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Abstract. This paper explores the enhance-

ment of efficiency and architectural flexibility 

in the rapid prototyping and scalable deploy-

ment of multimodal intelligent agents through 

the frameworks SmartTaskAgent (i.e. Auto-

Gen) and CollaborativeAI’s (i.e. CrewAI). By 

integrating large language models (LLMs), 

these frameworks significantly improve agent 

functionalities and streamline multi-agent 

workflows. The discussion addresses key 

challenges such as role-playing capabilities, 

prompt robustness, hallucination mitigation, 

and scalability, along with proposed solutions. 

The findings suggest substantial advance-

ments in AI applications across various indus-

tries, highlighting the potential of these frame-

works in enabling rapid prototyping and scal-

able deployment. 
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I. INTRODUCTION 

In recent years, large language models (LLMs) 

have demonstrated remarkable potential, with their 

ability to mimic human intelligence improving rap-

idly. [1] [2]. This has opened new avenues for using 

LLMs as fundamental controllers to develop auton-

omous agents with decision-making abilities akin to 

humans. These agents, leveraging LLMs for logical 

reasoning, effective tool utilization, and adaptabil-

ity, are increasingly being deployed across a variety 

of real-world applications.  [3] [4] [5]. This paper 

investigates strategies to further the development of 

multimodal LLM applications that span a wide 

range of fields and complexities, particularly in en-

hancing the efficiency and scalability of these sys-

tems. 

 

As mentioned in [6], the approach is to use multi-

agent conversations to achieve the objectives. Re-

cent advances in LLMs confirm its general feasibil-

ity and utility for three key reasons. Firstly, chat-op-

timized LLMs has demonstrated the ability to incor-

porate feedback, allowing LLM agents to collabo-

rate through conversations including dialogues 

where agents support reasoning, observations, cri-

tiques, and validation. Secondly, when appropriately 

configured with prompts and inference settings, a 

single LLM demonstrates a wide array of capabili-

ties. These skills can be effectively combined in a 

complementary and modular fashion through con-

versations among agents with diverse configura-

tions. LLMs have shown the capability to solve dif-

ficult tasks by breaking them into simple and smaller 

subtasks. This division and integration may be done 

naturally through multi-agent dialogues. So, in the 

next section multi-agent conversation framework is 

discussed. 

 

II. MULTI-AGENT CONVERSATION FRAMEWORK: 

STUDY 

To facilitate the creation of complex LLM-based 

applications across diverse domains, the multi-agent 

conversation framework adheres to a core design 

principle of consolidating workflows through multi-

agent conversations. This section introduces two 

foundational concepts: conversable agents and con-

versation programming.  [6] [7]. 

 

A. Conversable Agents 

In a multi-agent conversation framework, a con-

versable agent acts as an entity with a designated 

role, facilitating the exchange of messages for send-

ing and receiving information among other agents. 

These agents can be equipped with various capabil-

ities, such as those enabled by large language mod-

els (LLMs), tools, or human input, and operate ac-

cording to programmed behavior patterns. 

The framework enables agents to utilize capabil-

ities from LLMs, human interactions, and tools, 

thereby shaping their message processing and re-

sponses. This flexibility allows agents to perform di-



 

verse functions, such as role-playing, state infer-

ence, and adaptive learning from conversation his-

tory. These agents can handle tasks like coding, 

providing feedback, and adapting through novel 

prompting techniques. 

In this context, a conversable agent is an entity 

that facilitates the exchange of messages among 

other conversable agents, maintaining its internal 

context based on the messages it processes. These 

agents can be configured with a variety of capabili-

ties, operating according to behavior patterns out-

lined in the framework. LLM-backed agents, for ex-

ample, leverage advanced features such as role-play-

ing, state inference, and adaptive learning to en-

hance their coding tasks and feedback mechanisms. 

They also benefit from features like result caching 

and error handling. Human interaction is supported 

through human-backed agents, which enable partic-

ipation based on configurable engagement levels 

and interaction patterns. Tool-backed agents execute 

tools via code or function execution, as seen in the 

default user proxy agent’s ability to execute LLM-

suggested code or function calls. 

The framework supports the creation of custom-

ized agents tailored to specific applications by ex-

tending built-in templates. For example, the Con-

versable Agent class serves as the foundational ab-

straction, supporting integration with LLMs, hu-

mans, and tools. Subclasses like AssistantAgent and 

UserProxyAgent are pre-configured for specific 

roles: the AssistantAgent functions as an AI assis-

tant using LLMs, while the UserProxyAgent acts as 

a human interface, managing human inputs and ex-

ecuting code or function calls. 

 

As shown in Fig 1, In this framework, conversa-

ble agents serve as fundamental building blocks, en-

abling custom agents to communicate with one an-

other. However, to create applications where agents 

can effectively advance tasks, developers must be 

able to define and structure these multi-agent con-

versations, as discussed in the subsequent sections. 

In the multi-agent conversation framework, a con-

versable agent functions as an entity with a desig-

nated role, facilitating the exchange of messages for 

sending and receiving information among other 

agents. These agents can be configured with various 

capabilities, such as those enabled by LLMs, tools, 

or human input, and operate according to pro-

grammed behavior patterns. 

The framework enables agents with capabilities 

from LLMs, humans, and tools, shaping their mes-

sage processing and responses. This flexibility al-

lows for diverse agent functionalities, such as role-

playing, state inference, and adaptive learning from 

conversation history. These agents can perform cod-

ing tasks, provide feedback, and adapt using novel 

prompting techniques. 

 

 

 
 

Fig 1: Built-In Multi-Agent Framework – Agents [i] 

i[https://blog.langchain.dev/langgraph-multi-agent-

workflows/] 

B. Conversation Programming 

The framework employs conversation program-

ming, focusing on two main concepts: computation 

and control flow. Computation involves the actions 

agents take to generate responses within a conversa-

tion, while control flow refers to the sequence or 

conditions under which these computations occur. 

The framework supports both static and dynamic 

conversation flows, allowing for intuitive reasoning 

about complex workflows through agent interac-

tions. 

In multi-agent framework, computations are cen-

tered around conversations. An agent performs ac-

tions based on the conversations it is involved in, 

with these actions leading to message passing for 

subsequent conversations unless a termination con-

dition is met. Similarly, the control flow is guided 

by conversations—the decisions agents make about 

which other agents to communicate with, and the se-

quence of computations depend on the inter-agent 

conversation. This approach allows for intuitive rea-

soning about complex workflows through the inter-

action between agent actions and conversation mes-

sage passing. 



 

In the conversation programming paradigm, di-

verse multi-agent conversation patterns can be real-

ized. It supports both static conversations with pre-

defined flows and dynamic conversation flows in-

volving multiple agents. 

A customized generated reply function allows an 

agent to manage the current conversation while ini-

tiating interactions with other agents based on the 

current message and context. Additionally, the LLM 

determines whether to call a specific function de-

pending on the conversation's status. By involving 

additional agents through these function calls, the 

LLM can facilitate dynamic multi-agent conversa-

tions. 

It also supports more complex dynamic group 

chats through the built-in GroupChatManager, 

which can select the next speaker and broadcast its 

response to other agents. In the next section chal-

lenges are discussed. 

 

III. CHALLENGES 

While prior research into LLM-based autono-

mous agents has achieved considerable successes, 

this field is still emerging and presents several nota-

ble challenges that require addressing in its develop-

ment. Below, we outline several representative chal-

lenges. 

 

A. Role-playing capability 

Autonomous agents must often assume specific 

roles, such as coder or researcher, to complete vari-

ous tasks. Fine-tuning LLMs with data specific to 

uncommon roles or psychological traits and design-

ing tailored prompts can enhance role-specific per-

formance, though maintaining effectiveness for 

common roles remains challenging. Furthermore, 

research suggests that LLMs often fail to accurately 

model human cognitive psychology, which leads to 

a lack of self-awareness in conversations [8]. 

 

To address these challenges, potential solutions 

include fine-tuning LLMs with data specific to un-

common roles or psychological traits and designing 

tailored prompts and architectures [9]. Fine-tuning 

can enhance role-specific performance but maintain-

ing effectiveness for common roles remains chal-

lenging. Alternatively, creating specialized prompts 

and architectures can improve role-playing abilities, 

though the extensive design space makes this a com-

plex task. 

 

B. Prompt robustness 

LLMs often require complex prompts to ensure 

logical behavior in agents. However, slight modifi-

cations to these prompts can produce vastly different 

results. Creating a cohesive and robust prompt struc-

ture that works across different LLMs is a signifi-

cant challenge. Previous studies have revealed a no-

table deficiency in the robustness of prompts for 

LLMs, whereby slight modifications might provide 

very disparate results [10], [11]. This issue is further 

amplified in the context of autonomous agents, 

which utilize a prompt framework encompassing 

multiple modules. In such frameworks, a prompt de-

signed for one module can have direct impact on 

other modules, and the structure of frameworks can 

change drastically between different LLMs. The cre-

ation of a cohesive and robust prompt structure that 

works with different LLMs is still a significant and 

unmet task.  

Two possible approaches have been proposed to 

deal with these issues: using GPT to automatically 

produce prompts or manually creating necessary 

prompt items through iterative trial and error. 

 

C. Hallucination 

Hallucination, where LLMs generate erroneous 

information with high confidence, is a critical issue 

for autonomous agents. For example, research has 

shown that agents can exhibit hallucinatory behavior 

when given simplistic instructions during code gen-

eration tasks, resulting in misleading or incorrect 

code, ethical issues and security risks [12]. To solve 

this problem, incorporating human corrective feed-

back into the iterative process of human-agent com-

munication has been proposed as a viable solution 

[13]. 

 

D. Knowledge boundary 

LLMs sometimes possess knowledge far exceed-

ing that of an average person, which can affect the 

realism of agent simulations. Constraining LLMs’ 

use of knowledge to more closely match human lim-

itations is essential for creating realistic simulation 

environments. A functional and key application of 



 

LLM-based autonomous agents involves incorporat-

ing a variety of real-world human behaviors. The re-

search on human behaviors simulation is well-estab-

lished, and recent advancements in LLMs have sig-

nificantly enhanced these capabilities. However, the 

powerful nature of LLMs can sometimes be a dou-

ble-edged sword. An effective simulation should 

faithfully replicate human knowledge, yet LLMs, 

trained on extensive web-based corpora, often pos-

sess knowledge far exceeding that of an average per-

son. 

For instance, when simulating user behavior in 

selecting movies, it is essential that LLMs operate 

without prior knowledge of the movies. Neverthe-

less, LLMs might have already obtained information 

about these movies, leading to decisions based on 

extensive knowledge that real-world users would 

not possess. This challenge underscores the im-

portance of constraining LLMs' use of knowledge 

that users would not typically possess to create real-

istic agent simulation environments [14]. In the next 

section, based on the attribute author has compared 

two frameworks SmartTaskAgent and Collabora-

tiveAI. 

 

IV. COMPARATIVE ANALYSIS OF SMARTTASKAGENT 

AND COLLABORATIVEAI 

SmartTaskAgent and CollaborativeAI serve distinct 

purposes within the AI landscape. SmartTaskAgent 

is tailored for tasks requiring high-quality content 

and code generation with ease of use, making it ideal 

for smaller projects and individual users. Collabora-

tiveAI, with its extensive range of AI capabilities 

and scalability, is better suited for large enterprises 

seeking comprehensive AI solutions. The choice be-

tween the two platforms will largely depend on the 

specific needs, scale, and technical expertise of the 

user or organization. 

 

TABLE 1:COMPARATIVE ANALYSIS OF SMARTTASKAGENT 

VERSES COLLABORATIVEAI 

Features SmartTaskAgent  CollaborativeAI  

Overview AI-driven tool for 

generating content 
and code 

Comprehensive 

AI platform 
offering NLP, 

computer vision, 

and data analytics 

Key Features Content generation, 

Code assistance, 

Customization  

NLP capabilities, 

Computer vision, 

Data analytics 

Strengths Efficiency: 

Automates tasks 

Accuracy: High-
quality, coherent 

content 

User-friendly: 
Intuitive interface 

Versatility: Broad 

range of AI 

applications 
Scalability: 

Handles large-

scale projects 
Integration: 

Seamlessly 

integrates with 
business systems 

Weaknesses Dependency on 

training data 
Limited scope: 

Focused on content 

and code 

Complexity: 

Steeper learning 
curve 

Cost: Potentially 

expensive for 
small businesses 

Efficiency and 

Flexibility 

SmartTaskAgent’s 

modular 
architecture allows 

for rapid 

prototyping by 
enabling developers 

to easily integrate 

and test different 
components, 

thereby reducing 

development time 
and effort. 

CollaborativeAI, 

with its robust 
orchestration 

capabilities, 

ensures seamless 
communication 

between multiple 

agents, enhancing 
their collective 

efficiency in 

performing 
complex tasks. 

Scalability Modular scalability, 

focusing on the 

independent scaling 
of specific 

components for 

rapid iteration and 
efficient resource 

utilization. 

Holistic 

scalability, 

emphasizing 
seamless 

integration and 

management of 
multiple agents 

for large-scale, 

high-concurrency 
environments. 

Scope of 

Functionality 

Specialized in 

content and code 
generation 

Broad range of AI 

services (NLP, 
computer vision, 

etc.) 

Ease of Use User-friendly for 
technical and non-

technical users 

May require more 
technical expertise 

Customization 

and 
Integration 

Fine-tuning models 

for specific needs 

Comprehensive 

integration options 
for enterprises 

Cost 

Efficiency 

Cost-effective for 

smaller projects or 
individuals 

Higher investment 

but justified for 
larger enterprises 

https://docs.crewai.com/ 

https://microsoft.github.io/autogen/docs/Getting-Started/ 

 

Hence, SmartTaskAgent is a cutting-edge AI 

framework that streamlines the creation, deploy-

ment, and interaction of AI agents. It enables agents 

to exchange messages and generate replies using 

models, tools, human inputs, or a combination of 

these, effectively representing both real-world and 

abstract entities such as individuals and algorithms. 

The framework simplifies the implementation of 



 

complex workflows through agent collaboration, fa-

cilitating the design and execution of practical work-

flows. The latest version of SmartTaskAgent fea-

tures Dynamic Group Chat and Finite State Machine 

Graphs, which offer flexibility by allowing contex-

tual selection of the next speaker and specifying le-

gal or prohibited transitions, respectively. This ex-

tensibility and composability allow for the enhance-

ment of simple agents with customizable compo-

nents, resulting in modular and easy-to-maintain so-

phisticated agents. Despite these strengths, there are 

areas where improvements are needed. The current 

method for specifying an agent’s role and persona is 

limited, as system messages can be challenging for 

designers to create effectively. Additionally, the 

process of configuring tools and enabling function 

calling within SmartTaskAgent is not intuitive, lack-

ing necessary abstractions and restricting tool use to 

models that support the OpenAI-compatible tool call 

API. The max_round attribute in GroupChat, which 

sets a limit on the number of conversations turns, is 

suboptimal because it doesn't allow for a dynamic 

assessment of the conversation's value. Further-

more, the focus on conversable agents is restrictive, 

as many business workflows do not involve conver-

sation and are ill-suited to being forced into such a 

framework. Enhancing these aspects would signifi-

cantly improve the framework’s usability and effec-

tiveness across various applications. 

In evaluating CollaborativeAI's framework for 

autonomous agents, several strengths and areas for 

improvement have been identified. The framework 

excels in its structured approach to defining agents 

through role, goal, and backstory attributes, which 

enhances clarity and methodical design. Explicit 

task definition and hierarchical scoping of tools fur-

ther bolster its functionality, making it adaptable for 

various operational needs. 

However, the framework could benefit from en-

hancements in several areas. It lacks clear support 

for contextual agent selection beyond Sequential 

and Hierarchical processes, with the Consensual 

process needing more definition. Additionally, the 

approach of assigning agents to tasks rather than the 

reverse may require rethinking for improved usabil-

ity. The max iter attribute, used to limit agent turns, 

lacks guidance on optimal setting methodology, 

suggesting a need for more flexible termination con-

ditions. Furthermore, while hierarchical processes 

are supported, the implicit creation of 'manager' 

agents should be made explicit, with provisions for 

multi-level hierarchy to better support complex 

workflows. 

Overall, addressing these aspects would enhance 

CollaborativeAI's framework, making it more robust 

and adaptable for designing autonomous agents 

across diverse applications and workflows. 

 

V. CONCLUSION 

In conclusion, optimizing efficiency and architec-

tural flexibility in rapid prototyping and scalable 

frameworks for multimodal intelligent agents repre-

sents a critical advancement in artificial intelligence. 

The integration of LLMs within frameworks such as 

SmartTaskAgent (i.e.AutoGen) and Collabora-

tiveAI's (i.e. CrewAI) underscores their potential to 

significantly enhance the functionality of intelligent 

agents through efficient multi-agent conversations 

and dynamic interaction models. These frameworks 

facilitate the modular development of agents capa-

ble of performing a wide range of tasks with high 

accuracy and adaptability. However, to fully lever-

age these capabilities, there is a need to address cur-

rent limitations such as the refinement of role-play-

ing functionalities, robustness of prompts, and miti-

gation of hallucinations. By overcoming these chal-

lenges, LLM-driven frameworks can achieve greater 

architectural flexibility and efficiency, enabling the 

deployment of sophisticated, scalable multimodal 

intelligent agents that can adeptly handle complex, 

real-world scenarios across diverse applications. 
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