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Abstract. Deep Neural Networks (DNNs) have improved the accuracy
of classification problems in lots of applications. One of the challenges in
training a DNN is its need to be fed by an enriched dataset to increase
its accuracy and avoid it suffering from overfitting. One way to improve
the generalization of DNNs is to augment the training data with new
synthesized adversarial samples. Recently, researchers have worked ex-
tensively to propose methods for data augmentation. In this paper, we
generate adversarial samples to refine the Decision boundaries of each
class. In this approach, at each stage, we use the model learned by the
primary and generated adversarial data (up to that stage) to manipulate
the primary data in a way that look complicated to the DNN. The DNN
is then retrained using the augmented data and then it again generates
adversarial data that are hard to predict for itself. As the DNN tries to
improve its accuracy by competing with itself (generating hard samples
and then learning them), the technique is called Self-Competitive Neu-
ral Network (SCNN). To generate such samples, we pose the problem
as an optimization task, where the network weights are fixed and use
a gradient descent based method to synthesize adversarial samples that
are on the boundary of their true labels and the nearest wrong labels.
Our experimental results show that data augmentation using SCNNs can
significantly increase the accuracy of the original network. As an exam-
ple, we can mention improving the accuracy of a CNN trained with 1000
limited training data of MNIST dataset from 94.26% to 98.25%.

Keywords: Deep Neural Networks - Data Augmentation - Computer
Vision

1 Introduction

Deep learning models have performed remarkably well on many classification
problems. With the advent of Convolutional Neural Networks (CNNs) [9], sig-
nificant improvements have been reported in computer vision tasks. One of the
main challenges in training a deep neural model is providing a big dataset in
order to prevent model from overfitting. The challenge is more significant in
small datasets, such as medical image analysis. Data augmentation is a known
solution in the literature to improve model generalization.



2 Iman Saberi and Fathiyeh Faghih

One of the well-known techniques for data augmentation are Generative Ad-
versarial Networks (GANs) [6]. They are used to generate new data in order to
inflate the training dataset [10,6,3,1]. There are, however, challenges in data gen-
eration using these networks. First, the aim of GANs is to find a Nash equilibrium
of a non-convex game with continuous and high-dimensional parameters, while
they are typically trained based on a gradient descent based technique designed
to minimize a cost function (instead of finding a Nash equilibrium of a game).
Therefore, these algorithms may fail to converge [7], and hence, synthesis of high
resolution data may be very difficult using this technique. Another limitation of
GANSs is their need to substantial amount of primary data in order to train the
discriminator well, and hence, they are not practical in small datasets [13].

In this paper, we propose a novel approach in this field that concentrates on
the weaknesses of the functional structure of DNNs in order to improve their
accuracy. The non-polynomial architecture of DNNs consists of deep linear and
nonlinear operations, and hence, the Decision boundary of each class cannot be
easily determined. We present a method to refine the DoAs of the network by
synthesizing harder samples from the primary input dataset. The synthesizer
network modifies each sample in a way that it is located on the boundary of
its true label and its nearest wrong label in the trained embedded network.
The synthesizer tries to generate more complicated samples from the primary
data, and then the embedded network tries to learn them correctly. This cycle
is repeated as many times as the accuracy of the embedded network increases.
Similar to GANs, our approach consists of two networks, a synthesizer and an
embedded network. However, unlike GANSs that try to play a minimax game and
converge to a Nash equilibrium, in our approach, the two networks separately
try to minimize their loss function based on a gradient descent method in order
to improve the accuracy and robustness of the embedded network.

Our experimental results demonstrate that our proposed technique can im-
prove the accuracy of networks, especially in small datasets. We selected a lim-
ited set of 1000 training data from the MNIST dataset, and fed them to an
SCNN. We observed that the accuracy of the baseline well-trained embedded
network was increased from 94.26% to 98.25% using our technique. We also did
experiments on Fashion MNIST and Cifar10 datasets as harder datasets. The
results show 1.35% increase in the accuracy of the Fashion MNIST dataset and
4.85% increase in the accuracy of the Cifar10 dataset, compared to the baseline
Resnet18 Model.

2 Related Work

Mining hard examples was previously studied in the literature [15,14]. The idea
is to select or generate optimal and informative samples in order to enrich the
dataset. Data augmentation techniques in the literature can be categorized into
data wrapping and oversampling methods. Data wrapping augmentations trans-
form the existing samples, such that their labels are preserved. Geometric and
color transformations, random erasing, adversarial training, and style transfer
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networks are examples of data wrapping techniques. Oversampling augmenta-
tion methods generate new instances and add them to the training set. Over-
sampling encompasses augmentations, such as mixing images, feature space aug-
mentation, and GANs. These two categories do not form a mutually exclusive
dichotomy [13]. Our approach is a data wrapping augmentation technique that
tries to manipulate each sample, such that it is located on the boundary of its
true label and its nearest wrong label.

In [5], the authors propose a method to seek small transformations that
yield maximal classification loss on the transformed sample based on a trust
region strategy. This work is similar to our idea in the criterion of generating
informative augmented data. However, our strategy in synthesizing augmented
samples is totally different. The proposed algorithm in [5] selects a set of possible
transformations, where each one has a specific degree of freedom. The algorithm
applies a set of transformations that make the cost function have the most value.
Our technique is different in that a gradient descent method tries to move each
sample in a direction to be located on the decision boundary for that sample.

The closest work to this paper is [12], where the authors designed an aug-
mentation network that competes against a target network by generating hard
examples (using GAN structure). The algorithm selects a set of augmentations
that have the maximal loss against random augmentation samples. The idea is
to apply a reward/penalty strategy and formalize the problem as a minimax
game for effective generation of hard samples. Our paper is different in that we
do not make the generator network to select the best strategy from a set of pre-
defined strategies. Instead, a gradient descent method decides what is the best
transformation parameters in order to manipulate each sample. Also, we pose
the problem as minimizing two cost functions separately, instead of playing a
minimax game.

3 Self-Competitive Neural Network

3.1 SCNN Architecture

The architecture of a Self-Competitive Neural Network (SCNN) contains two
main parts:

1. An embedded neural network: The goal of SCNN is to improve the accuracy
of this network. The internal design of this network is crucial in order to
have a powerful model. The embedded neural network can be of any type,
such as Convolutional Neural Network (CNN).

2. An Adversarial Data Synthesizer (ADS) network: This network is constructed
by concatenation of a number of differentiable components and the embed-
ded network. The aim of this network is synthesizing difficult data for the
embedded network. The differentiable components take the input data and
try to learn their parameters in a way that the synthesized data is predicted
as the nearest wrong label by the embedded network. The details of the
internal structure of this component will be discussed in Section 4.
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The training life cycle of an SCNN has three main phases (Fig. 1):

1. Training with primary data: In this phase, the embedded network is trained
by the main input dataset.

2. Adversarial data synthesis: After training the embedded network by the pri-
mary data, the weights of the embedded network are set as immutable, and
the primary input data is manipulated in a way that the embedded network
predicts the synthesized data by a wrong label. In other words, the ADS
network manipulates the input data in a way that they are more difficult for
the embedded network to predict correctly.

3. Training with adversarial data: In this phase, the SCNN uses the synthesized
data from the previous phase, sets the weights of the embedded network as
mutable, and the embedded network is trained by the synthesized adversarial
data.

You can see the embedded network in the both the training phases and the
data generation phase. The difference is that in the training phases, the weights
of the embedded network are mutable and learned during these steps. However,
in the data generation phase, the weights are an immutable part of the ADS
network, and hence, they are not changed.

The three phases are repeated in a cycle as many times as the accuracy of
the embedded network improves. In each cycle, the weights of the embedded
network are tuned by the primary data (phase 1), the ADS synthesizes new
data from the primary input data that seem harder for the embedded network
to predict correctly (phase 2), and the embedded network is trained by the
synthesized harder boundary data (phase 3). This procedure can be considered as
online strategy, where the underlying embedded network is improved gradually
by harder data. Another approach is offline, where the model is trained from
scratch by the primary and harder data generated in the training life cycle of
an SCNN. It is obvious that the offline approach is more expensive, but as we
will show in Section 5, the resulting accuracy of this approach is better than the
online strategy.

4 Details of SCNN

The main idea of SCNN can be thought of as a competition between the em-
bedded neural network and the adversarial data synthesizer, where during the
training phases (both training with primary data and adversarial data), the
embedded network tries to correctly predict the labels of the primary and ad-
versarial data. On the other hand, during the adversarial data synthesis, the
SCNN tries to manipulate the input data in a way that the embedded network
predicts the manipulated data with wrong labels.

For simplicity in explanation and without loss of generality, consider a Mul-
tiLayer Perceptron (MLP) as an embedded network. A loss function is defined in
a way that explains how much the outputs of the network are different from the
correct labels. The optimizer uses gradient descent to minimize this function.
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Fig. 1: The life cycle of training a SCNN

The main idea of SCNN is to fix the weights of the embedded neural net-
work, and use the gradient descent technique in order to manipulate the input
data and generate a set of adversarial data. As an example, the architecture of
the ADS network with MLP as the embedded network is presented in Fig. 2.
In this structure, the input vector X = [z1,2,...,2,] is fed to a (a set of)
differentiable component(s) that try to manipulate the input data to a vector
X' =[x}, 2}, ...,z}], which is fed to the embedded network. To do that, we define
an optimization problem, where the parameters of the differentiable components
are trained based on a cost function that is defined in a way that the manipulated
data is predicted as the nearest wrong label by the embedded neural network.

Fixed Weights

Trainable Components

Output layer
(r outputs)

Input layer
(n units)

Hidden layer
(m neurons)

Fig.2: Adversarial data synthesizer network

The trainable components are designed based on the type of the input dataset.
In this paper, we consider three main trainable components for the image sam-
ples:

— Differentiable transformer: We use Spatial Transformer Network (STN)
layer introduced in [8] for this transformation. It takes a vector of size 6 per
image to perform an affine transformation (such as rotation, zoom, shearing)
on the input image. For example, if we have an input image and the coordinate
of each pixel is identified by (zf,y$), and (x%,y!) represents the coordinate of
the pixel after the affine transformation, we have:
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where G; is the initial grid of the input feature map, and G; is the final grid
of the feature map after applying the transformation 79 on G;. The most
important feature of this component is that it is differentiable with respect
to its transformation parameters, which means the gradient descent can learn
them based on a defined cost function.
Differentiable grid: We design this component to be more flexible to perform
grid manipulation in the input feature map. It is a differentiable component

that manipulates the grid of the input image in three main steps:
1. Convolution on a null input space: For each input image, we generate a null

input space (0) based on sampling from uniform distribution U(—1,+1)
with the same size as the input image size, denoted by (W, H) . This space
is the starting point for grid manipulation, and will be trained during the
adversarial data synthesis phase. After that, we define a Gaussian kernel
window, which is convolved with this null space, and as a result, we will
have a smoothed null input space, as depicted in Fig. 3a. The convolved
null space (u) can be computed as follows:

6ij ~U(=1,+1): i€ [1..W] j € [l..H]
wg  hg

tij = 6;5 ® Kernel;; = Z ZKernelm,n(q*)#,qﬁa)éifmyjfn . (2)
m=1n=1

Vie [1..W] Vj e [1..H|

where Kernel is a predefined 2D Gaussian kernel with size (wg, hx ), and
mean and standard deviation equal to @, and ®,, respectively. Note that
this kernel is immutable during the training phase of the input null space.

2. Generating the manipulated grid: In this step, the convolved null space (u)
is added to the initial grid (G;) of the input image, and as a result, the
manipulated grid (G;) is generated, as shown in Fig. 3b.

Gi=Gi+p (3)

3. Image sampling: The main operation of this step is an image interpolation
based on the manipulated grid generated in the previous step. As depicted
in Fig. 3c, the image sampler takes an image and a manipulated grid as
input, and computes the interpolated output image based on the manipu-
lated grid. The Final output image can be computed as follows:

H W
Of =33 It k(ah — m; @.)k(y) — n; @)
m=1

n=1

Vi € [1..HW] Ve € [1...C]
(It7yt) € Gt
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where k is a generic sampling kernel function that performs the image
interpolation. It can be any image interpolation function (e.g bilinear),
and @, and @, are the parameters of this kernel function. Iy, is the input
value at location (n,m) in channel ¢ of the input image, and Of is the
output value for pixel i at location (zf, y!).

input image . manipulated grid output image

nage
sampler T
3 i 3

maRERI

(a) Null input-space con- (b) summation of con- (c) Image sampling
volved with predefined volved input space and
Gaussian kernel initial grid of input image

Fig. 3: Three main steps of the differentiable grid component

— Smart erasing: Random erasing is one of the most effective data augmenta-
tion techniques which is mostly used in DNNs [11]. This component exploits
erasing technique in order to smartly erase some parts of the input data in a
way that the erased samples maximize the loss function. This component has
four main steps:

1. Defining an NxN trainable mask (M): this mask covers the input data
and responsible for distinguishing which parts of the input have the most
significant effect on classifying the input data. Parameter N could be varied
based on input size(for example, for a 32x32 input size, N could be 4 or 8).

2. A 3D-Upsampling operation: this operation fits the size of the grid to the
size of the input image. for instance, for a 4x4 grid, we use an 8x8x3 Up-
sampling operation in order to make a 32x32x3 grid(same size as the input
data). The elements of the upsampled grid are multiplied to input data.

3. Finding attention area: From the previous step, we prepare a trainable grid
that covers the input data. Now, we train this grid in order to distinguish
which parts of the input data have the most significant effect on classifying
tasks (Fig. 4.b).

4. Erasing the most effective grids: after finding attention areas, grids with
the most impact on the classifying task are deleted or replaced with noisy
data.(Fig. 4.d, Fig. 4.e). There are two possibilities, if the removed area is
a part of the background, it will help classifying task that decreases the
importance of this part. If the removed area is an essential part of the
input, the algorithm tries to identify the input without considering this
part.
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M= Eh

(a) Tnput Tmage (b) Atten area(dx4 (c) Output Tmage (d) Smart Erasingl () Smart

Fig.4: Applying smart erasing on a specific image of cifar10 database

We defined three components, the transformer component which is differentiable
with respect to its transformation parameters 6, and the grid manipulation com-
ponent, which is differentiable with respect to its null input space § and the
smart erasing component which is differentiable with respect to its defined mask
(M). Let’s denote the output of the transformer component with V(x,9) and the
output of the grid manipulation component with O(x|5) and the output of the
random erasing component with Ex;|ar) for input sample X;. X " (the generated
adversarial data to be fed to the embedded network) can be computed as follows
(Fig. 2):

Vixjo) or
X/ = O(X|5) or (5)
Exm)

The corresponding function of the adversarial data synthesizer network is as
follows:

hADS(X|9,(5) _ hMLP(X/) (6)

hADS hMLP

where is the corresponding function of the ADS network, and
is the corresponding function of the embedded network (MLP in this example).
The goal is to optimize parameters 6, 5 and M in a way that the output of
the ADS becomes the nearest wrong label for each input data. For defining an
appropriate loss function, we need to define the following variables:

4; = arg max h; (X6, 6)AP%
i

y; = argmax h; (X0, 0)AP8 i g
7

7 = { (yj +ag;) if 95 =y;

i (yj + ;) if 95 #y;

where g; is the index of the largest output of the ADS network, g; is the index
of the second largest output of the ADS network, and y; is the desired output
of the ADS network for generating harder samples. Note that g; is constructed
by a linear combination of the correct label y;, and the nearest wrong label for
the input data X;. Also, « is the strength rate of moving the input data to the
boundary of its true label and the nearest wrong label. Now, we can define the



Self-Competitive Neural Networks 9

loss function of the ADS, as follows:

n K
loss™ ZZ Yirlog(Yir) (8)

i=1 k=1

The goal is to optimize parameters (6, d, M), such that the manipulated input
data is predicted with a wrong label, or becomes closer to the boundary of its
true label and its nearest wrong label.

5 Experimental Results

We implemented SCNN on three datasets; MNIST, Fashion MNIST, and Cifar10.
The underlying embedded network is a CNN for MNIST and Fashion MNIST
datasets, consisting of a convolutional, a BatchNormalization, and a pooling
layer, repeated three times in a stack. Size of all filters is (3x3) and number of
filters in convolution layers are 64, 128 and 256 respectively. We also add a fully-
connected hidden layer(with 512 neurons) to the end of last convolution layer.
All activation functions are ReLu to have less intensive computation overhead
in the training phase. For Cifar10 dataset we choose Resnet18 structure as our
underlying embedded network. Number of filters in resnet18 start with 64 and we
use a dropout layer(mask ratio:0.2) after the fully connected layer of Resnet18.

5.1 Limited MNIST

We randomly selected 1000 samples of the MNIST handwritten dataset to have a
more challenging problem. SCNN generated 1,000,000 adversarial hard samples
in 50 cycles. For comparison with random augmentation, we use the Augmentor
tool [2] that applies random augmentation operations, such as rotation, scaling,
shearing, flipping, random erasing, and elastic transformations. The results based
on the online strategy for baseline model, Augmentor tool, and SCNN are shown
in Fig. 8a. It can be observed that the SCNN approach experiences less overfitting
compared to other approaches. The final accuracy results are depicted in Table 1.
In Fig. 5, we illustrate the process of synthesizing a hard sample by applying
gradient descent on the trainable parameters of the transformer, where a sample
with true label 2 is transformed, such that its label is predicted as 8.

Fig. 5: Data manipulation based on differentiable transformer on MNIST sample
data
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5.2 Fashion MNIST

We use the entire 60,000 samples in the training dataset of Fashion MNIST,
and generated 600,000 adversarial hard samples in 10 cycles. Once the baseline
model was trained by the primary data, and another time, it is trained by the
adversarial and primary data. The results are shown in Fig. 8b, and the final
accuracy after 100 epochs is shown in Table 2. It can be observed that SCNN
experiences less overfitting compared to the baseline model. Fig. 6 illustrates
the synthesis of a hard sample by applying gradient descent on the trainable
parameters of the differentiable grid, where the goal is to manipulate a sample
with true label 0 (T-shirt), such that it is predicted as label 3 (Dress).

Fig. 6: Data manipulation based on differentiable grid on Fashion-MNIST sample
data

5.3 Cifarl0

This dataset is more complicated, consisting of 50,000 training data. We gen-
erated 100,000 adversarial data in 5 cycles. The baseline model was trained by
1.the primary data, 2.the primary data with random augmentation, 3.the pri-
mary data with AutoAugment approach which is introduced in [4] and 4.the
primary data with the SCNN. The results are shown in Fig. 8c, after epoch 150
we retrain our network with generated adversarial data and primary data, as a
result we firstly observed a decrease in the accuracy after epoch 150. The final
accuracy of these approaches is shown in Table 3. Fig. 7 illustrates synthesizing
a hard sample by applying gradient descent on the trainable parameters of the
differentiable grid, where the generated sample is finally predicted correctly, but
with less confidence. So we can see that after multiple cycles, the label of the
adversarial data may still be predicted correctly.

Fig. 7: Data manipulation based on differentiable grid on Cifar10 sample data

6 Conclusion and Future Work

We introduced a new approach for generating harder samples for DNNs. An
SCNN contains two sub-networks, an embedded network, and a synthesizer
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Fig. 8: Performance of SCNN for different datasets

Table 1: Test accuracy of different approaches on the Limited MINST(1000 train

data)
Network Type test accuracy(online strategy)|test accuracy(offline strategy)
Baseline 94.26 94.26

Baseline + Augmentor
Baseline + SCNN

96.20
97.63

96.64
98.25

Table 2: Test accuracy of CNN baseline model and SCNN on the Fashion MNIST

dataset

Network Type

test accuracy(online strategy)

test accuracy(offline strategy)

Baseline CNN
Baseline + Augmentor
SCNN

90.11
90.54
91.03

90.11
90.74
91.45

Table 3: Test accuracy of different approaches on the Cifar10 dataset

Network Type

test accuracy

Resnet18
Resnetl8 + Random Augmentation
Resnet18 + AutoAugment

Resnet18 + SCNN

89.2
93.3
93.83
94.11
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network. We also proposed three differentiable image manipulator components
which parameters can be learned in a way that can transfer a sample to the
boundary of its true label and its nearest wrong label. We observed that the
accuracy and the robustness of SCNNs are improved in comparison with their
baseline models. As a future work, this approach can be extended by designing
differentiable manipulator components for other types of input data, such as
texts, graphs, and voice.
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