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Abstract. In this study, We consider the Gompertz diffusion process-
based stochastic inhomogeneous model. We begin by obtaining the an-
alytical formulation for the process’s probabilistic properties, the mean
functions (conditional and non-conditional). Then, using the maximum
likelihood technique and discrete sampling, we estimate the model’s pa-
rameters. Finally, we used the stochastic inhomogeneous Gompertz dif-
fusion process to analyze the development of the electric power consump-
tion in Morocco in order to assess this method’s capacity for modeling
actual data.

Keywords: Inhomogeneous Gompertz diffusion model · Stochastic dif-
ferential equation · Statistical inference in diffusion process · Mean
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1 Introduction

Our daily use of electricity results from the transformation of primary energy
sources like coal, natural gas, nuclear energy, solar energy, and wind energy into
electrical power, making it a secondary energy source. Since electricity may be
transformed into other types of energy, such as mechanical energy or heat, it is
sometimes referred to as an energy carrier. Although the power we consume is
neither renewable nor nonrenewable, the primary energy sources are both.

The energy industry in Morocco is largely reliant on imported hydrocarbons.
Currently, the nation imports around 90% of its energy requirements. Since 2004,
the total primary energy consumption has grown by roughly 5% annually.
The development of the renewable energy industry is a top priority for the Mo-
roccan government. The General Secretariat of the Government has received an
amendment to Laws 13-09 on Renewable Energy and 16-08 on Self-Generation
? ENSAB
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from the Ministry of Energy, Mines, and the Environment. While ensuring
the security and viability of the national electrical grid, these revisions seek
to strengthen the legal and regulatory framework governing renewable energy
projects undertaken by the private sector. Per the state-owned power utility
ONE, Moroccos electricity demand increased at an average annual rate of 6.7%
between 2003 and 2013 as a result of population and economic expansion, result-
ing in an energy consumption of 32,015 GWh at the end of that year. From 483
kWh in 2002 to 843 kWh (approximate, estimate) in 2013, annual consumption
per person has continuously climbed. Therefore, we draw the conclusion that
modeling the evolution of energy consumption in general, and total electrical
energy consumption in particular, as well as obtaining short- and medium-term
forecasts, are very helpful in better understanding the historical development of
the Moroccan economy and predicting its future development, as well as eval-
uating the impacts of this consumption on the global energy market. Deter-
mining short- and medium-term demand projections was the goal of this study,
which served as the foundation for a more thorough investigation of the Moroc-
can energy market. This Fig. 1 shows the total renewable electricity net con-
sumption and total electricity net consumption in Morocco (can be consulted at
https://morocco.opendataforafrica.org/).

Fig. 1: Total renewable electricity net consumption and total electricity net con-
sumption in Morocco.

The Stochastic Gompertz diffusion process (SGDP) is used to model stochas-
tic phenomena in various fields of science. The homogenous case of this process
was was introduced by Ricciardi (cf. [1]) in a theoretical form, and subsequently
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applied by Ferrante et al (cf. [2]) (growth of cancer cells) and by Gutiérrez et
al (cf. [3]) (consumption of natural gas in Spain). and stock of motor vehicles
in Spain (cf. [4]).However, the non-homogeneous case in which only the intrin-
sic growth rate in the drift is affected by exogenous factors (functions of time
and some parameters) and with a constant deceleration coefficient, was applied,
for example, in the price of new housing in Spain (cf. [5])and to the emission
of CO2 (cf. [6]). Finally, Ferrante et al (cf. [7]) considered a non-homogeneous
version in which the growth rate is the sum of two exponential functions that
are exogenous factors. In the curent study, we define the stochastic inhomoge-
neous Gompertz diffusion process (SIGDP), which is used in various contexts.
We first obtain the probabilistic characteristics of the process sush as the analyt-
ical expression, the transition probability density function (TPDF) , the mean
functions (conditional and non-conditional). Then, we estimate the parameters
by the maximum likelihood (ML) approach, with discrete sampling and getting
the confidence bounds for the parameters. Finally, to evaluate the capability of
this process for modeling real data, we applied the SIGDP to study the evolution
of the electric power consumption in Morocco.

2 Basic probabilistic properties of the model

2.1 The suggested model

The following diffusion process provides the model’s stochastic counterpart {x(t); t0 ≤
t ≤ T} taking values on (0,∞), x(t) is a solution of the following stochastic dif-
ferential equation (SDE)

dx(t) =

(
ax(t)− h′(t)

h(t)
x(t)log(x(t))

)
dt+ σx(t)dw(t). (1)

Where σ > 0, w(t) is a one-dimensional standard Wiener process, a represent
the intrinsic growth rate and the function h(t) is differentiable.

2.2 The process as analytically expressed

By the use of the Itô rule at the time-dependent transformation y(t) = h(t) log(x(t)),
the SDE becomes

dy(t) = h(t)

(
a− σ2

2

)
dt+ σh(t)dw(t),

By integrating, we have

y(t) = y(s) + (a− σ2

2
)

∫ t

s

h(θ) dθ + σ

∫ t

s

h(θ)dw(θ).

Finally, it follows that the explicit expression of the process

x(t) = exp

{
h(s)

h(t)
log(x(s)) +

(a− σ2

2 )

h(t)

∫ t

s

h(θ) dθ +
σ

h(t)

∫ t

s

h(θ)dw(θ)

}
(2)
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2.3 Probability distribution of the

As the random variable
∫ t

s
h(θ)dw(θ) has a one-dimensional normal distribution

N1(0,
∫ t

s
h2(θ)dθ), we can deduce that the random variable x(t)/x(s) = xs ∼

Λ1(µ(s, t, xs), σ
2ν2(s, t)), a one-dimensional log-normal distribution with

µ(s, t, xs) =
h(s)

h(t)
log(x(s)) +

(a− σ2

2 )

h(t)

∫ t

s

h(θ) dθ,

ν2(s, t) =
1

h2(t)

∫ t

s

h2(θ)dθ.

The TPDF of this process f(x, t|y, s) takes the form

f(x, t|y, s) = 1

x
√
2πσ2ν2(s, t)

exp

(
− [log(x)− µ(s, t, x)]2

2σ2ν2(s, t)

)
. (3)

2.4 Computation of the mean function

From the properties of the Lognormal distribution, the r-th conditional moment
of the process is

E(xr/x(s) = xs) = exp

(
rµ(s, t, xs) +

r2σ2ν2(s, t)

2

)
.

For r = 1, the conditional mean function (CMF) of the process is:

E(x(t)/x(s) = xs) = exp

{
h(s)

h(t)
log(x(s)) +

(
a− σ2

2

)
h(t)

∫ t

s

h(θ)dθ +
σ2

2h2(t)

∫ t

s

h2(θ)dθ

}
.

(4)

Assuming the initial condition P (x(t1) = x1) = 1, the mean function (MF) of
the process is

E(x(t)) = exp

{
h(t1)

h(t)
log(xt1) +

(
a− σ2

2

)
h(t)

∫ t

t1

h(θ)dθ +
σ2

2h2(t)

∫ t

t1

h2(θ)dθ.

}
(5)

3 Inference on the model

Let us then examine in this section the ML estimation of the parameters of the
model from which we can obtain, by virtue of Zehnas theorem [8], the corre-
sponding for the aforementioned parametric functions.
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3.1 Parameter estimation

We consider a discrete sampling of the process x1, x2, · · · , xn for times t1 < t2 <
· · · < tn. The likelihood function depends on the choice of the initial distribution.
If P (x(t1) = x1) = 1, the associated likelihood function can be written as

L(x1, · · · , xn, α, σ
2) =

n∏
i=2

f(xi, ti|xi−1, ti−1),

which is written as

L =

n∏
i=2

1

xi

√
2πσ2ν2(s, t)

exp

−

{
log(xi)−

h(ti−1)

h(ti)
log(xi−1)−

(a− σ2

2 )

h(ti)

∫ ti
ti−1

h(θ) dθ

}2

2σ2ν2(s, t)

 .

As mentioned above, in order to facilitate the computation of the ML estimators
and to express them in a simplified form, we shall state the likelihood function in
a vector form, considering the following transformation of the discrete sampling

of the process: v1 = x1, and vi = ν−1
i

(
log(xi)−

h(ti−1)

h(ti)
log(xi−1)

)
for i = 2, · · · , n with thus, the likelihood function can be obtained from Equation
(3) by the following expression

L(v,a, σ2) = [2πσ2]−(n−1)/2exp

{
− 1

2σ2
(v −U

′
a)

′
(v −U

′
a)

}
where

a = a− σ2/2, v = (v2, · · · , vn)
′
,

νi = ν(ti−1, ti),

ui =
ν−1
i

h(ti)

∫ ti

ti−1

h(θ)dθ

and U is the 1 × (n − 1) matrix, whose rank is assumed to be 1, given by
U = (u2, · · · ,un).

The log-likelihood for Equation (3) has the following form

Log(L(v,a, σ2)) = −n− 1

2
log(2π)− n− 1

2
log(σ2)− 1

2σ2
(v −U

′
a)

′
(v −U

′
a)

By deriving the log-likelihood function with respect to σ2 and a we obtain

∂Log(L)
∂σ2

= −n− 1

2σ2
+

1

2σ4
(v −U

′
a)

′
(v −U

′
a) (6)
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∂Log(L)
∂a

= − 1

2σ2

∂[(v −U
′
a)

′
(v −U

′
a)]

∂a
=

1

σ2
U(v −U

′
a) (7)

Making the derivatives (6) and (7) equal to zero, we obtain the following equa-
tions

−(n− 1)σ2 + (v −U
′
a)

′
(v −U

′
a) = 0 (8)

Uv −UU
′
a = 0 (9)

The equations (8) and (9) becomes

Uv = UU
′
a (10)

(n− 1)σ2 = (v −U
′
a)

′
(v −U

′
a) (11)

The ML estimators of a and σ2 yield

â = (UU
′
)−1Uv (12)

(n− 1)σ̂2 = v
′
Huv (13)

where the matrix Hu is the symmetric and idempotent matrix given by

Hu = In−1 −U
′
(UU

′
)−1U.

3.2 Estimated mean functions

By using Zehna’s theorem [8], the Estimated Mean Function (EMF) and Esti-
mated Conditional Mean Function (ECMF) of the proposed model are obtained
by replacing the parameters in Equations (4) and (5) by their estimators given
in Equations (12) and (13). Then, the ECMF has the following expressions:

E(x(t)) = exp

{
h(s)

h(t)
log(xs)+

(
â− σ̂2

2

)
h(t)

∫ t

s

h(θ)dθ+
σ2

2h2(t)

∫ t

s

h2(θ)dθ.

}
(14)

Under the initial condition P (x(t1) = x1) = 1, the EMF of the process is:

E(x(t)) = exp

{
h(t1)

h(t)
log(xt1) +

(
â− σ̂2

2

)
h(t)

∫ t

t1

h(θ)dθ +
σ2

2h2(t)

∫ t

t1

h2(θ)dθ.

}
(15)

3.3 Properties of maximum likelihood estimators

Distribution of maximum likelihood estimators The likelihood function
can be rewritten in the following form

L(v,a, σ2) = [2π]−
(n−1)

2 |σ2In−1|−1/2exp

{
−1

2
(v −U

′
a)

′
(σ2In−1)

−1(v −U
′
a)

}
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From which, we deduce that

v ∼ Nn−1(U
′
a, σ2In−1)

The rank of U is supposed equal 2. Then, (UU
′
)−1U has the same rank, and

we have

(UU
′
)−1Uv ∼ N2

(
(UU

′
)−1UU

′
a, σ2(UU

′
)−1(UU

′
)(UU

′
)−1

)
and therefore, we have

â ∼ N1

(
a, σ2(UU

′
)−1

)
In order to obtain the distribution of σ̂2, we make use the following result (see
for example [9], corollary 2.11.2):

Corollary 1. If Z ∼ Np[µ,Σ], Σ non singular and Bp×p symmetric, then,
Z ′BZ ∼ χ2

k(δ), where k = rank(B) and δ = µ′Bµ if and only if BΣ is idempo-
tent.

As HU is symmetric and idempotent, then,

rank(HU ) = tr(HU ) = n− 2,

then using the last result in the particular case: Z = σ−1v, Σ = In−1, B = HU

and µ = U′a, we have

v′

σ
HU

v

σ
∼ χ2

n−2(δ), with δ = a′UHUU
′a = 0

and therefore
(n− 1)σ̂2

σ2
∼ χ2

n−2

The independence between â and σ̂2 can be proved by using the following
result (see Ref. [9] corollary 2.11.4, p.66).

Corollary 2. Let Z ∼ Np[µ,Σ], with Σ > 0. Then, yj = Z ′AjZ + 2b′jZ +
cj , j = 1, 2 are independently distributed if and only if A1ΣA2 = 0, A2Σb1 =
0, A1Σb2 = 0, and b′1Σb2 = 0.

If we choose Z = v ∼ Nn−1(U
′a, σ2In−1); A1 = HU ; b1 = 0; c1 = 0 and A2 =

0; b2 = (UU′)−1U and c2 = 0 then the necessary and sufficient conditions of
corollary 3 are satisfied and therefore (UU′)−1Uv and v′HUv are independently
distributed, which means that â and σ̂2 are independently distributed.

Sufficiency and completeness of the estimators By subtracting and adding
U′â to v −U′a, expression of likelihood function becomes

L(v,a, σ2) =
1

[2πσ2]
(n−1)

2

exp

{
− 1

2σ2
[(n− 1)σ̂2 + (â− a)′UU′(â− a)]

}
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which means that (â, σ̂2) is conjointly sufficient for (a, σ2).
The completeness follows by means of a similar reasoning to that established for
the maximum likelihood estimators of the parameters of the multivariate normal
distribution (see, for example, Anderson [10]).
And so the estimators â and (n−1)σ̂2

(n−2)σ2 are the UMVUE for a, σ2, respectively.

confidence bounds The (1 − α)% confidence bound for the parameter σ2 is
given, by [

â− σ̂.tα/2,n−2/
√
n− 1, â+ σ̂.tα/2,n−2/

√
n− 1

]
(16)

[
(n− 1)σ̂2/χ2

α/2,n−2, (n− 1)σ̂2/χ2
1−α/2,n−2

]
(17)

where χ2
α,n and tα,n are the upper 100α per cent points of the chi squared dis-

tribution and the Student distribution, respectively, with n degrees of freedom.

4 Application

The model used in this study was applied to actual data for Morocco’s total
electricity usage (reported in billion kilowathours) from 1800 to 2012. These
statistics, which relate to sales by ONE, the Moroccan authority, are accessible
at https://morocco.opendataforafrica.org/. Two steps that make up the method-
ology are as follows::
• The first step: To estimate the model’s parameters, start with the first 30 data
in the sequence of observations being analyzed, using expressions (12) and (13).
Then establish the relevant confidencebounds using equations (16) and (17).
• The second step:Predict the corresponding values for Morocco’s electricity
consumption for the years 2011 and 2012 using the estimated mean function
(EMF) and estimated conditional mean function (ECMF), which were obtained
by swapping the parameters in expressions (14) and (15), with their respective
estimators, and then contrast the results with the corresponding observed data
for the same years.

For the computations needed for the present study, a Matlab application was

used. Think about it, for example, the function h(t) =
1− t2 − t4

t+ 1
, The corre-

sponding estimators’ values, and the confidence bounds, are â = 0.060651 and
σ̂ = 1.094854.10−3 with confidence bounds (0.048313; 0.072988) and (0.699151; 1.956171).10−3.

Table 1 explains the fit and forecast made possible by the EMF with its
EMFl and EMFu.
Table 2 explains the fit and forecast made possible by the ECMF with its
ECMFl and ECMFu.
Fig. 1 illustrates the relationship between the real data and the fit and forecast
made using the EMF with EMFl and EMFu.
Fig. 2 illustrates the fit and forecasting made with the ECMF of the model
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with respect to the real data.
MATLAB was used to do all computations.

Table 1: Real data, EMF, EMFl and
EMFu

Year Real data EMF EMFl EMFu

1980 4.409 4.409 4.409 4.409
1981 4.774 4.676 4.615 4.734
1982 5.130 4.959 4.832 5.082
1983 5.612 5.259 5.057 5.455
1984 5.776 5.577 5.294 5.856
1985 5.884 5.914 5.541 6.284
1986 6.568 6.269 5.798 6.744
1987 7.018 6.646 6.068 7.237
1988 7.656 7.045 6.349 7.764
1989 7.744 7.467 6.643 8.329
1990 8.370 7.914 6.951 8.935
1991 8.877 8.387 7.272 9.583
1992 9.804 8.888 7.607 10.277
1993 10.218 9.417 7.957 11.021
1994 10.350 9.977 8.323 11.817
1995 11.404 10.569 8.706 12.669
1996 11.617 11.196 9.105 13.581
1997 12.114 11.859 9.521 14.558
1998 12.935 12.560 9.956 15.603
1999 13.103 13.301 10.411 16.721
2000 13.050 14.085 10.885 17.917
2001 14.351 14.914 11.380 19.198
2002 14.856 15.790 11.897 20.567
2003 16.361 16.716 12.437 22.032
2004 17.411 17.695 13.001 23.599
2005 18.315 18.730 13.588 25.275
2006 19.872 19.824 14.202 27.067
2007 21.266 20.980 14.842 28.983
2008 21.751 22.201 15.511 31.032
2009 22.243 23.492 16.208 33.222
2010 24.844 24.855 16.935 35.563
2011 26.871 26.296 17.695 38.065
2012 28.946 27.818 18.486 40.739

Table 2: Real data, ECMF, ECMFl and
ECMFu

Year Real data ECMF ECMFl ECMFu

1980 4.409 4.409 4.409 4.409
1981 4.774 4.676 4.616 4.732
1982 5.130 5.063 4.998 5.123
1983 5.612 5.440 5.370 5.504
1984 5.776 5.950 5.874 6.021
1985 5.884 6.123 6.045 6.196
1986 6.568 6.238 6.158 6.312
1987 7.018 6.962 6.873 7.045
1988 7.656 7.438 7.343 7.527
1989 7.744 8.113 8.010 8.210
1990 8.370 8.206 8.102 8.304
1991 8.877 8.869 8.756 8.974
1992 9.804 9.405 9.285 9.517
1993 10.218 10.386 10.254 10.509
1994 10.350 10.824 10.686 10.953
1995 11.404 10.964 10.824 11.094
1996 11.617 12.078 11.924 12.222
1997 12.114 12.304 12.147 12.449
1998 12.935 12.829 12.666 12.982
1999 13.103 13.697 13.523 13.861
2000 13.050 13.875 13.698 14.041
2001 14.351 13.819 13.643 13.983
2002 14.856 15.195 15.001 15.375
2003 16.361 15.729 15.528 15.916
2004 17.411 17.319 17.098 17.525
2005 18.315 18.429 18.193 18.648
2006 19.872 19.385 19.137 19.6147
2007 21.266 21.031 20.762 21.281
2008 21.751 22.503 22.215 22.770
2009 22.243 23.016 22.722 23.289
2010 24.844 23.536 23.235 23.815
2011 26.871 26.284 25.948 26.596
2012 28.946 28.426 28.062 28.763
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4.1 Fit quality
The following scale-dependent measurements and quantities are based on abso-
lute errors, squared errors, and percentage errors:

Mean Absolute Error (MAE) =
1

N

n∑
i=1

| x(ti)− x̂(ti) |,

Root Mean Square Error (RMSE) =

√√√√ 1

N

n∑
i=1

(x(ti)− x̂(ti))2,

Mean Absolute Percentage Error (MAPE) =
1

N

n∑
i=1

| x(ti)− x̂(ti) |
x(ti)

× 100.

with x̂(t) is obtained by substituting the parameters in Equation (2) by their
estimators.
The values obtained for the above error measures are acceptably low, especially
the MAPE according to Table (3). The statistical measures obtained are illus-
trated in the Table (4).

Table 3: Interpretation of typical Mean Absolute Percentage Error (MAPE)
values.
MAPE Interpretation
< 10 Highly accurate forecasting
20− 30 Good forecasting
30− 50 Reasonable forecasting
> 50 Inaccurate forecasting

5 Conclusions
This article presents a study of the non-homogeneous stochastic Gompertz diffu-
sion process (NHSGDP), including all its probabilistic properties and the corre-
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Table 4: Fit quality of the model.
Measures of Forecasting Accuracy Error Values of NHGDP
MAE 0.361247990035216
RMSE 0.459024822910505
MAPE 2.759618319944835

sponding statistical inference. As a particular case in the limit comparison test,
we also study the homogeneous stochastic Gompertz diffusion process (HSGDP).
In the future, it will be possible to apply these models to fit real data and to
obtain goodness of fit results between the processes and the data. We will also
study the possibility of defining all these processes in their non-homogeneous
form, by introducing exogenous factors, and considering the use of numerical
methods to obtain the estimates.
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