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Abstract—This paper studies the application of modern deep 

convolutional and recurrent neural networks to video 

classification, specifically human action recognition. Multi-

stream architecture, which uses the ideas of representation 

learning to extract embeddings of multimodal features, is 

proposed. It is based on 2D convolutional and recurrent neural 

networks, and the fusion model receives a video embedding as 

input. Thus, the classification is performed based on this 

compact representation of spatial, temporal and audio 

information. The proposed architecture achieves 93.1% 

accuracy on UCF101, which is better than the results obtained 

with the models that have a similar architecture, and also 

produces representations which can be used by other models as 

features; anomaly detection using autoencoders is proposed as 

an example of this. 

Keywords—convolutional neural networks, human action 

recognition, recurrent neural networks, representation learning, 

video classification. 

I. INTRODUCTION 

Video classification is an important problem which has 
many applications in robotics, security, user-generated 
content moderation, etc. In addition to the classification 
having a value on its own, it is also a subproblem in more 
complex models or control systems.  

Videos are intrinsically multimodal so that one can use 
motion and auditory clues in addition to a sequence of frames. 
This gave rise to multi-stream architectures [1]-[2] which 
model spatial (still video frames), temporal (motion), and 
audio streams. The temporal stream is usually represented [1] 
by the dense optical flows between frames, which serve as the 
hand-crafted features for a model since they are computed by 
a different model or algorithm. The audio stream can be 
transformed into a spectrogram instead of using a raw 
waveform, in line with established approaches to audio 
classification [3]. 

More complex problems which include video 
classification as a subproblem may also require modeling 
other information such as text, and consequently, the complete 
model output might need to be based on all of the data sources. 
Such fusion model may receive feature representations as 
input. Because of this, it is valuable to be able to learn 
representations (embeddings) for videos. If a model can 
extract a compact representation of a video, it can be fused 
with, e.g., an embedding for the relevant text (obtained using 
techniques similar to word2vec [4]). 

Datasets, which contain clips that depict various human 
actions (like sports, playing musical instruments, etc.), are 
often used as a benchmark for video classification models. 
Examples of the popular human action recognition datasets 
are UCF101 [5] and Kinetics [6]. 

II. RELATED WORKS 

One of the first multi-stream architectures described in [1] 
is based on 2D convolutional neural networks (CNN). This 
method takes motion into account by modeling a temporal 
stream using a separate model, and the classification result is 
computed by fusing class scores returned by the two CNNs. 
The temporal stream CNN receives stacked optical flows, 
estimated over a window of several frames, as input. Although 
the motion is taken into account this way, this architecture 
might not be able to model longer videos with more complex 
actions. This is because the optical flow stacks are computed 
over relatively short windows. Fusing the class scores which 
are obtained by classifying short video segments represented 
by optical flows (in a sliding window manner) thus cannot 
model long sequences, because fusion model does not take the 
ordering of segments into account. 

The improved multi-stream model has been proposed in 
[2]. This model uses recurrent neural networks (specifically, 
LSTM [7]) which receive video segment embeddings as input: 
for the spatial stream it is a sequence of frame embeddings; 
the temporal stream is represented by a sequence of stacked 
optical flow embeddings. The audio clues are also used: a 
separate CNN classifies spectrograms. The final class scores 
are computed by fusing the predictions of the individual 
streams. Overall, the multi-stream framework proposed in [2] 
uses all of the available information and can classify videos 
which contain long and complex actions because of the use of 
RNNs. However, one downside of this method is that every 
stream is processed independently; as a result, the fusion 
model only looks at the class probabilities and thus cannot 
consider all of the information at the same time. video2vec [8] 
explores using embedding vectors of spatial and temporal 
streams for classification; however, the prediction accuracy on 
UCF101 is lower compared to [2]. 

Recently, several architectures based on 3D convolutional 
neural networks have been developed. 3D convolution and 
pooling operations are performed spatio-temporally, meaning 
that they model a volume of multiple 2D images with the third 
dimension being time, and produce another 3D volume. C3D 
[9] uses relatively shallow CNN architecture, trained from 
scratch on large video datasets, that is applied to non-
overlapping frame clips with the classification result 
computed by averaging the scores predicted for all clips. I3D 
[10] proposes inflating 2D CNNs into 3D and bootstrapping 
3D filters from 2D filters, which provides parameter 
initialization from 2D models trained on ImageNet. [11] 
explores even deeper ResNet-based architectures similar to 
those that worked well for image recognition. These 3D CNNs 
achieved very good results; however, it is worth noting that 
they were trained on very large datasets like Kinetics [6] and 
were only able to produce decent accuracy on smaller datasets 



like UCF101 after pre-training on larger ones. Models based 
on 3D convolutional networks have a bigger number of 
parameters and thus require larger datasets to train on, and 
more computational resources, compared to architectures 
based on 2D CNNs and RNNs. As a result, it seems that the 
architectures based on 3D CNNs are less sample-efficient 
compared to 2D CNN + RNN solutions, meaning that they 
require more data to achieve the same results. 

Conceptually, it seems that using recurrent neural 
networks for modeling sequences is better, because CNNs 
suffer from fundamental limitations, i.e., not modeling the 
relative positions or spatial hierarchies between objects – the 
very same problem capsule networks [12] are trying to 
address. Consequently, convolving the time dimension can 
lead to losing important information. Another drawback of 
using 3D CNNs stems from applying them to relatively short 
clips and fusing (e.g., averaging) the predictions; it is 
impractical for the input volume to span an entire video since 
it would be too big to process; however, there are cases where 
this approach would fail, for example, when a video contains 
only a short segment which depicts an action of interest (for 
classification); in this case averaging would most likely lose 
the information about some action detected in only a small 
number of segments, so the result would be incorrect. Given 
these shortcomings, although 3D CNNs work well in practice 
(on existing datasets), it is unclear whether they would 
perform as well on more complex data (long and complex 
videos, such as movies). 

III. METHODOLOGY 

The proposed architecture is based on 2D convolutional 
neural networks and recurrent neural networks. It is illustrated 

in the fig. 1. The submodels for all streams have the similar 
architecture: segments of raw data → CNN → sequence of 
segment embeddings → RNN → video-level embedding. 

A. Spatial stream 

The raw 2D images (RGB) are fed into the convolutional 
neural network to extract embedding vector which is taken 
from the last layer before the dense classification layer. 

Then the sequence of frame embeddings (of size ExL, 
where E is the length of the embedding vector, and L is the 
sequence length) is processed by the recurrent neural network, 
which returns the embedding vector with the length that 
depends on the number of hidden units in the last RNN cell. 
This embedding vector describes the entire video. 

B. Temporal stream 

The optical flows are computed between pairs of frames 
(e.g., between the first and the second frame, then between 
the second and the third frame). Then they are stacked in a 
way described in [1]. This results in stacks of size WxHx2L, 
where W is the width of a frame, H is its height, and L is the 
size of the stack (multiplied by 2 since there are x and y 
components of optical flow displacement vectors).  

Another 2D CNN is then used to extract embeddings for 
stacked optical flows. These embeddings are then processed 
by RNN, which again returns the video embedding. 

C. Audio stream 

The audio track is split into the non-overlapping examples. 
For each of them, the log-mel spectrogram is computed, which 
is then fed into the convolutional neural network to extract an 

 

Fig. 1. Architecture of the proposed model 



embedding vector. This approach follows the one described in 
[3]. Video-level embedding vector is then extracted by an 
RNN. 

D. Fusion model 

Video-level embeddings for the three streams are then 
concatenated, and the resulting vector completely describes 
the features of a video. The fusion model then computes the 
classification result (class scores). 

E. Training 

The models for every stream are trained separately. Joint 
training of the entire model is very computationally 
demanding, and [13] shows that it only yields a tiny 
improvement in accuracy. The separate training of streams 
makes the model more flexible, since replacing some 
component of the model does not require the complete re-
training. So, the training process includes training (or fine-
tuning) the CNNs, then RNNs, and then the fusion model. 

IV. IMPLEMENTATION DETAILS 

A. Image feature extraction 

As a CNN for extracting embedding vectors from the 
images, InceptionResNetV2 [14] architecture is used. This 
model achieves 80.4% accuracy on the test set of the 
ImageNet classification (CLS) challenge and 95.3% top-5 
accuracy, which makes it one of the best models as of now. 
To retrieve frame embedding, the upper dense layer (used for 
classification) is removed and the output of the top global 
average pooling layer, which produces a 1536-dimensional 
vector, is used. 

B. Optical flow computation 

Recently, it has been shown that the methods for 
estimating optical flow between frames, which use 
convolutional neural networks, outperform classical 
computer vision methods. Particularly, FlowNet 2.0 [15] 
currently has the best accuracy, so it is used in the proposed 
method. FlowNet 2.0, despite being somewhat slow, 
produces very accurate results with smooth flow fields and 
crisp motion boundaries. 

C. Optical flow feature extraction 

For extracting embeddings from optical flow stacks, the 
convolutional neural network similar to the one described in 
[1], is used. This motion CNN looks as follows: 

conv1 (7x7x96; stride 2; pooling 3x3; norm) → conv2 

(5x5x256; stride 2; pooling 3x3) → conv3 (3x3x512; stride 

1) → conv4 (3x3x512; stride 1) → conv5 (3x3x512; stride 1; 

pooling 3x3) →  full6 (4096; dropout) →  full7 (2048; 

dropout) → softmax 

Here FxFxN for convolutional layers denotes N filters of 
size FxF. Max pooling is done over 3x3 spatial windows with 
stride 2. Local response normalization used in [1] is replaced 
by batch normalization [16]. The number of neurons is 
specified in brackets for fully-connected (full) layers. 

With this architecture, extracting embedding from the last 
fully-connected layer results in a 2048-dimensional vector. 

D. Audio feature extraction 

VGGish [3] model is used for extracting a 128-D 
embedding for every audio segment. 

E. Recurrent neural network architecture 

It has been found experimentally (see “Experiments” 
section) that stacked (two layers) bidirectional GRU with 512 
hidden units performs best. This model produces 1024-
dimensional (outputs from the forward and backward RNNs 
are concatenated) video-level embedding vectors. 

F. Adaptive sampling  

It is often not practical to use all frames as input to RNN 
since it is harder to train them with long sequences. As a 
result, videos are usually subsampled to reduce 
dimensionality. This is done by selecting frames with a 
constant step, for example, taking every 5th frame. 

This paper proposes the adaptive sampling method which 
uses variable step depending on the amount of information a 
specific video segment contains. 

Specifically, computing optical flow between two frames 
produces displacement vectors for every pixel. The speed of 
a movement can be estimated by looking at the lengths of 
these vectors. It might be advantageous to select more frames 
from the video segments which contain faster movement. As 
a result, the number of samples selected from a segment is 
suggested to be made proportionate to average displacement 
vectors lengths between frames in this segment. 

G. Fusion model 

Linear support vector machine (SVM; i.e., hinge loss and 
L2 regularization) is used as a fusion model. 

V. EXPERIMENTS 

A. Dataset 

Experiments were performed on UCF101 [5], which is a 
widely used human action recognition dataset that contains 
13320 video clips annotated into 101 classes. The video clips 
have a resolution of 320x240 and a fixed frame rate of 25 
frames per second. UCF101 provides three train/test splits; 
this paper reports the results on the first split. 

B. Training 

Fine-tuning upper layers (3 Inception blocks) of spatial 
CNN (InceptionResNetV2) on UCF101 didn’t yield any 
improvement, so pre-trained (on ImageNet) weights are used. 

 UCF101 doesn’t have enough audio data for training or 
fine-tuning a sufficiently deep convolutional neural network. 
Thus, VGGish [3] model is used with the weights pre-trained 
on AudioSet [17]. 

Motion CNN is trained from scratch, as well as RNNs for 
all streams.  

C. Preprocessing 

Before feeding frames to CNN, they are resized to 
299x299x3 which is the default input size for 
InceptionResNetV2. 

Videos are limited to the first 36 seconds (only one clip in 
UCF101 is longer). Sequence length is limited to 180, and 



frames are sampled using the adaptive sampling method 
described above. 

For motion CNN, the native video resolution of 320x240 
is used. 

D. Training setup and parameters 

RNN models were trained using stochastic gradient 
descent (SGD) with Nesterov momentum (also known as 
Nesterov Accelerated Gradient or NAG). Learning rate has 
been reduced by a factor of 10 if validation loss hadn’t 
decreased for 5 epochs. Initial learning rate for SGD was   10–

2, and the lowest possible value (after reductions) was  10–6. 

Adaptive gradient methods (like Adam, RMSProp, or 
Adadelta) didn’t yield significantly faster convergence when 
training RNNs, and NAG usually produced better results, 
which is consistent with published observations [18]. Adam 
was only used for motion CNN which benefits from faster 
convergence since it was trained from scratch. Default 
parameters provided in the original paper [19] were used. 

Batch size was 32. Training has been run for some number 
of epochs until validation loss had stopped improving: if it 
hadn’t decreased for 10 epochs, the training had been ceased.  

In RNN models, dropout (with the rate of 0.5) was applied 
to the input layer, between RNN model and top dense layer, 
and between LSTM/GRU layers.  

L2 regularization parameter for linear SVM (fusion 
model) was set to 10–2. 

E. Selecting RNN architecture 

Different RNN model architectures (based on LSTM and 
GRU) with a varying number of hidden units were trained on 
the spatial stream data. Results are shown in the Table I. Loss 
function used was the cross-entropy loss (top dense layer used 
softmax activation function). The best model (marked with 
(*)) was also evaluated with linear SVM, and with attention 
layer [20] applied after the input layer. 

“S.” denotes two stacked layers, and “Bi” prefix means 
bidirectional layer was used; the specified number of units is 
per single LSTM/GRU cell in a model.  

TABLE I.  SPATIAL STREAM CLASSIFICATION RESULTS WITH 

DIFFERENT RNN ARCHITECTURES 

Model Hidden units Top-1, % Top-5, % 

LSTM 256 76.24 93.49 

LSTM 512 77.09 93.09 

LSTM 1024 77.07 93.62 

LSTM 2048 76.22 93.62 

GRU 512 77.83 93.88 

GRU 1024 77.81 93.17 

BiLSTM 512 77.36 93.41 

BiLSTM 1024 75.93 93.49 

BiGRU 512 77.33 93.46 

BiGRU 1024 77.52 93.41 

S. LSTM 512 74.71 92.80 

S. LSTM 1024 76.80 94.09 

S. GRU 512 77.09 93.03 

S. GRU 1024 77.22 93.25 

S. BiGRU (*) 512 78.34 93.51 

S. BiGRU 1024 77.15 93.17 

S. BiLSTM 512 74.50 92.77 

S. BiGRU + attention 512 75.03 92.89 

S. BiGRU + SVM 512 79.40 90.84 

Results show that the models with RNN cells that contain 
512 or 1024 units generally perform best on this task. Stacked 
GRU layers provide better accuracy than stacked LSTM 
layers, likely because they are less prone to overfitting since 
they have fewer parameters. Using attention layer 
significantly decreased the accuracy. The best top-1 
classification accuracy (78.34%) has been obtained with two 
stacked bidirectional GRU layers with 512 hidden units in 
every cell. This was further improved by using SVM instead 
of softmax, which increased the accuracy to 79.40%.  

F. Model evaluation 

Finally, the complete model was evaluated after training 
motion CNN and RNNs for all streams. Table II shows the 
results and the comparison with other models. 

VI. DISCUSSION 

The proposed model achieved better accuracy than the 
models which have the similar architecture [1]-[2] (2D CNN 
+ RNN), and the result is significantly better compared to [8] 
which also used embeddings for classification. It also 
outperforms early 3D CNN architecture [9]. [10] and [11] 
obtain better results, however, these are much more 
complicated models which were pre-trained on much bigger 
dataset (Kinetics); consequently, their results are not directly 
comparable. The proposed model achieves good results 
without pre-training on bigger datasets, and thus it is better 
suited for use cases where the limited amount of training data 
is available.  

VII. ANOMALY DETECTION 

It has been stated that the video embeddings extracted by 
the proposed model can be used as features input to another 
model. Anomaly detection using autoencoders can be an 
example of this. Detecting anomalies in a video stream is 
useful for a variety of applications; for example, traffic 
camera feed can be analyzed to detect accidents.  

 

 

 

TABLE II.  MODEL EVALUATION RESULTS AND COMPARISON 

 UCF101 

top-1, % 

Type Streams Pre-training 

Proposed 
model 

93.1 2D CNN + 
RNN 

(GRU) 

Spatial, 
temporal, 

audio 

Spatial 2D CNN 
on ImageNet 

Two-stream 
fusion [1] 

88.0 2D CNN Spatial, 
temporal 

Spatial 2D CNN 
on ImageNet 

Multi-

stream [2] 

92.6 2D CNN + 

RNN 

(LSTM) 

Spatial, 

temporal, 

audio 

Spatial 2D CNN 

on ImageNet 

video2vec 

[8] 

87.5 2D CNN + 

RNN 

(GRU) 

Spatial, 

temporal 

Spatial 2D CNN 

on ImageNet 

C3D [9] 90.4 3D CNN Spatial, 

temporal 

I380K (private) 

+ Sports-1M 

(public) 

I3D [10] 98.0 3D CNN Spatial, 
temporal 

ImageNet + 
Kinetics 

ResNeXt-

101 (64f) 
[11] 

94.5 3D CNN Spatial Kinetics 

 



Autoencoder model consists of an encoder, a bottleneck, 
and a decoder. The idea of anomaly detection using 
autoencoders is that because the hidden layer (bottleneck) has 
much lower dimensionality than the input, it only learns the 
most important features; putting it another way, it learns the 
most frequent features; so, in the context of anomaly 
detection problem, it would learn the features of normal 
examples because there is a majority of them. The 
autoencoder loss function measures the difference between 
the input and the reconstructed output and can be, for 
example, a mean squared error. So, after training an 
autoencoder, anomalous examples would have a higher 
reconstruction error than the normal ones.  

The video embedding vectors can be used as an input to 
autoencoder. The bottleneck layer would need to have lower 
dimensionality (than embeddings), and autoencoder would 
learn to reconstruct the input embeddings. This would have 
an effect of losing information related to anomalous examples 
so they would have a higher reconstruction error. 
Theoretically, the proposed model can be used as an encoder 
part of an autoencoder. However, such autoencoder would be 
extremely hard to train before of a large number of 
parameters; using embeddings serves as an easy way to 
perform anomaly detection with autoencoder that can have a 
simple architecture. 

VIII. CONCLUSIONS 

This paper presented a multi-stream model for learning 
video representations, which takes spatial, temporal and 
audio streams into account. It is based on two-dimensional 
convolutional and recurrent neural networks.  

It has been shown that the individual components of this 
model can be trained separately. The resulting embeddings 
can be fused to perform classification, which has been shown 
to outperform the similar architectures, achieving 93.1% 
accuracy on UCF101.  

Compared to the previous works, the proposed model 
uses more modern architectures and techniques, e.g., the 
optical flow estimation method based on convolutional neural 
networks. The adaptive sampling method has also been 
proposed; it allows to sample frames from a video at a 
variable rate depending on the amount of information in a 
video segment so that the segments with faster movement are 
represented by a higher number of training examples. 

The video representations, extracted by this model, can be 
used as features input to another model; using them in 
anomaly detection with autoencoders has been described as 
an example.  

It is argued that having the proposed model use recurrent 
neural networks is beneficial because such architectures tend 
to be more sample-efficient, i.e., can be trained with fewer 
data. It also avoids the pitfalls of applying convolutional 
neural networks to the time dimension, which results in the 
loss of long-term context and order. Consequently, this model 

can also be more successful in modeling longer videos with 
more complex actions. 
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