
EasyChair Preprint
№ 5975

Analysis of Generative Adversarial Networks for
Data Driven Inverse Airfoil Design

Priyam Gupta, Prince Tyagi and Raj Kumar Singh

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

July 1, 2021



Analysis of Generative Adversarial Networks for
Data Driven Inverse Airfoil Design

Priyam Gupta, Prince Tyagi, and Raj Kumar Singh

Abstract. Data-Driven Methods have led to new approaches in the field
of Aerodynamic Design and have recently found success in Inverse De-
sign applications. The conventional Inverse Design methods are analyt-
ically complex and mathematically demanding to formulate. This re-
search attempts to perform Inverse Airfoil Design using Generative Ad-
versarial Networks(GANs) with the objective to generate airfoil shapes
that produce desired Pressure Distribution at given flow conditions. The
Convolutional Neural Network-based Generator extracts features from
the pressure coefficient profiles and predicts the corresponding airfoil
shape coordinates. These deep ConvNet structures eliminate the prob-
lems posed by shape parameterization in classical methods and extract
patterns from the data with finer details. This work examines the perfor-
mance of three advanced Generative Adversarial Network architectures
to obtain a model which is stable, computationally efficient and has com-
petitive prediction accuracy. The candidate GANs include Wasserstein
GAN, Boundary Seeking GAN and Bidirectional GAN. The networks are
trained on a database of airfoil shapes and pressure coefficient distribu-
tion. It is shown that Boundary Seeking Generative Adversarial Network
produces highly accurate results and is computationally least expensive
to train.

Keywords: Machine Learning · Generative Adversarial Networks · In-
verse Design

1 Introduction

Inverse Aerodynamic Design is a category of Design Optimization techniques
wherein the objective is to design aerodynamic shapes which produce desired
pressure or velocity distribution at given flow conditions. There has been a sig-
nificant advancement in computational power and computational fluid dynamics
(CFD) algorithms, still, the heavy cost of high fidelity simulation demands more
efficient design optimization techniques. The forward aerodynamic shape opti-
mization approach involves evaluating the geometry for the desired parameter
using CFD simulations followed by manipulating it until the desired parame-
ter has been optimized[1]. This morphing of shape in every iteration makes the
process computationally expensive. The Inverse design methods are an efficient
alternative to the time consuming iterative process of analysing several airfoil
shapes to obtain the one with desired characteristics.
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The inverse aerodynamic design can be widely classified as surface flow design
and flow-field design[2]. While the surface flow design needs the desired aero-
dynamic property specified on the surface, the Flow-field design incorporates
global flow-field features for shape design constraints. There are a large number
of inverse methods for surface flow design and most of them are considered ana-
lytically complex and mathematically demanding to formulate[3]. This demands
a computationally efficient and tractable inverse design method. A good In-
verse Aerodynamic Design Model should be able to generate smooth-contoured
and manufacturable designs within the enforced constraints and should avoid
exploiting the weakness of the problem formulation[4].

There has been a significant advancement in the application of machine learn-
ing and data-driven algorithms in recent years due to unprecedented volumes of
data and advanced computing power. The field of fluid mechanics is also incor-
porating these advanced algorithms for flow field prediction, reduced-order and
turbulence closure modelling[5]. Basu et al[6, 7] conducted a comprehensive study
of machine learning algorithms for pressure reconstruction framework from PIV
velocity data and observed a high degree of accuracy in the pressure distribution.
Generative Adversarial Networks(GANs)[8] have achieved impressive results in
the image to image translation and have shown to be effective in capturing the
essential features in training data. GANs have also been used for a one to one
mapping from a parameterized supercritical airfoil to its corresponding transonic
flow field profile over the parametric space[9]. They have found effective use in
supervised as well as unsupervised super-resolution reconstruction of Turbulent
flows[10, 4]. There is a recent surge in interest to study deep learning models
for aerodynamic design applications. Chen et al. [11] implemented Bezier GANs
to learn low dimensional latent representation, encoding the variation in aero-
dynamic shapes. Du et al.[12] utilized a B-Spline based generative adversarial
network parameterization method along with a multi neural network-based sur-
rogate model for predicting aerodynamic coefficients which was demonstrated
on an airfoil shape optimization problem. Yilmaz et al[4] implemented Condi-
tional GANs and CNN based framework for surface flow inverse airfoil design
conditioned on desired stall regions and downsampled desired drag polar data.

Motivated by the impressive performance of Generative Adversarial Net-
works for image to image translation and observing the need for a GAN archi-
tecture that is stable to train and requires less computation, the objective of
this work is to investigate the performance of different GAN architectures for
data-driven Inverse Airfoil Design. This study examines three GAN architectures
and performs a side by side comparison. The candidate GAN architectures are
Wasserstein GAN (WGAN)[13], Bidirectional GAN (BiGAN)[14] and Boundary
seeking GAN (BGAN)[15]. These are selected on the basis of their promising
performance and enhanced training stability over the vanilla GAN model in the
past studies.

This paper has been arranged as follows: Section 2 delineates the fundamen-
tal concepts and mathematical formulation of Generative Adversarial Networks
taken into consideration along with data generation methodology. Section 3 dis-
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cusses the training of the candidate GAN models and compares their perfor-
mance. Finally, concluding remarks are provided in Section 4.

2 Methodology

2.1 Generative Adversarial Network

Generative Adversarial Networks are a special type of neural network which
consist of two elements: Discriminator and Generator. The Generator takes in a
random noise from a distribution Lz and tries to generate samples Gs similar to
the data samples Ds. These samples Gs are then fed to a Discriminator which
predicts the probability of whether Gs is fake or not. The primary objective of
the Generator is to generate samples that Discriminator is fooled to believe as
identical toDs while Discriminator‘s motive is to not get fooled by the Generator.
During the training, the Generator learns to generate such real looking samples
until the Discriminator can’t distinguish between real and fake samples. The
architecture of a GAN is depicted in Fig. 1. The absolute expected error of
the Discriminator when it is provided with ”actual” and ”generated” data is
expressed by equation (1).

E(G,D) =
1
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[1 −D(x)] +
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[D(G(z))]

=
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The training objective of the generator is to maximize the loss E(G,D) while
the Discriminator attempts to minimize it.

maxG(minD E(G,D))

Fig. 1: Generic Architecture of a Generative Adversarial Network
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1. Wasserstein Generative Adversarial Networks : The Wasserstein Gen-
erative Adversarial Network, or Wasserstein GAN, is an extended version of
the generative adversarial network which enhances model‘s training stability
and implements a loss function that correlates with the quality of generated
samples. This substantially improves the approximation over the distribution
of the data observed in the training set[13].

2. Boundary-Seeking Generative Adversarial Network : GANs face a
major difficulty for training discrete data when outputs of the generator are
completely differentiable with respect to the generator parameters, θ. The
Boundary seeking GANs work well for discrete data and are equally efficient
for multi-modal continuous distributions[15]. They utilize a boundary loss
which ensures that the important weights have a strong connection to the
decision boundary of the discriminator.

3. Bi-Directional Generative Adversarial Network : Bi-Directional Gen-
erative Adversarial Networks or Adversarial Feature Learning attempts to
enhance the robustness of the generator by ensuring that the generated sam-
ples can be mapped back to input data [14]. Bi-GANs consist of an encoder
in addition to the generator that is present in the standard GAN architecture
which creates an inverse mapping between the generated samples and the
input data. In order to ensure that the inverse mapping is done optimally,
the BiGAN Discriminator distinguishes not only between the generated and
actual samples but also between the inverse mapped samples and the corre-
sponding actual data.

The schematic diagrams for all the algorithms are depicted in Fig. 2.

Table 1: Generator Architectures with their Hyperparameters. (The format for
convolutional layer size is [Convolutional filter size, Number of convolutional
filters]. In the fully connected layer, there are 100 neurons in each layer.)

Layer Type BGAN Bi-GAN WGAN Activation Function

Input 144 x 144 x 1 144 x 144 x 1 144 x 144 x 1 relu
1st convolution 4 x 4, 32 4 x 4, 32 4 x 4, 32 relu
2nd convolution 4 x 4, 64 4 x 4, 64 4 x 4, 64 relu
3rd convolution 4 x 4, 128 4 x 4, 128 4 x 4, 128 relu
4th convolution 4 x 4, 128 4 x 4,128 4 x 4, 128 relu
Flatten - - - -
Fully connected 100 100 100 tanh
Fully connected 100 100 100 tanh
Output layer 70 70 70 -

2.2 Data Generation

Data Generation is an essential component of the proposed framework. The in-
put data consists of the Coefficient of Pressure (Cp) distribution over the surface
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(a) WGAN and BGAN Architecture (b) BiGAN Architecturel

Fig. 2: Schematic of Generative Adversarial Network Architectures implemented
for Inverse Airfoil Design

of the airfoil for an angle of attack of 3° and Reynolds Number of 100,000. The
corresponding airfoil coordinates make up the output data. The Cp distribution
over the airfoil is evaluated using the XFOIL simulation tool. XFOIL is con-
sidered over solving the Navier Stokes equation using CFD models because of
the low computational cost involved which facilitated the generation of a large
and diverse dataset enabling the demonstration of the maximum potential of the
considered models. The dataset consists of 1400 airfoil profiles obtained from the
UIUC airfoil database[16]. The Cp profile of each airfoil is plotted onto an image
of size 144 X 144 X 1 which is then normalized to a range of [-1,1]. Figure 3
shows a sample of the upper and lower surface Cp plots used as the input data.
The output data consists of the ordinates of the airfoil profile interpolated to a
predefined set of x coordinates. This assisted in reducing the number of output
parameters thereby enhancing the accuracy of the model.

3 Results

3.1 Training

The Dataset is split into a training and a test dataset with an 80% and 20% dis-
tribution. The network learns the weight using a content loss and an adversarial
loss function. The content loss follows a simple approach wherein the generated
and actual points are compared using mean squared error while the adversarial
loss is subjected to the probability of the generator fooling the discriminator.

The input images are of size 144 × 144 × 1 and are normalized down to a
range of [-1,1]. The BiGAN and BGAN models are trained using the Adam
optimizer with a learning rate of 2e−5 and a batch size of m = 32. Dropout
layers were included after every convolution layer to avoid overfitting with a
dropout probability of 0.4. The Wasserstein GAN model is trained using the
RMSProp optimizer with a learning rate of 2e−5. The optimization algorithm
for each model is chosen on the basis of the recommendations in their original
works[14, 15, 13]. The hyperparameters for each model are tuned using the grid
search method. The architecture of each GAN model is delineated in 1 and 2.
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(a) Sample Airfoil from the dataset (b) Cp plot for the given sample airfoil

(c) Input Sample of Cp profile

Fig. 3: Training Data Generated Using UIUC Airfoil Database and XFOIL

The models were written in TensorFlow and were trained on Tesla K80 GPUs.
Detailed architecture of generator is depicted in Table 1 and of discriminator in
Table 2.

3.2 Discussion

The training process of the GANs is analogous to a minimax game wherein two
players compete with each other i.e. the Generator tries to generate real-looking
samples that can’t be differentiated further by the discriminator. Theoretically,
GANs are said to be converged when the discriminator can no longer distin-
guish between fake and original data. The loss evolution of the generator and
discriminator for each of the GAN model is depicted in Fig. 4. GAN loss func-
tion generally depicts vibrating and non-converging behaviour while training
therefore a good practice to check that the model has converged is by visually
observing whether the output produced is close to the training data distribution.

Initially, the comparison amongst the generated samples of the three pro-
posed GANs and the vanilla GAN is done on the basis of the quality of the
airfoils generated. This can be evaluated by observing the subset of the gen-
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(a) BGAN Loss Evolution (b) BiGAN Loss Evolution

(c) WGAN Loss Evolution (d) Vanilla GAN Loss Evolution

Fig. 4: Loss Functions During The Training of the GAN Models

erated samples by each model shown in Fig. 5. Since the main objective of the
proposed GAN frameworks is to generate airfoil geometries that produce desired
aerodynamic properties at given flow conditions, a distance metric (dGAN ) av-
eraged over all the generated samples is used to evaluate the proximity of the
generated airfoils to the actual samples which is given by equation 2.

dGAN =

√∑N
i=1(ypi − yai)

2

N
(2)

where ypi is the vector containing 70 y-coordinates of each predicted sam-
ple, yai is the vector containing the actual points and N is the total number
of samples. The dGAN metric for each model is shown in Fig. 7, with BGAN
performing the best and vanilla GAN performing the worst.

From Fig. 5, it can be observed that the BGAN produces smooth-contoured
aerodynamic shapes while WGAN fails to do so. Though it is able to capture
the features of the airfoil, it suffers from overtraining. BiGAN is able to capture
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Table 2: Discriminator Architectures with their hyperparameters. (In the 1st
layer , 512 indicates 512 neurons in each layer.). All Layers are fully connected.

Layer Type BGAN Bi-GAN WGAN Activation Function

Input 70 x 1 70 x 1, 144 x 144 x 1 70 x 1 Leaky Relu
1st Layer 512 Flatten+512 512 Leaky Relu
2nd Layer 256 256 256 Leaky Relu
3rd Layer 128 128 128 Leaky Relu
4th Layer 64 64 64 Leaky Relu
Output 1 1 1 sigmoid(not in WGAN)

(a) BGAN (b) BiGAN

(c) WGAN (d) Vanilla GAN

Fig. 5: Generated Airfoil Samples of GAN Models

the structure of the airfoil but it has quite a high distance metric (dGAN ) as
compared to BGAN. Vanilla GANs also showed the potential to capture the
features of the airfoil, but they had the worst dGAN which means that they were
not able to generalize over all the airfoil shapes. Despite the repeated efforts
to fine-tune the models, WGAN and BiGAN suffered from overtraining and
mode collapse i.e they produced a restricted variety of output samples while
BGAN consistently produced samples close to the actual data distribution. It
should be noted that all the GAN model architectures have been modified to
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Fig. 6: Shape Evolution Over Training Epochs For BGAN

Fig. 7: Distance Metric over test samples for the GAN Models

suit a low computational resource requirement in order to optimize the training
time. Considering that the samples generated by BGAN had the lowest distance
metric, its high training stability, its ability to learn the aerodynamic features
of the airfoils and generalize over the airfoil data distribution, BGAN shows
the best performance amongst the studied GAN architectures. Figure 6 shows
how airfoils are generated over the epochs during the training of BGAN and its
ability to extract aerodynamic features from the data distribution.

4 Conclusion

In this work, we analyzed the performance of Generative Adversarial Networks
for aerodynamic design applications based on its ability of the image to image
translation and concluded upon a framework with reasonably tamed training
stability and appreciable quality of generated airfoil design. We pointed out the
vulnerability of GANs and worked towards a model that could minimize them.

Three modified GAN structures were tested for inverse airfoil design and were
compared with the vanilla GAN based on quality of airfoils generated, proximity
to the corresponding airfoil for given flow conditions and the training stability.
When analyzing the application of the models, all the models were able to learn
aerodynamic features of the airfoil but only BGAN produced appreciably smooth
contoured surfaces. It generated aerodynamic curves with the least distance met-
ric which was confirmed by the comparison between the actual and generated
airfoils, making it the most suitable candidate for inverse airfoil design.

Future work may include testing these models on variable flow conditions and
developing more accurate datasets using Reynolds Averaged Navier Stokes based
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computations. The results of this work are quite motivating to test the larger-
scale performance of these models with higher computational power. Overall
GANs have proved to have substantial potential in the application for aerody-
namic design and can be employed in different applications across this field.
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