of model system (3) are
positive. Suppose t1 < ∞ (t1 finite), then there is at least one solution component
Sp, Vp, Ip, Sh, Eh, Ih, C which is equal to zero at value t1 (from the definition of t1 as a
supremum).
Suppose for example that Sh(t1) = 0 and let consider the fourth equation of model system
(3):

dSh
dt

= Λh + aEh + γIh − (1− cq)τp
ShIp

Hph + Ip
− (1− cq)τe

ShC

Heh + C
− δhSh.

Let λ1(t) = (1− cq)τp
Ip

Hph + Ip
+ (1− cq)τe

C

Heh + C
.

We know that for all t ∈ [0, t1],Λh + aEh(t) + γIh(t) ≥ 0. It follows that

dSh
dt

+ (λ1(t) + δh)Sh ≥ 0.

Therefore

d

dt

[
Sh(t) exp

{
δht+

∫ t
0
λ1(t)ds

}]
= Ṡh(t) exp

{
δht+

∫ t
0
λ1(s)ds

}
+Sh(t)(λ1(t) + δh) exp

{
δht+

∫ t
0
λ1(s)ds

}
= exp

{
δht+

∫ t
0
λ1(s)ds

}
×
(
Ṡh(t) + (δh + λ1(t))Sh(t)

)
≥ 0,

that is,
d

dt

[
Sh(t) exp

{
δht+

∫ t

0

λ1(s)ds

}]
≥ 0.

Integrating the above inequality from 0 to t1 gives∫ t1

0

d

dt

[
Sh(t) exp

{
δht+

∫ t

0

λ(s)ds

}]
dt ≥ 0,

or equivalently

Sh(t1) exp

{
δht1 +

∫ t1

0

λ1(s)ds

}
−Sh(0) ≥ 0.

This yields

Sh(t1) ≥ Sh(0) exp

{
− δht1 −

∫ t1

0

λ1(s)ds

}
> 0,

which is in contradiction with S(t1) = 0.
The other cases Vp(t1) = 0, Ip(t1) = 0, Sh(t1) = 0, Eh(t1) = 0, Ih(t1) = 0 and C(t1) = 0,
lead to the same contradiction.
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Hence, Sp(t) > 0, Vp(t) > 0, Ip(t) > 0, Sh(t) > 0, Eh(t) > 0, Ih(t) > 0 and C(t) > 0 ∀t >
0.

Step 2: We prove that the total population of poultry and humans at time t, Np(t)
and Nh(t) satisfies the boundedness property 0 < Np(t) ≤ M1, 0 < Nh(t) ≤ M2; we also
prove that the concentration of virus satisfies the boundedness property 0 ≤ C(t) ≤ M3.
We point out that this bound represents the unique equilibrium of the dynamics of the
total population in the ideal situation where there is no ongoing infection. By adding the
equations of model system (3), one obtains the conservation laws:

dNp

dt
= Λp − δpNp − µpIp ≤ Λp − δpNp,

dNh

dt
= Λh − δhNh − µhIh ≤ Λh − δhNh.

The application of the Gronwall inequality yields
Np(t) ≤

Λp

δp
+

(
Np(0)− Λp

δp

)
e−δpt,

Nh(t) ≤
Λh

δh
+

(
Nh(0)− Λh

δh

)
e−δht, ∀t ≥ 0.

(6)

Knowing from (6) that Ip is bounded, we have

dC

dt
= φIp − ξC ⇒

dC

dt
≤ φM1 − ξC.

Once more, application of Gronwall inequality gives

C(t) ≤ φM1

ξ
+

(
C(0)− φM1

ξ

)
e−ξt, ∀t ≥ 0.

By comparaison principle, we have the result.
Combining Step 1 and Step 2, Theorem 1 follows from the classical theory of dynami-

cal systems. This concludes the proof. Theorem 1 ensures that the model is well posed
since its state variables are positive and the size of the total population does not growth
exponentially and is bounded by a value which represents the size of the total population
in the ideal situation where there is no infection within the community.

3.2. The DFE and its stability

The DFE for an epidemiological model is an equilibrium such that the disease is absent in
the community. Thus, if Q0 = (S0

p , V
0
p , I

0
p , S

0
h, E

0
h, I

0
h, C

0) is the DFE of model system (3),
then I0

p = E0
h = I0

h = C0 = 0. As a consequence of model system (3), S0
p , V

0
p and S0

h being
solutions of the equations:

(1− π)Λp − δpS0
p = 0, πΛp − δpV 0

p = 0, Λh − δhS0
h = 0. (7)
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which has the unique solution:

S0
p =

(1− π)Λp

δp
, V 0

p =
πΛp

δp
, S0

h =
Λh

δh
. (8)

In order to investigate the stability properties of the DFE Q0, we need to compute the
reproduction/threshold numberR0 of model system (3). To this end, we apply the method
in Van den Driessche and Watmough [36], with (Ip, Eh, Ih, C) and (Sp, Vp, Sh) being the
infected and uninfected classes, respectively. We point out that the noninfected classes are
the classes of individuals who cannot carry the virus in their body, while the infected classes
are the classes of individuals who carry the virus in their body. Using the notations in [36],
the matrices F and V, for the new infection and the remaining transfer are respectively,
given by

F =


[Sp + (1− ν)Vp]λ

(1− cq)Sp
[

τpIp
Hph + Ip

+
τeC

Heh + C

]
0
0

 and V =


(δp + µp)Ip

(a+ δh + ε)Eh
−εEh + (γ + µh + δh)Ih

−φIp + ξC

 .

The Jacobian matrices of F and V at the DFE are respectively:

DF(Q0) =

[
F 0
0 0

]
and DV(Q0) =

[
V 0
V1 V2

]
.

Where

F =



βv
Hp

[
S0
p + (1− ν)V 0

p

]
0 0

βe
He

[
S0
p + (1− ν)V 0

p

]
(1− cq)Λhτp

Hphδh
0 0

(1− cq)Λhτe
Hehδh

0 0 0 0
0 0 0 0

 ,

V =


δp + µp 0 0 0
0 (a+ δh + ε) 0 0
0 −ε (γ + µh + δh) 0
−φ 0 0 ξ

 .
Then, the reproduction number R0 of model system (3) is the spectral radius of the next
generation matrix FV −1, that is

R0 = ρ(FV −1) =
(βvHeξ + βeHpφ)

[
S0
p + (1− ν)V 0

p

]
HeHpξ(δp + µp)

. (9)

Theorem 2 The DFEQ0 is locally asymptotically stable in Ω ifR0 < 1 and unstable ifR0 > 1.
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Proof. The eigenvalues of a Jacobian matrix of the vector field described by (3) at Q0, are
the roots of the caracteristic equations

(λ+ δh)(λ+ (a+ δh + ε))(λ+ (γ + µh + δh)) = 0, (10a)

λ2 + 2λδp + δ2
p = 0, (10b)

λ2+λ

[
ξ + δp + µp −

βv
Hp

[
S0
p + (1− ν)V 0

p

]]
+ξ(δp+µp)−

[
βvξ

Hp

+
βeφ

He

] [
S0
p + (1− ν)V 0

p

]
= 0.

(10c)
The roots λ1, λ2, λ3 and λ4 of the quadratic equation (10b) and (10c) respectively satisfies:

λ1,2 = −δp,

λ3 + λ4 = −ξ − (δp + µp) +
βv
Hp

[
S0
p + (1− ν)V 0

p

]
,

= (δp + µp)(R0 − 1)− ξ −
βeφ

[
S0
p + (1− ν)V 0

p

]
Heξ(δp + µp)

,

λ3 × λ4 = ξ(δp + µp)−
[
βvξ

Hp

+
βeφ

He

] [
S0
p + (1− ν)V 0

p

]
= ξ(δp + µp)(1−R0).

Hence, all the roots of (10a), (10b) and (10c) have negative real part whenever R0 < 1.
Thus The DFE Q0 of system (3) is locally asymptotically stable in Ω when R0 < 1, but
unstable when R0 > 1.

The biological implication of Theorem 2 is that, a sufficiently small flow of infected
individuals will not generate an outbreak of the disease unlessR0 > 1. For a better control
of the disease, the global asymptotic stability (GAS) of the DFE is needed. We use a result
of Kamgang and Sallet [59] for the global stability of the DFE for a class of epidemiological
models. Following Kamgang and Sallet [59], we write model system (3) in the following
form: 

dx1

dt
= A1(x)(x1 − x0

1) + A12(x)x2,

dx2

dt
= A2(x)x2,

(11)

where x1 ∈ R3
+ is the vector whose components are the number of poultry and humans

susceptible individuals including vaccinated poultry and x2 ∈ R4
+ denoting (its compo-

nents) the number of poultry and humans infected individuals including latent, infectious
individuals and concentration of aerosol. x = (x1, x2)T , x0

1 = (S0
p , V

0
p , S

0
h) is the nonzero

component of the DFE.

A1(x) =

 −δp 0 0
0 −δp 0
0 0 −δh

 , A12(x) =


− βvHp

(Hp + Ip)2
S0
p 0 0 − βeHe

(He + C)2
S0
p

−(1− ν)βvHp

(Hp + Ip)2
V 0
p 0 0 −(1− ν)βeHe

(He + C)2
V 0
p

−(1− cq)τpHph

(Hph + Ip)2
S0
h a γ −(1− cq)τeHeh

(Heh + C)2
S0
h


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A2(x) =



βvHp [Sp + (1− ν)Vp]

(Hp + Ip)2
− (δp + µp) 0 0

βeHe [Sp + (1− ν)Vp]

(He + C)2

(1− cq)τpHph

(Hph + Ip)2
Sh −(a+ ε+ δh) 0

(1− cq)τeHeh

(Heh + C)2
Sh

0 ε −(γ + µh + δh) 0
φ 0 0 −ξ

 .

If model system (3) satisfies the conditions H1 −H5 in [59], then the following result
holds.

Theorem 3 The fixed point Q0 = (x0
1, 0) is a globally asymptotically stable equilibrium of

model system (3) provided that R0 ≤ 1 and the conditions H1 −H5 in [59] are satisfied.

Proof. The result of the Kamgang-Sallet approach [59] uses the algebraic structure of
model system (11), namely the fact that A1(x) and A2(x) are Metzler matrices. Since in
the said approach, the matrix A2(x) is required to be irreducible, we further restrict the
domain of the system to

D = {(x1, x2) ∈ Ω, x1 6= 0} . (12)

The set D is positively invariant because only the initial point of any trajectory can have
x1 = 0 (see Theorem 1). Indeed, from the first, second and fourth equations of model sys-
tem (3), one has S ′p > 0, V

′
p and S ′h > 0 whenever Sp = 0, Vp = 0 and Sh = 0, respectively.

Thus,
A2(x) is Metzler and irreducible for all x ∈ D. (13)

The sub-system:
dx1

dt
= A1(x1, 0)(x1 − x0

1),

can be expressed as
dSp
dt

= (1− π)Λp − δpSp,
dVp
dt

= πΛp − δpVp,
dSh
dt

= Λh − δhSh.

(14)

Resolving the above equations (14) yields

Sp(t) =
(1− π)Λp

δp
+

{
S0
p −

(1− π)Λp

δp

}
e−δpt, Vp(t) =

πΛp

δp
+

{
V 0
p −

πΛp

δp

}
e−δpt, (15a)

Sh(t) =
Λh

δh
+

{
S0
h −

Λh

δh

}
e−δht. (15b)

Taking the limit of Equations, (15a) and (15b) when t→ +∞ yields

lim
t→+∞

Sh(t) =
Λh

δh
, lim
t→+∞

Sp(t) =
(1− π)Λp

δp
and lim

t→+∞
Vp(t) =

πΛp

δp
. (16)
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Therefore, x0
1 = (S0

p , V
0
p , S

0
h) is a GAS equilibrium of the reduced system (14) on the sub-

domain {x ∈ D, x2 = 0}. Then, the hypothesis H2 is satisfied.
The result of Kamgang and Sallet (see [59, Theorem 4.3] ) gives the GAS of the DFE of

a dissipative system of the form (11) which satisfies (13) and (16) provided there exists a
matrix A2(x) with the following additional properties:

A2(x) ≤ A2, x ∈ D,
if A2(x) = A2, for some x = (x1, x2)T ∈ D then x2 = 0,
α(A2) ≤ 0.

(17)

Using the fact that Sp

(Hp+Ip)2
≤ S0

p

H2
p
, Vp

(Hp+Ip)2
≤ V 0

p

H2
p
, Sp

(He+C)2
≤ S0

p

H2
e
, Vp

(He+C)2
≤ S0

p

H2
e

and Sh

(Hph+Ip)2
≤

S0
p

H2
ph

, one has

A2(x) =



βv
[
S0
p + (1− ν)V 0

p

]
Hp

− (δp + µp) 0 0
βe
[
S0
p + (1− ν)V 0

p

]
He

(1− cq)τp
Hph

S0
h −(a+ ε+ δh) 0

(1− cq)τe
Heh

S0
h

0 ε −(γ + µh + δh) 0
φ 0 0 −ξ

 .

The equality A2(x) = A2 is possible only when Ip = C = 0, which implies that x2 = 0.
Therefore, the first and second conditions in (17) hold. Note that A2 is a Metzler matrix
which satisfies the stability condition of Kamgang and Sallet [59].

From the above condition of A2, one can observe that there is a maximum which is
uniquely realised in D at Q0 and this maximum is then the block of the jocobian of model
system (11) at Q0, corresponding to the matrix A2(x), and the condition H4 is satisfied.

Now, we check the condition H5. Note that the condition α(A2) ≤ 0 implies that A2 is a
stable Metzler matrix. We show in Appendix A that the condition α(A2) ≤ 0 is equivalent
to R0 ≤ 1.

We can now apply [59, Theorem 4.3] and conclude that the disease-free equilibrium
(x0

1, 0) is GAS in D. From (12), for the points of D where x2 = 0, the disease-free equilib-
rium is GAS on Ω.

3.3. Endemic equilibrium and its stability

Herein, we compute the endemic equilibrium and study its stability. To this end, we first
rewrite poultry system (4) in the following compact form:

dx(t)

dt
= Γ1 + Axx(t)− λ

∑2
i=1Di〈ei|x(t)〉,

dy(t)

dt
= Ayy(t) + λ

∑2
i=1 k〈ei|x(t)〉,

(18)
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where, x(t) = (Sp(t), Vp(t))
T , y(t) = (Ip(t), C(t))T , Γ1 = ((1 − π)Λp, πΛp)

T , D1 =
(1, 0)T , D2 = (0, 1)T , e1 = (1, 0), e2 = (0, 1 − ν)), k = (1, 0)T , λ = 〈B|y〉, B =(

βv
Hp + Ip

,
βe

He + C

)
,

Ax =

[
−δp 0

0 −δp

]
and Ay =

[
−(δp + µp) 0

φ −ξ

]
.

Let Q∗ = (x∗, y∗) be the positive endemic equilibrium of model system (18). This steady
state with y∗ > 0 is obtained by setting the right-hand side of Eq. (18) to zero, giving:

Γ1 + Axx
∗ − λ∗

∑2
i=1Di〈ei|x∗〉 = 0,

Ayy
∗ + λ∗

∑2
i=1 k〈ei|x∗〉 = 0,

(19)

where λ∗ is the force of infection at the endemic equilibrium, given by

λ∗ = 〈B∗|y∗〉. (20)

Multiplying the second equation of (18) by −A−1
y gives

y∗ = λ∗
2∑
i=1

〈ei|x∗〉(−A−1
y )k = λ∗

[
S∗p + (1− ν)V ∗p

]
(−A−1

y )k. (21)

A simple calculation gives
∑2

i=1 Di〈ei|x∗〉 = (S∗p , (1 − ν)V ∗p )T . With this in mind, the first
Equation of (19) becomes

0 = Γ1+Axx
∗−λ∗

2∑
i=1

Di〈ei|x∗〉 = Γ1+Axx
∗−λ∗(S∗p , (1−ν)V ∗p )T = Γ1−(λ∗Bx−Ax)x∗, (22)

where

Bx =

[
1 0
0 1− ν

]
and λ∗Bx − Ax =

[
λ∗ + δp 0

0 (1− ν)λ∗ + δp

]
.

Solving Equation (22) gives
x∗ = (λ∗Bx − Ax)−1Γ1, (23)

where

(λ∗Bx − Ax)−1 =
1

χ(λ∗)

[
(1− ν)λ∗ + δp + φ2 φ2

φ1 λ∗ + δp + φ1

]
,

and
χ(λ∗) = (1− ν)λ∗2 + (2− ν)δpλ

∗ + δ2
p. (24)

We stress that the coefficients of the quadratic polynomial χ(λ∗) are non-negative. As a
consequence, χ(λ∗) is positive for any positive value of λ∗.
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From Equation (23), one has

S∗p =
(1− π)Λp

χ(λ∗)
[(1− ν)λ∗ + δp] , V ∗p =

πΛp

χ(λ∗)
[λ∗ + δp] . (25)

Also, from Equation (21), one gets

I∗p =
λ∗

δp + µp

[
S∗p + (1− ν)V ∗p

]
, C∗ =

φλ∗

ξ(δp + µp)

[
S∗p + (1− ν)V ∗p

]
, (26)

where
S∗p + (1− ν)V ∗p =

Λp

χ(λ∗)
[(1− ν)λ∗ + (1− πν)δp] . (27)

Now, from the expression of the force of infection at the endemic equilibrium (20), using
Equation (21) yields

λ∗ = 〈B∗|y∗〉 = λ∗
[
S∗p + (1− ν)V ∗p

]
〈B∗|(−A−1

y )k〉,

= λ∗
[
S∗p + (1− ν)V ∗p

] [ βv
(Hp + I∗p )(δp + µp)

+
βeφ

ξ(He + C∗)(δp + µp)

]
,

which gives
S∗p + (1− ν)V ∗p
ξ(δp + µp)

[
βvξ

(Hp + I∗p )
+

βeφ

(He + C∗)

]
= 1. (28)

Then, using the expression of I∗p , C
∗, S∗p + (1− ν)V ∗p given in Equations (26)–(27) and

δp
[
S0
p + (1− ν)V 0

p

]
= Λp(1− πν), (29)

one has

Λp [(1− ν)λ∗ + (1− πν)δp]
[
βvξ(He + C∗) + βeφ(Hp + I∗p )

]
= ξ(δp+µp)χ(λ∗)(Hp+I

∗
p )(He+C

∗)

0 = χ(λ∗)φξ(δp + µp)I
∗
p

2

+ [χ(λ∗)(δp + µp)ξ(Hpφ+Heξ)− Λp [βvφξ + βeφξ] [(1− ν)λ∗ + (1− πν)δp]] I
∗
p

+HeHpξ
2χ(λ∗)(δp + µp)− Λp [Heβvξ

2 +Hpβeφξ] [(1− ν)λ∗ + (1− πν)δp] ,

= φξ [(1− ν)Λp]
2 λ∗4 + 2(1− ν)Λ2

pφξδp(1− πν)λ∗3 + φξΛ2
pδ

2
pλ
∗2

+Λpξ(1− ν)χ(λ∗)(δp + µp)(Hpφ+Heξ)λ
∗2 + Λpξδpχ(λ∗)(δp + µp)(Hpφ+Heξ)λ

∗

− [(1− ν)Λp]
2 [βvφξ + βeφξ]λ

∗3 − Λ2
p(1− ν)(1− πν)δp [βvφξ + βeφξ]λ

∗2

−Λ2
p(1− ν)δp [βvφξ + βeφξ]λ

∗2 − Λ2
pδ

2
p(1− πν) [βvφξ + βeφξ]λ

∗

+χ2(λ∗)(δp + µp)
2ξ2HpHe − Λp(1− ν)χ(λ∗)(δp + µp) [Heβvξ

2 +Hpβeφξ]λ
∗

−Λpχ(λ∗)(1− πν)δp(δp + µp) [Heβvξ
2 +Hpβeφξ] .

It can be shown that the nonzero equilibria of model system (3) satisfy the following
equation in term λ∗:

a4(λ∗)4 + a3(λ∗)3 + a2(λ∗)2 + a1λ
∗ + a0 = 0, (30)
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where,

a4 = φξ [(1− ν)Λp]
2 ,

a3 = 2(1− ν)Λ2
pφξδp − [(1− ν)Λp]

2 [βvφξ + βeφξ] ,
a2 = φξΛ2

pδ
2
p + Λpξ(1− ν)χ(λ∗)(δp + µp)(Hpφ+Heξ)− Λ2

p(1− ν)(1− πν)δp [βvφξ + βeφξ]
−Λ2

p(1− ν)δp [βvφξ + βeφξ] +HpHeξ
2(1− ν)χ(λ∗)(δp + µp)

2,

a1 = Λpξδpχ(λ∗)(δp + µp)(Hpφ+Heξ)− Λ2
pδ

2
p(1− πν) [βvφξ + βeφξ]

−Λp(1− ν)χ(λ∗)(δp + µp) [Heβvξ
2 +Hpβeφξ] + χ(λ∗)HpHeδp(2− ν)ξ2(δp + µp)

2,
a0 = χ2(λ∗)(δp + µp)

2ξ2HpHe − Λpχ(λ∗)(1− πν)δp(δp + µp) [Heβvξ
2 +Hpβeφξ]

= HpHeξ
2δ2
pχ(λ∗)(δp + µp)

2 (1−R0) .

Thus, positive endemic vector (S∗p , V
∗
p , I

∗
p , C

∗) are obtained by solving for λ∗ from the equa-
tion (30) and substituting the result (positive values of λ∗) into the expressions of the
variables of model system (3) at the steady state. Clearly, a0 is positive or negative de-
pending whether R0 is less than or greater than unity, respectively. Thus, the number
of possible real roots of the polynomial (30) depends on the signs of a4, a3, a2, a1 and
a0. This can be analysed using the Descarte’s Rule of Signs on the polynomial f(λ∗) =
a4(λ∗)4 + a3(λ∗)3 + a2(λ∗)2 + a1λ

∗ + a0.
We also have in the human system (5)

S∗h = N∗h − E∗h − I∗; I∗h =
Λh

µh
− δh
µh
N∗h ; E∗h =

Λhη2

µhε
− η2δh
µhε

N∗h ; (31)

where
η1 = a+ δh + ε , η2 = γ + δh + µh.

N∗h is given by

N∗h =
Λh [α∗1(α2 + α3) + α2(a+ ε+ δh)]

α∗1(1 + α2δh + α3δh) + α2δh(a+ ε+ δh)
, (32)

where

α∗1 = (1− cq)
[

τpI
∗
p

Hph + I∗p
+

τeC
∗

Heh + C∗

]
; α2 =

η2

µh
; α3 =

η2

µhε
. (33)

Notice that it is not difficult to show that N∗h ≤ Λh/δh. Thus, the existence of a positive
endemic vector (S∗h, E

∗
h, I
∗
h).

The various possibilities for the roots of Equation (30) and (32) are summarized in the
following lemma.

Lemma 1 Model system (3) could have:

(i) a unique endemic equilibrium if R0 > 1,

(ii) one or more than one endemic equilibrium if R0 > 1,

(iii) more endemic equilibria if R0 < 1,

(iv) no endemic equilibria if R0 < 1.
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The proof of case (i) of Lemma 1 is straightforward and evident. Case (iii) of Lemma 1
indicates the possibility of a backward bifurcation in model system (3) (where the locally
asymptotically stable DFE co-exists with a locally asymptotically stable endemic equilib-
rium when R0 < 1).

Lemma 1 and Theorem 2 establish that R0 = 1 is a bifurcation parameter. In fact,
across R0 = 1 the disease-free equilibrium, Q0 changes its stability property from local
stability to unstable (see Theorem 2). In the next result, the Centre Manifold Theory as
described by [50, Theorem 4.1] is used to investigate the appearance of the transcritical
bifurcation atR0 = 1 where the stable disease-free equilibrium Q0 becomes unstable when
R0 crosses 1 from below and gives rise to the stable endemic equilibrium Q∗. We have the
following Theorem.

Theorem 4 The ODE system (3) has a transcritical forward bifurcation at R0 = 1.

The Proof is stated in Appendix B.

Remark 1 The application of [50, Theorem 4.1] to prove Theorem 4, also establish the local
asymptotic stability of Q∗, but this result applies only for small values of R0 > 1.

3.4. Impact of the poultry vaccination

Herein, we study the effect of the vaccination on model system (3). To do so, let us
consider the control technique of constant vaccination of susceptible poultry. Suppose that
at time t = 0, a proportion π of susceptible poultry is vaccinated with an imperfect vaccine.
The basic reproduction number of model system (3) without vaccination (i.e. π = 0) is

Rpp
0 =

Λp(βvHeξ + βeHpφ)

HeHpδpξ(δp + µp)
. (34)

With this mind, one has
R0 = (1− πν)Rpp

0 . (35)

Observe that R0 ≤ Rpp
0 . The constraint R0 ≤ 1 defines implicitly a critical vaccination

proportion π > πc that must achieved for disease eradication:

πc =
1

ν

[
1− 1

Rpp
0

]
, (36)

Since vaccination entails costs, to choose the smallest coverage that achieves eradication
would be the best option. In this way, the entire population does not need to be vaccinated
in order to eradicate the disease (this is the herd immunity phenomenon). Vaccinating
at the critical level πc does not instantly lead to disease eradication. Thus, from a public
health perspective, πc acts as a lower bound on what should be achieved, with higher
levels of vaccination leading to a more rapid elimination of the disease. However, a critical
vaccination portion π > πc is necessary but not sufficient. Thus, to better control the
infection, the sufficiently for the eradication of the disease within the community. Note
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that the constraint R0 ≤ 1 defines also implicitly a critical vaccine efficacy ν > νc that
must be achieved for eradication of the infection:

νc =
1

π

[
1− 1

Rpp
0

]
, (37)

It is practically difficult to find the critical value of the vaccine efficacy νc in an heteroge-
neous population because it may depend on the conditions of manufacturing and conser-
vation of the vaccine as well as the immune depressive status of every vaccinated individus
in the host population. Also, a high efficacy vaccine leads to a lower vaccination coverage
to eradicate the disease.

4. Sensitivity analysis

4.1. Local sensitivity analysis of R0

The local sensitivity analysis is based on the normalized sensitivity index of R0. The nor-
malized forward sensitivity index of a variable to a parameter is the number of the relative
change in the variable to the relative change in the parameter. Since the basic reproduction
number is a differentiable function of the parameters, the sensitivity index may alterna-
tively be defined using partial derivatives [43]. To this aim, denoting by Φ the generic
parameter of system (2), we evaluate the normalized sensitivity index

SΦ =
Φ

R0

∂R0

∂Φ
,

which indicates how sensitive R0 is to a change of parameter Φ. A positive (resp. nega-
tive) index indicates that an increase in the parameter value results in an increase (resp.
decrease) in the R0 value.
Considering the parameter values in Table 7, we tabulate the indexes of the remaining
parameters in Table 2.

From Table 2, we can observe that the parameters βv, βe, Λp and φ respectively have a
positive influence in the value of R0. This means that the increase or the decrease of these
parameters, will increase or decrease R0. The indexes for parameters ξ, δp, π, ν, µp, Hp and
He, show that increasing their values, will decrease the value of R0. From these analyses,
it is worth remakable that a higher vaccine efficacy ν and the higher prevalence rate π
decreases R0. Using the parameter values in Table 7, the numerical results displayed in
Figure 2 illustrate the role of ν and π on the basic reproduction number R0, from which
we observe that R0 decreases whenever the parameters ν and π increases. This suggests
that, an optimal control measure could be the combination of the rate of vaccine efficacy
and prevalence rate.

4.2. Sensitivity analysis of model’s parameters

We carry out sensitivity analysis to ascertain the uncertainty of the parameters to the model
output. This is vital since it enables us to identify critical output parameters. Sensitivity
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Figure 2: The basic reproduction number R0 plotted as function of the vaccine efficacy of
poultry ν and Prevalence rate π.

and uncertainty analysis are performed using the Latin hypercube sampling scheme, a
Monte Carlo stratified sampling method that allows to obtain an unbiased estimate of the
model output for a given set of input parameter value. The parameter space is simultane-
ously sampled is used to compute unbiased estimate of output values for state variables
[54, 55]. We use predefined variation of the model parameters at 10% and 50% relative
to the referential values. Using algorithm from [54, 55], we compute the PRCC of param-
eters against model’s variables Sp, Vp, Ip, C, Sh, Eh and Ih. We use a sample of size 1000 to
identify relationship between parameters and output variables. A positive (negative) cor-
relation coefficient corresponds to an increasing (decreasing) monotonic trend between
the model’s variable and the parameter under consideration.

Note that one parameter in table 4 and 5 is said "significantly correlate to one state
variable" if absolute value of PRCC is more than 0.5 and p-value less than 0.001

Table 6 present the eight most influential parameters of model system (3). According
to the result obtained in table 6, the parameters Λp, π, δp, βe, φ, ξ,He and µp should sig-
nificantly affect the output. Thus, the sensitivity analysis results suggest that an effective
control strategy would be the implementation of mass vaccination program of the poultry
population on the risks of contact transmission.
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5. Analysis of model with personal protection only

The model is given by

dSp
dt

= Λp − (δp + λ)Sp,

dIp
dt

= Spλ− (δp + µp)Ip,

dSh
dt

= Λh + aEh + γIh − (1− cq)τp
ShIp

Hph + Ip
− (1− cq)τe

ShC

Heh + C
− δhSh,

dEh
dt

= (1− cq)τp
ShIp

Hph + Ip
+ (1− cq)τe

ShC

Heh + C
− (a+ δh + ε)Eh,

dIh
dt

= εEh − (γ + µh + δh)Ih,

dC

dt
= φIp − ξC.

(38)

where λ is the infection force defined in Equation (2).

5.1. The disease-free equilibrium and its stability

The disease-free equilibrium is E0
pp = (Λp

δp
, 0, Λh

δh
, 0, 0, 0). Following Van Den Driessche and

Watmough[36], the basic reproduction number of model system (38) is

Rpp
0 =

Λp(βvHeξ + βeHpφ)

HeHpδpξ(δp + µp)
.

The relevance of the reproduction number is due to the following result established from
[36, Theorem 2].

Theorem 5 The DFE E0
pp is locally asymptotically stable in Ω if Rpp

0 < 1 and unstable if
Rpp

0 > 1.

Herein, we establish the global stability of the equilibria for the continuous system (38).
This is achieved by constructing Lyapunov functions. Then, we have the following results
about the global stability.

Theorem 6 The disease-free equilibrium of model system (38) is globally asymptotically sta-
ble (GAS) in Ω if Rpp

0 ≤ 1.

For the proof of Theorem 6, see Appendix C.

5.2. Endemic equilibrium and its stability

The endemic equilibrium of avian-human personal protection isE∗pp = (S∗pp, I
∗
pp, S

∗
h, E

∗
h, I
∗
h, C

∗).
We have

S∗pp =
Λp

δp
− I∗pp; C∗ =

φ

ξ
I∗pp, (39)
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and I∗pp must satisfy the following equation:

b2I
∗
pp

2 + b1I
∗
pp + b0 = 0, (40)

where

b2 = −φ(δp + µp)

ξ
(δp + βv + βe),

b1 =
φΛp

ξ
(βv + βe)− (δp + µp)

[
Heβv +

βeHpφ

ξ
+
Hpδpφ

ξ
+Heδp

]
,

b0 =
Λp(βvξHe + βeφHp)

ξ
− δp(δp + µp)HeHp = HpHeδp(δp + µp) (Rpp

0 − 1) .

Equation (40) has a unique positive solution if Rpp
0 > 1 and no positive solution when-

ever Rpp
0 ≤ 1. Substituting this solution by its value in (33), we have the positivity and

uniqueness of (32). These investigations are summarized in the following result.

Lemma 2 The model (38) has:

1. a unique endemic equilibrium whenever Rpp
0 > 1;

2. no endemic equilibrium whenever Rpp
0 ≤ 1.

Now, we investigate the stability of the unique endemic equilibrium E∗pp when Rpp
0 > 1. To

do this, we use the method based on Volterra-Lyapunov stable matrices. We have obtained
the following result.

Theorem 7 The positive endemic equilibrium E∗pp of model (38) is globally asymptotically
stable when Rpp

0 > 1.

The proof of Theorem 7 is given in Appendix D.

5.3. Impact of personal protection

Personal protection is applied in the event of a pandemic (when Rpp
0 ≥ 1). Even through

(1− cq)Λhτp
Hphδh(δp + µp)

+
(1− cq)Λhτeφ

Hehδhξ(δp + µp)
is not the basic reproduction number Rpp

0 , we let Rpp =

(1− cq)Λhτp
Hphδh(δp + µp)

+
(1− cq)Λhτeφ

Hehδhξ(δp + µp)
, to examine the effect of c and q on the disease in the

human population. To do so, we find the minimum values of τp and τe by using the fact
that Rpp > 1.

Rpp > 1⇔ (1− cq)Λhτp
Hphδh(δp + µp)

> 1 or
(1− cq)Λhτeφ

Hehδhξ(δp + µp)
> 1.

Let

τ cp =
Hphδh(δp + µp)

Λh

and τ ce =
Hehδhξ(δp + µp)

Λhφ
.

The constraint Rpp > 1 defines implicitly two critical values τp > τ cp/(1 − cq) and τe >
τ ce/(1− cq) that must be achieved for reduce the infection.
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6. Numerical studies

In this section, we present some numerical simulations to investigate the spread of avian
influenza. The parameters are fixed in the table 7.

6.1. General dynamics

Figure 3 is an illustration of Theorem 3, showing the GAS of disease-free equilibrium Q0 of
model system (3) using various initial condition when ξ = 2000 (so that R0 = 0.9888). All
other parameter values are as in table 7. It illustrates that the disease disappears in host
populations when R0 ≤ 1.

Figure 3: Global stability of disease-free equilibrium Q0 (Theorem 3).

Figure 4 shows the stability of the endemic equilibrium Q∗ of model system (3) as
demonstrated in Theorem 4 when ξ = 1700 (so that R0 = 1.1633). All other parameter
values are as in table 7. Although the stability of the endemic equilibrium have been
established analytically in a neighborhood of R0 = 1, numerical simulation show that the
endemic equilibrium is stable over a wide range of values of R0 > 1.

6.2. Effect of vaccination and personal protection

Now, numerical simulations are carried out to investigated the impact of poultry vacci-
nation and the effet of personal protection on the dynamical transmission of AI within a
human community. In all simulations, models systems (3) and (38) was simulated with
the following initial conditions which has been choosen arbitrarily: S0

p = 475960, V 0
p =
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Figure 4: Stability of endemic equilibrium Q∗ (Theorem 4).

244040, I0
p = 10000, S0

h = 58500, E0
h = 1000, I0

h = 1000, and C0 = 110000. Results of numer-
ical simulations are despited in Figure 5, Figure 6 , Figure 7 and Figure 8.

Case 1: Here we numerically investigate the effect of the critical values of π and ν
on the AI dynamical transmission model (3). The time evolution of infected individuals
in an outbreak with 55% of vaccine efficacy (ν = 0.55) (so that πc = 0.3895) for three
different values of proportion of susceptible population vaccinated π : π = 0 (so that
R0 = Rpp

0 = 1.2726), π = 0.3 (so that R0 = 1.0626 and π < πc) and π = 0.5 (so that
R0 = 0.9226 and π > πc) is depicted in Figure 5. All other parameter values are as in
Table 7. It is evident that a large coverage of vaccination may dramatically decrease the
number of infected individuals. This implies that the condition π > πc is necessary but not
sufficient for the eradication of the disease within a community.

Figure 6 presents the time evolution of infected individuals in an outbreak considering
that 30% of the population of susceptible is vaccinated (i.e. π = 0.3) (so that νc = 0.7140)
for three different values of the efficacy level: ν = 0 (so that R0 = Rpp

0 = 1.2726), ν = 0.5
(so that R0 = 1.0817 and ν < νc) and ν = 0.8 (so that R0 = 0.9672 and ν > νc). All other
parameter values are as in Table 7. It illustrates that the production of vaccine with a high
level of efficacy has a preponderant role in the reduction of the disease spread.
Case 2: Figure 7 illustrates this statement. When 90% of the human population engaged
in personal protection, the population of susceptible humans increases while the popu-
lation of infected humans decreases as q increase. Aside from implamentating personal
protection and ensuring its efficacy, it is also important that the strategy is employed by
a huge percentage of population to be able to effectively decrease the number of infected
humans.
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Figure 5: Infected poultry and human for three different values of proportion of susceptible
poultry population vaccinated π when ν = 0.55, ξ = 2100, c = q = 0 (so that πc = 0.3895).
(a) Infected poultry and (b) infected human. All other parameter values are as in Table 7.

Case 3: Figure 8 shows that by employing non-pharmaceutical interventions (personal
protection), we will only be able to reduce the level of endemicity of the disease in the
human population. So the disease cannot be eradicated. On the other hand, a pharma-
ceutical control strategy (vaccination) will make it possible to eradicate the disease even
if this will take place over time. In conclusion, the pharmaceutical control strategy (vac-
cination) is more effective than personal protection in combating the disease. Shortly, the
combination of these two control strategies will be essential if we want to eradicate the
disease in a shorter time.
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Figure 6: Infected poultry and human for three different values of the efficacy level of
vaccine ν when π = 0.3, ξ = 2100, c = q = 0 (so that νc = 0.7140). (a) Infected poultry
and (b) infected human. All other parameter values are as in Table 7.

7. Conclusion

In this paper, we have formulated a mathematical model for the dynamical transmission of
avian influenza A (H7N9) in which the following factors are incorporated: (i) vaccination
against avian influenza A, (ii) waning of vaccination, (iii) efficacy of vaccine and (iv) the
efficiency of personal protection. A qualitative analysis of the model has been presented.

Our main findings on the long-term dynamics of the system can be summarized as
follows:

(1) We computed the disease-free equilibium and derived the basic reproduction number
R0 that determines the outcome of avian influenza A within the community.

(2) We proved that the disease-free equilibrium is globally asymptotically stable when-
ever R0 ≤ 1 on a positively invariant region.

(3) We showed that the model has a unique endemic equilibrium when R0 > 1. We also
established the local asymptotic stability of this unique endemic equilibrium when
R0 > 1 but close to 1 and the global asymptotic stability of the endemic equilibrium
when R0 > 1. A way of distributing the vaccines to poultry against avian influenza
A or employing personal protection as well as their features and some of cover-
age thresholds were introduced in oder to study the effect of the vaccine coverage,
vaccine efficacy and the efficiency of personal protection. The main goal of a vacci-
nation program and employment of personal protection is to reduce the prevalence
of the disease and ultimately to eradicate it. It was shown that short-term eradica-
tion succes depends on the type of vaccine as well as on the vaccination coverage,
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Figure 7: State trajectories of human personal protection model. When ξ = 2500 and all
other parameter values are as in Table 7.

percentage of human population employing personal protection and the efficiency of
the personal protection.

(4) The sensitivity analysis of the threshold number R0 and of the model has been in-
vestigated. We found that for the threshold number R0, an effective control strategy
would be the implementation of mass vaccination program in the poultry population
for the risks of contact transmission of avian influenza to human population. How-
ever, we found that the model variables are most sensitives to the prevalence rate of
the vaccination program, indirect transmission rate in poultry, natural death rate of
poultry, avian influenza induced mortality to poultry, emission rate of virus by poul-
try and degradation rate of virus. Therefore, in an epidemic situation, it is urgent
to sensibilize human population about the risks of transmission of avian influenza A
through contact with poultry or poultry environment and to take on charge vaccina-
tion program (poultry vaccination) and barrier measures for the human population
(personal protection).

(5) Numerical results have been presented to illustrate and validate theoritical results.
Through numerical simulations, we found that the best way to control the transmis-
sion or to fight an avian influenza outbreak is to combine a non-medicinal (personal
protection) and medicinal (vaccination) control strategies.
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Figure 8: Comparison between the suggested control strategies.

A. Proof of the condition α(A2) ≤ 0⇔ R0 ≤ 1.

Herein, we show that the condition α(A2) ≤ 0 is equivalent to R0 ≤ 1. To check condition
H5 of Theorem from Kamgang and Sallet [59], we will use the following Lemma:

Lemma 3 Let M be a square Metzler matrix written in block form M =

[
A B
C D

]
. where

A and D are square matrices. Then the matrix M is Metzler stable if and only if matrices A
and D − CA−1B are Metzler stable.

The matrix A2 can be expressed in the form of the matrix M with

A =


βv
[
S0
p + (1− ν)V 0

p

]
Hp

− (δp + µp) 0

(1− cq)τp
Hph

S0
h −(a+ ε+ δh)

 ,B =

 0
βe
[
S0
p + (1− ν)V 0

p

]
He

0
(1− cq)τe

Heh

S0
h

 ,
C =

[
0 ε
φ 0

]
and D =

[
−(γ + µh + δh) 0

0 −ξ

]
.

The matrix A is Metzler stable if and only if R0 ≤ 1. Indeed

βv
[
S0
p + (1− ν)V 0

p

]
Hp

− (δp + µp) = (δp + µp)(R0 − 1)− βeφ

Heξ

[
S0
p + (1− ν)V 0

p

]
.

A simple calculation yields

D − CA−1B =

 −(γ + δh + µh) −
βeξ

He

[
S0
p + (1− ν)V 0

p

]
a21 −

ε(1− cq)τe
Heh

S0
ha22

0 −ξ − βeφ

He

[
S0
p + (1− ν)V 0

p

]
a11

 ,
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where

a11 = −(a+ ε+ δh)

detA
, a21 = −(1− cq)τpS0

h

Hph detA
, a22 =

βv
[
S0
p + (1− ν)V 0

p

]
−Hp(δp + µp)

Hp detA
,

detA = −
βv(a+ ε+ δh)

[
S0
p + (1− ν)V 0

p

]
Hp

+ (a+ ε+ δh)(δp + µp).

The matrix D − CA−1B is Metzler stable if and only if

ξ −

βeφ
[
S0
p + (1− ν)V 0

p

]
He

(δp + µp)−
βv
[
S0
p + (1− ν)V 0

p

]
Hp

≥ 0.

That is,

βeφ
[
S0
p + (1− ν)V 0

p

]
He

≤ ξ(δp + µp)−
βvξ

[
S0
p + (1− ν)V 0

p

]
Hp

⇔ R0 ≤ 1.

B. Proof of Theorem 4

Proof. To apply this theory, we first rename the state variables. Let z1 = Sp, z2 = Vp, z3 =
Ip, z4 = Sh, z5 = Eh, z6 = Ih and z7 = C so that Np = z1 +z2 +z3, Nh = z4 +z5 +z6. Further,
by using the vector notation z = (z1, z2, z3, z4, z5, z6, z7)T , the Avian influenza model (3)
can be written in the form ż = f(z), with f = (f1, f2, f3, f4, f5, f6, f7)T as follows:

ż1 = f1 = (1− π)Λp − [λ+ δp] z1,
ż2 = f2 = πΛp − [(1− ν)λ+ δp] z2,
ẋ3 = f3 = λ [z1 + (1− ν)z2]− (δp + µp)z3,

ẋ4 = f4 = Λh + az5 + γz6 − (1− cq)τp
z4z3

Hph + z3

− (1− cq)τe
z4z7

Heh + z7

− δhz4,

ẋ5 = f5 = (1− cq)τp
z4z3

Hph + z3

+ (1− cq)τe
z4z7

Heh + z7

− (a+ δp + ε)z5,

ẋ6 = f6 = εz5 − (γ + µp + δp)z6,
ẋ7 = f7 = φz3 − ξz7.

(41)

System (41) has a DFE given by Q0 = (S0
p , V

0
p , 0, S

0
h, 0, 0, 0). The Jacobian of system (41) at

the DFE, is the same as for the one in proof of Theorem 2. The basic reproduction number
of the transformed (linearized) model system (41) is the same as that of the original model
(3).
Let σe > 0 be the non-negative real numbers such that βe = σeβv , then the basic repro-
duction number R0 becomes

R0 =
βeHeξ + βeφHpσe
HeHpσeξ(δp + µp)

[
S0
p + (1− ν)V 0

p

]
.
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Therefore, choosing βe as a bifurcation parameter, by solving for βe when R0 = 1, we
obtain:

βe = β∗e =
HeHpσeξ(δp + µp)

(Heξ + φHpσe)
[
S0
p + (1− ν)V 0

p

] .
It follows that the Jacobian (J |Q0) of system (41) at the DFE Q0, with βe = β∗e , denoted by
J |β∗e has a simple zero eigenvalue (with all other eigenvalues having negative real parts).
Hence, the Centre Manifold theory [50] can be used to analyze the dynamics of system
(41). In particular, [50, Theorem 4.1], will be used to show that, when R0 > 1, there
exists a unique endemic equilibrium of system (41) (as shown in Lemma 1) which is
locally asymptotically stable for R0 near 1, under certain conditions. In order to apply the
above theorem, the following computations are necessary (it should be noted that we are
using β∗e as the bifurcation parameter, in place of φ [50, Theorem 4.1]).

Eigenvectors of J |β∗e : The right eigenvector corresponding to the zero eigenvalue is:

u = (u1, u2, u3, u4, u5, u6, u7)T .

By solving the system

−δpu1 −
β∗e
Hpσe

S0
pu3 −

β∗e
He

S0
pu7 = 0,

−δpu2 −
(1− ν)β∗e
Hpσe

V 0
p u3 −

(1− ν)β∗e
He

V 0
p u7 = 0,[

β∗e
Hpσe

[
S0
p + (1− ν)V 0

p

]
− (δp + µp)

]
u3 +

β∗e
He

[
S0
p + (1− ν)V 0

p

]
u7 = 0,

−(1− cq)τpS0
h

Hph

u3 − δhu4 + au5 + γu6 −
(1− cq)τeS0

h

Heh

u7 = 0,

(1− cq)τpS0
h

Hph

u3 − (a+ ε+ δh)u5 +
(1− cq)τeS0

h

Heh

u7 = 0,

εu5 − (γ + δh + µh)u6 = 0,
φu3 − ξu7 = 0,

yields

u7 =
φ

ξ
u3 , u3 = u3 > 0 , u4 = −(1− cq)S0

h

δh

[
τp
Hph

+
τeφ

Hehξ

]
+

[
a

δh
+

γε

δh(γ + δh + µh)

]
u5,

u5 =
(1− cq)S0

h

a+ ε+ δh

[
τp
Hph

+
τeφ

Hehξ

]
u3 , u6 =

ε(1− cq)S0
h

(a+ ε+ δh)(γ + δh + µh)

[
τp
Hph

+
τeφ

Hehξ

]
u3,

u1 = −
(1− ν)β∗eV

0
p

δp

[
1

Hpσe
+

φ

Heξ

]
u3, u2 = −

β∗eS
0
p

δp

[
1

Hpσe
+

φ

Heξ

]
u3.

Similarly, the components of the left eigenvectors (corresponding to the zero eigenvalue),
denoted by

v = (v1, v2, v3, v4, v5, v6, v7),
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is obtained by solving the system

[
β∗e
Hpσe

[
S0
p + (1− ν)V 0

p

]
− (δp + µp)

]
v3 +

(1− cq)τpS0
h

Hph

v5 + φv7 = 0,

v1 = v2 = v4 = 0,
−(a+ ε+ δh)v5 + εv6 = 0,
−(γ + δh + µh)v6 = 0,
β∗e
He

[
S0
p + (1− ν)V 0

p

]
v3 +

(1− cq)τeS0
h

Heh

v5 − ξv7 = 0.

.

Hence,

v1 = 0 , v3 =
Heξ

β∗e
[
S0
p + (1− ν)V 0

p

]v7 , v4 = 0 , v5 = 0 , v6 = 0 , v7 = v7 > 0.

Computation of a: For system (41), the corresponding non-zero partial derivatives of
fi (i = 1, 2, 3, 4, 5, 6, 7) calculated at the disease free equilibrium are given by:

∂2f3

∂x2
3

= −2
β∗e
H2
pσ

[
S0
p + (1− ν)V 0

p

]
,
∂2f3

∂x2
7

= −2
β∗e
H2
e

[
S0
p + (1− ν)V 0

p

]
,

∂2f3

∂x1∂x3

=
β∗e
Hpσ

,
∂2f3

∂x1∂x7

=
β∗e
He

,
∂2f3

∂x2∂x3

=
(1− ν)β∗e
Hpσ

,
∂2f3

∂x2∂x7

=
(1− ν)β∗e

He

.

Consequently, we calculate the associated bifurcation coefficient a

a =
∑7

k,i,j=1 vkuiuj
∂2fk
∂xi∂xj

(Q0),

= v3

(
u2

3

∂2f3

∂x2
3

+ u2
7

∂2f3

∂x2
7

+ 2u1u3
∂2f3

∂x1∂x3

+ 2u1u7
∂2f3

∂x1∂x7

+ 2u1u3
∂2f3

∂x2∂x3

+ 2u1u7
∂2f3

∂x2∂x7

)
< 0.

Computation of b: For system (41), the corresponding non-zero partial derivatives of
fi, (i = 1, 2, 3, 4, 5, 6, 7) calculated at the disease free equilibrium are given by:

∂2f3

∂x3∂β∗e
=

1

Hpσe

[
S0
p + (1− ν)V 0

p

]
and

∂2f3

∂x7∂β∗e
=

1

He

[
S0
p + (1− ν)V 0

p

]
.

We compute the associated bifurcation coefficient b

b =
∑7

k,i=1 vkui
∂2fk
∂xi∂β∗e

(Q0),

=
Heξ

β∗e
[
S0
p + (1− ν)V 0

p

] [ 1

Hpσe

[
S0
p + (1− ν)V 0

p

]
+

φ

Heξ

[
S0
p + (1− ν)V 0

p

]]
v7u3,

=
Heξ

β∗e

[
1

Hpσe
+

φ

Heξ

]
v7u3 > 0.

Thus, the bifurcation coefficient a is always negative. Furthermore, the bifurcation coeffi-
cient b is always positive. Hence, it follows from [50, Theorem 4.1], that model (41) does
undergo the transcritical forward bifurcation at R0 = 1.
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C. Proof of Theorem 6

Proof. We use the Lyapunov function approach. Define

L(Sp, Ip, Sh, Eh, Ih, C) =

[
1

δp + µp
+

φ

ξ(δp + µp)

]
Ip(t) +

1

ξ
C(t).

Then,

dL

dt
=

[
1

δp + µp
+

φ

ξ(δp + µp)

]
dIp
dt

+
1

ξ

dC

dt
,

=

[
1

δp + µp
+

φ

ξ(δp + µp)

] [
βvSpIp
Hp + Ip

+
βeSpC

He + C
− (δp + µp)Ip

]
+

1

ξ
(φIp − ξC),

=

[
1

δp + µp
+

φ

ξ(δp + µp)

] [
βvSpIp
Hp + Ip

+
βeSpC

He + C

]
− Ip − C,

=

[
Rpp

0 Hp

βvS0
p

+
Rpp

0 He

βeS0
p

− βeφHp

Heξβv(δp + µp)
− Heβv
βeHp(δp + µp)

] [
βvSpIp
Hp + Ip

+
βeSpC

He + C

]
− Ip − C.

Direct calculations lead to

dL

dt
≤

[
Rpp

0 Hp

βvS0
p

+
Rpp

0 He

βeS0
p

− βeφHp

Heξβv(δp + µp)
− Heβv
βeHp(δp + µp)

] [
βvSpIp
Hp + Ip

+
βeSpC

He + C

]
+

βeφS
0
pIp

Heξ(δp + µp)
+

Heβ
2
vS

0
pIp

H2
pβe(δp + µp)

+
β2
eφHpS

0
pC

H2
e ξβv(δp + µp)

+
βvS

0
pC

Hp(δp + µp)
− HeβvRpp

0 Ip
Hpβe

−HpβeRpp
0 C

Heβv
− Ip − C −Rpp

0 Ip +Rpp
0 Ip −R

pp
0 C +Rpp

0 C,

≤ (Rpp
0 − 1)(Ip + C)− R

pp
0 HpIp
S0
p

[
S0
p

Hp

− Sp
Hp + Ip

]
− HeRpp

0 βvIp
βeS0

p

[
S0
p

Hp

− Sp
Hp + Ip

]
+

βeφHpIp
Heξ(δp + µp)

[
S0
p

Hp

− Sp
Hp + Ip

]
+

Heβ
2
vIp

Hpβe(δp + µp)

[
S0
p

Hp

− Sp
Hp + Ip

]
−HpβeRpp

0 C

βvS0
p

[
S0
p

He

− Sp
He + C

]
− HeRpp

0 C

S0
p

[
S0
p

He

− Sp
He + C

]
+

β2
eφHpC

Heξβv(δp + µp)

[
S0
p

He

− Sp
He + C

]
+

Heβv
Hp(δp + µp)

[
S0
p

He

− Sp
He + C

]
.

Finally,
dL

dt
≤ (Rpp

0 − 1)(Ip + C)−
(ξ + φ)(S0

p − Sp)
ξ(δp + µp)

[
βvIp
Hp

+
βeC

He

]
.

Since Sp ≤ S0
p , we have

dL

dt
≤ 0, whenever Rpp

0 ≤ 1.

Moreover,
dL

dt
= 0,⇔ Ip = C = 0 or Sp = S0

p and Rpp
0 = 1.

Thus, the largest invariant setH such thatH ⊂
{

(Sp, Ip, Sh, Eh, Ih, C) ∈ R6
+/dL/dt = 0

}
is {E0

pp} because inH one has limt→+∞ Ip(t) = limt→+∞C(t) = 0. In system (38), we obtain
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limt→+∞ Sp(t) = S0
p , limt→+∞ Sh(t) = S0

h, limt→+∞Eh(t) = limt→+∞ Ih(t) = 0. By LaSalle’s
Invariance Principle [37], {E0

pp} is globally asymptotically stable. The proof is complete.

D. Proof of Theorem 7

Proof. As for the proof of the GAS of the endemic equilibrium E∗pp, one should notice that,
since the poultry sub-model is independent of the human population variables (Sh, Eh, Ih),
system (38) takes the triangular form

dx

dt
= f(x), x = (Sp, Ip, C),

dy

dt
= g(x, y), y = (Sh, Eh, Ih).

(42)

In order to deal with the global asymptotic stability of the unique endemic equilibrium
stated in Theorem 11, the following three results are instrumental.

Theorem 8 (Vidyagasar [46])
Consider a C1 class system with an equilibrium point (x∗; y∗).

dx

dt
= f(x),

dy

dt
= g(x, y), x ∈ Rn, y ∈ Rm,

f(x∗) = 0, g(x∗, y∗) = 0.

(43)

If x∗ is GAS in Rn for system dx/dt = f(x), and if y∗ is GAS in Rm, for system dy/dt =
g(x∗; y), then equilibrium point (x∗; y∗) is (locally) asymptotically stable for system (43).
Moreover, if all the trajectories of (43) are positively bounded , then (x∗; y∗) is GAS for (43).

Theorem 9 Let H be a 2 × 2 matrix [44, 45]. Then

H =

[
a11 a12

a21 a22

]
,

is Volterra-Lyapunov stable if and only if a11 < 0, a22 < 0, and a11a22 − a12a21 > 0.

Theorem 10 Let H be a non-singular n × n matrix, where n ≥ 2, with inverse H−1 = K
and W a positive diagonal n × n matrix [35]. Let H∗, K∗, and W ∗ denote the (n− 1)× (n−
1) matrices obtained from H,K, and W , respectively, by deleting the last row and the last
column. Then

(i) if WH + (WH)T > 0, we must have ann > 0, W ∗H∗ + (W ∗H∗)T > 0, and W ∗K∗ +
(W ∗K∗)T > 0;

ENTERPRISE, RESEARCH AND DEVELOPMENT FORUM (EREDEF-2020) 31



(ii) if ann > 0,W ∗H∗ + (W ∗H∗)T > 0, and W ∗K∗ + (W ∗K∗)T > 0, it is possible to choose
wn > 0 such that WH + (WH)T > 0.

Following, Theorem 8, we first study the GAS of the endemic equilibrium x∗ of the poultry
system:

dx

dt
= f(x) ≡



dSp
dt

= Λp − βvSp
Ip

Hp + Ip
− βeSp

C

He + C
− δpSp,

dIp
dt

= βvSp
Ip

Hp + Ip
+ βeSp

C

He + C
− (δp + µp)Ip,

dC

dt
= φIp − ξC.

(44)

Now, we claim the following result.

Theorem 11 The unique positive endemic equilibrium point x∗ = (S∗pp, I
∗
pp, C

∗) of the system
(44) is globally asymptotically stable if Rpp

0 > 1.

Consider the following domain as a result of a nondimensionalized system (44)

Ω1 =

{
(Sp, Ip, C) ∈ R3

+/0 < Sp + Ip ≤
Λp

δp
, C ≤ φΛp

δpξ

}
.

Next, construct the Lyapunov function

V = ω1(Sp − S∗pp)2 + ω2(Ip − I∗pp)2 + ω3(C − C∗)2, (45)

with ω1 > 0, ω2 > 0 and ω3 > 0. Note that for the endemic equilibrium x∗ , we have the
following three equations for the nondimensionalized system:

Λp − βvS∗pp
I∗pp

Hp + I∗pp
− βeS∗pp

C∗

He + C∗
− δpS∗pp = 0, (46a)

βvS
∗
pp

I∗pp
Hp + I∗pp

+ βeS
∗
pp

C∗

He + C∗
− (δp + µp)I

∗
pp = 0, (46b)

φI∗pp − ξC∗ = 0. (46c)

Using (46a)-(46c), we obtain

dV

dt
= 2ω1(Sp − S∗pp)

[
− βvSpIp
Hp + Ip

− βeSpC

He + C
− δpSp +

βvS
∗
ppI
∗
pp

Hp + I∗pp
+
βeS

∗
ppC

∗

He + C∗
+ δpS

∗
pp

]
+2ω2(Ip − I∗pp)

[
βvSpIp
Hp + Ip

+
βeSpC

He + C
− (δp + µp)Ip −

βvS
∗
ppI
∗
pp

Hp + I∗pp
−
βeS

∗
ppC

∗

He + C∗
+ (δp + µp)I

∗
pp

]
+2ω3(C − C∗)

[
φIp − ξC − φI∗pp + ξC∗

]
.
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The gatherings of some terms give

dV

dt
= −2ω1

(
βvIp

Hp + Ip
+

βeSpC

He + C
+ δp

)
(Sp − S∗pp)2

−2ω1

βvS
∗
pp

(Hp + Ip)(Hp + I∗pp)
(Sp − S∗pp)(Ip − I∗pp)

−2ω1

HeβeS
∗
pp

(He + C)(He + C∗)
(Sp − S∗pp)(C − C∗)

+2ω2

(
βvHpS

∗
pp

(Hp + Ip)(Hp + I∗pp)
− (δp + µp)

)
(Ip − I∗pp)2

+2ω2

(
βv

Ip
Hp + Ip

+ βe
C

He + C

)
(Ip − I∗pp)(Sp − S∗pp)

+2ω2

HeβeS
∗
pp

(He + C)(He + C∗)
(Ip − I∗pp)(C − C∗)

+2ω3φ(C − C∗)(Ip − I∗pp)− 2ω3ξ(C − C∗)2,

= U(WH +HTW )UT ,

where U = [Sp − S∗pp, Ip − I∗pp, C − C∗] , W = diag(ω1, ω2, ω3) and

H =


− βvIp
Hp + Ip

− βeC

He + C
− δp −

βvHpS
∗
pp

(Hp + Ip)(Hp + I∗pp)
−

HeβeS
∗
pp

(He + C)(He + C∗)
βvIp

Hp + Ip
+

βeC

He + C

βvHpS
∗
pp

(Hp + Ip)(Hp + I∗pp)
− (δp + µp)

HeβeS
∗
pp

(He + C)(He + C∗)
0 φ −ξ

 .
(47)

The global asymptotic stability of x∗ will be established if we can show that the matrix
H defined in (47) is Volterra-Lyapunov stable [35]; that is, a positive diagonal matrix W
exists such that WH +HTW is negative definite.
From (47), one can see that H is non-singular because

detH =
δpHeβeφS

∗
pp

(He + C)(He + C∗)
+

δpβvξδpS
∗
pp

(Hp + Ip)(Hp + I∗pp)

−ξ(δp + µp)

(
βv

Ip
Hp + Ip

+ βe
C

He + C
+ δp

)
,

= −
δpβeφS

∗
ppC

(He + C∗)(He + C)
−

δpβvξS
∗
ppIp

(Hp + Ip)(Hp + I∗pp)

−
(
βvξS

∗
pp

Hp + I∗pp
+

βeφS
∗
pp

He + C∗

)(
βvIp

Hp + Ip
+

βeC

He + C

)
< 0.
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Moreover,

H−1 =
1

detH



h11 h12 −
(δp + µp)HeβeS

∗
pp

(He + C∗)(He + C)

h21 h22 −
δpHeβeS

∗
pp

(He + C∗)(He + C)

βvφIp
Hp + Ip

+
βeφC

He + C
δpφ+

βvφIp
Hp + Ip

+
βeφC

He + C
h33


,

where,

h11 = ξ(δp + µp)−
βvξS

∗
pp

(Hp + Ip)(Hp + I∗pp)
−

HeβeφS
∗
pp

(He + C∗)(He + C)
,

h12 = −
βvHpξS

∗
pp

(Hp + Ip)(Hp + I∗pp)
−

HeβeφS
∗
pp

(He + C∗)(He + C)
,

h21 =
βvξIp
Hp + Ip

+
βeξC

He + C
,

h22 = δpξ +
βvξIp
Hp + Ip

+
βeξC

He + C
,

h33 = (δp + µp)

(
βvξIp
Hp + Ip

+
βeC

He + C

)
+ δp(δp + µp)−

δpβvHpS
∗
pp

(Hp + Ip)(Hp + I∗pp)
.

Using the fact that detH < 0, and the relations that link the endemic equilibrium com-
ponent, one can readily verify the hypotheses of Theorem 9 for the matrix (H−1)∗ and
conclude that it is Volterra-Lyapunov stable. Hence, a 2 × 2 positive diagonal matrix
W ∗ = diag(ω1, ω2) exists such that W ∗(H−1)∗ + (W ∗(H−1)∗)T < 0. Setting O = (−H)−1,
we have W ∗O∗ + (W ∗O∗)T > 0. After lenghty but direct calculations, we obtain

(− detH)[W ∗O∗ + (W ∗O∗)T ] =

[
a11 a12

a12 a22

]
,

with
a11 = 2ω1h11, a12 = ω2h21 − ω1h12, a22 = 2ω2h22.

On the other hand,

W ∗(−H)∗ + (W ∗(−H)∗)T =

[
b11 b12

b12 b22

]
, with
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b11 = 2ω1

(
δp +

βvIp
Hp + Ip

+
βeC

He + C

)
,

b12 = ω1

βvHpS
∗
pp

(Hp + Ip)(Hp + I∗pp)
− ω2

(
βvIp

Hp + Ip
+

βeC

He + C

)
,

b22 = 2ω2

(
δp + µp −

βvHpS
∗
pp

(Hp + Ip)(Hp + I∗pp)

)
.

Next, we prove that W ∗(−H)∗ + (W ∗(−H)∗)T > 0. Indeed, since W ∗O∗ + (W ∗O∗)T is
positive definite and − detH > 0, we have det

{
(− detH)[W ∗O∗ + (W ∗O∗)T ]

}
> 0 and

det

{
(− detH)[W ∗O∗ + (W ∗O∗)T ]

}
= ξ2 det

{
W ∗(−H)∗ + (W ∗(−H)∗)T

}
−4ω1ω2

δpξHeβeφS
∗
pp

(He + C)(He + C∗)
− ω2

1

[
HeβeφS

∗
pp

(He + C)(He + C∗)

]2

−2ω1ω2

HeξβeφS
∗
pp

(He + C)(He + C∗)

[
βvIp

Hp + Ip
+

βeC

He + C

]

−2ω2
1

HpHeβvξβeφS
∗
pp

2

(Hp + Ip)(Hp + I∗pp)(He + C)(He + C∗)
,

Hence, the matrixW ∗(−H)∗+(W ∗(−H)∗)T is positive define. W ∗(−H)∗+(W ∗(−H)∗)T > 0
and W ∗(−H−1)∗+ (W ∗(−H−1)∗)T > 0, then thanks to Theorem 10 (ii), there exists ω3 > 0
such that W (−H)+(W (−H))T > 0; that is, WH+HTW < 0. Thus H is Volterra-Lyapunov
stable. Hence a feasible equilibrium x∗ is globally asymptotically stable in Ω1.

Next, we investigate the dynamics of the human sub-system:

dy

dt
= g(x∗; y) ≡



dSh
dt

= Λh + aEh + γIh − (1− cq)τp
ShI

∗
pp

Hph + I∗pp
− (1− cq)τe

ShC
∗

Heh + C∗
− δhSh,

dEh
dt

= (1− cq)τp
ShI

∗
pp

Hph + I∗pp
+ (1− cq)τe

ShC
∗

Heh + C∗
− (a+ δh + ε)Eh,

dIh
dt

= εEh − (γ + µh + δh)Ih.

(48)

Theorem 12 The unique positive endemic equilibrium point y∗ = (S∗h, E
∗
h, I
∗
h) of the system

(48) is globally asymptotically stable if Rpp
0 > 1.

Proof. We introduce the fractions x = δhSh/Λh, y = δhEh/Λh, z = δhIh/Λh and scale time
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by introducing a new time τ = δht. This gives us the simplified system as:

dx

dτ
= 1 + ay + γz − (1− cq)

[
τ p

I∗pp
Hp + I∗pp

+ τ e
C∗

He + C∗

]
x− x,

dy

dτ
= (1− cq)

[
τ p

I∗pp
Hp + I∗pp

+ τ e
C∗

He + C∗

]
x− (1 + a+ ε)y,

dz

dτ
= εy − (1 + µh + γ)z,

(49)

where
a =

a

δh
, τ p =

τp
δh
, τ e =

τe
δh
, ε =

ε

δh
, µh =

µh
δh
, γ =

γ

δh
, N = x+ y + z.

Here, we have used the fact that

dN

dτ
= 1−N − µhz.

It can be shown that the region

Ω2 =
{

(x, y, z) ∈ R3
+/0 ≤ x+ y + z ≤ 1

}
,

is positively invariant. Now, consider the equivalent system:

dy

dτ
= (1− cq)

[
τ p

I∗pp
Hp + I∗pp

+ τ e
C∗

He + C∗

]
x− (1 + a+ ε)y,

dz

dτ
= εy − (1 + µh + γ)z,

dN

dτ
= 1−N − µhz.

(50)

Denote

Ω3 =
{

(y, z,N) ∈ Ω2/N = 1− µhz
}

=
{

(y, z,N) ∈ Ω2/x+ y + (1 + µh)z = 1
}
.

Then it not difficult to prove that Ω3 is a positively invariant and attracting subset of
Ω2. Next we use the Poincaré-Bendixson techniques to prove that system (48) has no
periodic solution. Let us assume that the system (48) has a periodic solution ψ(τ) =
{x(τ), y(τ), z(τ)}. Let ψ(τ) be the trajectory of periodic solution, and Π be the planar
region of ψ(τ). Let f1(x, y, z), f2(x, y, z) and f3(x, y, z) respectively represent the three
expressions of the right-hand side of the system (49). Set f = (f1, f2, f3)T , g(x, y, z) =
r× f/(xyz), where r = (x, y, x)T . Then g · f = 0, let g = (g1, g2, g3), where

g1 =
f3(x, z)

xz
− f2(x, y)

xy
, g2 =

f1(x, y)

xy
− f3(y, z)

yz
, g3 =

f2(y, z)

yz
− f1(x, z)

xz
.

Then

Curlg =

(
∂g3

∂y
− ∂g2

∂z
,

∂g1

∂z
− ∂g3

∂x
,

∂g2

∂x
− ∂g1

∂y

)
.
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By simple calculations, we have

f1(x, y)

xy
=

1

xy
+
a

x
+
γ(1− x− y)

(1 + µh)xy
−

(1− cq)
[
τ p

I∗pp
Hp + I∗pp

+ τ e
C∗

He + C∗

]
y

− 1

y
,

f1(x, z)

xz
=

1

xz
+
a[1− x− (1 + µh)z]

xz
+
γ

x
−

(1− cq)
[
τ p

I∗pp
Hp + I∗pp

+ τ e
C∗

He + C∗

]
z

− 1

z
,

f2(y, z)

yz
=

(1− cq)
[
τ p

I∗pp
Hp + I∗pp

+ τ e
C∗

He + C∗

]
[1− y − (1 + µh)z]

yz
− 1 + a+ ε

z
,

f2(x, y)

xy
=

(1− cq)
[
τ p

I∗pp
Hp + I∗pp

+ τ e
C∗

He + C∗

]
y

− 1 + a+ ε

x
,

f3(y, z)

yz
=

ε

z
− 1 + γ + µh

y
,

f3(x, z)

xz
=

ε[1− x− (1 + µh)z]

xz
− 1 + γ + µh

x
.

Now, since x+ y + (1 + µh)z = 1, it is clear that −[1− (1 + µh)z] = −(x+ y) < 0, so that

∂g3

∂y
− ∂g2

∂z
= − ε

z2
−

(1− cq)
[
τ p

I∗pp
Hp + I∗pp

+ τ e
C∗

He + C∗

]
[1− (1 + µh)z]

y2z
< 0.

Further, we have

∂g1

∂z
− ∂g3

∂x
= −ε(1− x)

xz2
− 1

x2z
− a[1− (1 + µh)z]

x2z
− γ

x2
,

∂g2

∂x
− ∂g1

∂y
= − 1

x2y
− a

x2
− γ(1− y)

(1 + µh)x
2y
−

(1− cq)
[
τ p

I∗pp
Hp + I∗pp

+ τ e
C∗

He + C∗

]
y2

.

Obviously, the right hand sides in the two expressions above are negative. Taking the unit
normal vector of Ω3

n =
(1, 1, 1 + µh)

T√
µ2
h + 2µh + 3

,

we obtain (Curlg) · n < 0. By the Poincaré-Bendixson theorem, we know that the system
(48) has no periodic solution. Thus, the equilibrium y∗ is GAS in Ω2.

Finally, the combination of Theorem 8, Theorem 11 and Theorem 12 establishes the
GAS of E∗pp
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Table 1: Description of the variables and associated parameters.
Symbols Description

Sp Susceptible poultry
Vp Vacinated poultry
Ip Infected poultry
Sh Susceptible human
Eh Latent human
Ih Infected human
C Concentration of virus
Λp Numbers of imported poultry
βv Direct contact rate in poultry host
βe Indirect contact rate in poultry host
δp Natural death rate of poultry
c Percentage of the population employing personal protection
q Efficiency of personal protection
Hp Half-saturation constant for poultry with AI virus
He Half-saturation constant for aerosol with AI virus
Hph Half-saturation constant for humans with AI virus contracted from infected poultry
Heh Half-saturation constant for humans with AI virus contracted from infected aerosol
Λh Recruitment rate of humans
a Recovery rate of the latent humans
γ Recovery rate of the infected humans
µh Disease-related death rate for humans
τp Rate at which poultry-to-human avian influenza is contracted
ε Morbidity of the latent humans
δh Natural death rate of humans
ξ Degradation rate of virus
τe Rate at which environment-to-human avian influenza is contracted
φ Emission rate of virus by poultry
π Prevalence rate of the vaccination program
ν Vaccine efficacy
µp AI induced poultry mortality

Table 2: Sensitivity indexes for R0.
Parameter Sensitivity index Value Parameter Sensitivity index Value

βv Sβv 8.7605·103 π Sπ -1.2929·1026

βe Sβe 1.1356·1016 ν Sν -1.2929·1026

Λp SΛp 1 µp Sµp -7.9319·1023

φ Sφ 1.1356·1016 Hp SHp -8.7605·103

ξ Sξ -1.1356·1016 He SHe -1.1356·1016

δp Sδp -2.4940·1025
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Table 3: Parameter ranges for PRCC analysis.
Parameters values Range variation at 10% Range variation at 50%

Λp 10000 [9000 – 11000] [5000 – 15000]
Λh 15 [13.5 – 16.5] [7.5 – 22.5]
π 0.40 [0.36 – 0.44] [0.2 – 0.6]
δp 0.01389 [0.0125 – 0.0153] [6.95·10−3 – 0.021]
δh 0.00025641 [2.31·10−4 – 2.82·10−4] [1.28·10−4 – 3.85·10−4]
Hph 120000 [108000 – 132000] [60000 – 180000]
Heh 10000 [9000 – 11000] [5000 – 15000]
ν 0.65 [0.585 – 0.715] [0.325 – 0.975]
βe 0.002 [1.8·10−3 – 2.2·10−3] [0.001 – 0.003]
βv 1.7143·10−6 [1.54·10−6 – 1.89·10−6] [8.57·10−7 – 2.57·10−6]
Hp 180000 [162000 – 198000] [90000 – 270000]
He 106 [9·105 – 11·105] [5·105 – 15·105]
µp 0.04 [0.036 – 0.044] [0.02 – 0.06]
µh 0.001 [9·10−4 – 1.1·10−3] [5·10−4 – 1.5·10−4]
φ 105 [9000 – 11000] [50000 – 150000]
τp 0.6 [0.54 – 0.66] [0.3 – 0.9]
τe 0.1 [0.09 – 0.11] [0.05 – 0.15]
a 1 [0.9 – 1.1] [0.5 – 1.5]
ξ 2000 [1800 – 2200] [1000 – 3000]
γ 0.9 [0.81 – 0.99] [0.45 – 1.35]
ε 1 [0.9 – 1.1] [0.5 – 1.5]

dummy 1 — —
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Table 4: PRCC of model’s parameters (Range variation at 10%).
PRCCs and significance

Parameters Sp Vp Ip C Sh Eh Ih
Λp 0.9568** 0.9571** 0.8613** -0.7837** 0.8244** 0.8196** 0.8875**

Λh -0.0044 0.0486 -0.0180 0.7633** 0.1658** 0.1998** -0.0218
π -0.8910** 0.9615** -0.4592** 0.3496** -0.4179** -0.4165** -0.5023 **

δp -0.9529** -0.9558** -0.9012** 0.8257** -0.8604** -0.8650** -0.9166**

δh -0.0598 -0.0148 0.0185 -0.3984** -0.0902* -0.0496 -0.0231
Hph -0.0115 -0.0270 -0.0144 0.0427 -0.0107 -0.0316 -0.0647
Heh -0.0085 -0.0108 0.0543 0.0433 -0.1076* -0.0177 0.0288
ν 0.1276** 0.0237 -0.4559** 0.3827** -0.4175** -0.3480** -0.5226**

βe -0.3385** -0.1178** 0.8576** -0.7673** 0.8125** 0.8223** 0.8863**

βv 0.0227 -0.0055 -0.0260 -0.0110 0.0374 0.0134 -0.0019
Hp 0.0076 0.0166 -0.0439 -0.0411 0.0654 -0.0427 -0.0005
He 0.3070** 0.0545 -0.8603** 0.7699** -0.8147** -0.8178** -0.8841**

µp 0.2575** 0.1233* -0.7881** 0.6818** -0.7344** -0.7183** -0.8233**

µh -0.0058 -0.0163 -0.0018 -0.0424 -0.0673 0.0353 0.0425
φ -0.3268** -0.1088** 0.8508** -0.7777** 0.8164** 0.8229** 0.8882**

τp -0.0067 -0.0058 0.0367 0.0057 0.0525 0.0157 0.0471
τe 0.0050 0.0057 0.0002 -0.1978** 0.2247** 0.2747** -0.0260
a 0.0328 0.0086 0.0392 0.1334** -0.0668 -0.1878 ** 0.0318
ξ 0.2856** 0.1339* -0.8589** 0.7799** -0.8177** -0.8170** -0.8867**

γ 0.0543 -0.0080 0.0330 0.1876** 0.0361 -0.3127** -0.0287
ε 0.0466 -0.0344 0.0289 -0.1201* -0.1723** 0.1859** -0.0155

dummy 0.0320 0.0054 -0.0106 -0.0352 -0.0313 0.0018 0.0222
*: p-value < 0.01, **: p-value < 0.001.
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Table 5: PRCC of model’s parameters (Range variation at 50%).
PRCCs and significance

Parameters Sp Vp Ip C Sh Eh Ih
Λp 0.9676** 0.9561** 0.8629** -0.6300** 0.7096** 0.6490** 0.8576**

Λh 0.0112 -0.0034 0.0055 0.8874** 0.3523** 0.3370** 0.0303
π -0.8536** 0.9595** -0.2348** 0.1304** -0.1714** -0.1900** -0.1955**

δp -0.9628** -0.9535 ** -0.9104** 0.7137** -0.7810** -0.7433** -0.9026**

δh -0.0207 0.0311 0.0549 -0.5294** -0.1849** -0.1252* 0.0321
Hph 0.0097 0.0215 0.0324 0.1981** -0.2619** -0.1561** -0.0082
Heh 0.0342 0.0096 0.0186 0.0081 -0.0044 0.0012 0.0296
ν 0.0011 0.1363** -0.3133** 0.1204** -0.1759** -0.1218 ** -0.2785**

βe -0.3523** -0.1684** 0.8575** -0.6362** 0.6991** 0.6293** 0.8479**

βv -0.0018 -0.0116 0.0435 -0.0212 -0.0612 0.0282 0.0319
Hp 0.0139 -0.0314 0.0111 0.0002 0.0419 -0.0106 0.0140
He 0.2435** 0.1114** -0.7613** 0.5405** -0.5698** -0.5366** -0.7468**

µp 0.1671** 0.0774 -0.7944** 0.4905** -0.6226** -0.5699** -0.7962**

µh 0.0035 -0.0128 0.0199 -0.1273** -0.0325 -0.0366 -0.0114
φ -0.2273** -0.10777* 0.7568** -0.5662** 0.6296** 0.5802** 0.8578**

τp 0.0024 0.0493 -0.0240 -0.2690** 0.3096** 0.2361** -0.0020
τe 0.0230 -0.0311 0.0173 -0.3918** 0.4711** 0.3429** -0.0214
a -0.0269 -0.0686 -0.0030 0.3049** -0.4066** -0.3143** -0.0189
ξ 0.2755** 0.0840 -0.7641** 0.5393** -0.5999** -0.5688** -0.8588**

γ -0.0068 0.0036 0.0049 0.3469** 0.1410* -0.5831** 0.0072
ε -0.0042 -0.0536 -0.0027 -0.1090** -0.4621** 0.3347** 0.0444

dummy 0.0021 -0.0190 -0.0262 -0.0342 0.0693 -0.0139 0.0141
**: p-value < 0.001, *: p-value < 0.01.

Table 6: The eight most influential parameters of model system (3).
Number of state variables significantly correlate

Parameters Range 10% Range 50% Total
Λp 7 7 14
π 3 2 5
δp 7 7 14
βe 5 5 10
He 5 5 10
µp 5 5 10
φ 5 5 10
ξ 5 5 10
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Table 7: Parameters and baseline values.
Symbols Estimate for AIV Source Symbols Estimate for AIV Source

Λp 10000 ind Assumed ξ 2000 week−1 Assumed
βv 1.71 · 10−6week−1 [34] τe 0.1 week−1 Assumed
βe 0.002 week−1 Assumed φ 105g ·m3 · ind−1 · week−1 Assumed
δp 1/72 week−1 [32] π 0.40 week−1 Assumed
Hp 180000 ind [39] c 0.9 Assumed
Λh 15 ind Assumed q 0.9 Assumed
a 1 week−1 [34] ν 0.65 Assumed
γ 0.9 week−1 [34] Hph 120000 ind [39]
µh 0.001 week−1 [26] Heh 10000 ind Assumed
τp 0.6 week−1 [26] δh 0.00025641 week−1 [32]
ε 1 week−1 [26] He 106g.m3 [26]
µp 1/25 week−1 Assumed
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