ﬁ EasyChair Preprint

Ne 11514

Automated Formalization of Biological Model
Properties into Temporal Logics Using Large
Language Models

Sumit Kumar Jha, Pranav Sinha and Sunny Raj

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

December 12, 2023

Automated Formalization of Biological Model
Properties into Temporal Logics using Large
Language Models

Sumit Kumar Jha
School of Computing and Information Science
Florida International University
Miami, FL, USA
jha@cs.fiu.edu

Abstract—In this paper, we demonstrate for the first time
that large language models (LLMs) can be used to translate
descriptions of biological model properties into formalized lin-
ear temporal specifications (LTL). We obtain these properties
from published work on biological models and then use GPT-
3.5 and 4 to formalize the description using LTL. Previous
work decomposes the problem into multiple steps and utilizes
multiple translation algorithms to perform the conversion. This
decomposition of the translation task was needed with older
neural networks and LLM models but is non-intuitive and can
lead to compounding the accumulated errors. Our experimental
evaluations show that state-of-the-art LLMs such as GPT-3.5 and
4 can successfully generate model specifications from descriptions
without decomposing the translation into multiple sub-tasks and
can provide an intuitive and convenient way to convert natural
language into LTL specifications.

Index Terms—Automated Formalization, LLM, Al

I. INTRODUCTION

Linear temporal logic has been used to specify complex
system behavior in multiple fields, including systems biology,
robotics, and verification. Writing formal specifications of
these systems is challenging, time-consuming, and error-prone
even for experts in the field [1], and so there have been
multiple attempts with varying degrees of success to automate
the process of converting natural language descriptions into
formal LTL specifications. While there is existing literature
on natural language to LTS translation in fields like robotics
and verification, work on biological models has been lacking
and is the focus of this paper [1, 8, 6].

Early work on automated translation utilized machine learn-
ing techniques, while more recent work utilized transformers
and large language models (LLMs) to perform the transla-
tions [1, 8]. However, most of these works decompose the
translation into multiple steps, each step being realized using
a specialized neural network or machine learning model. Most
of these translations require some form of human feedback
for proper functioning and still need expert involvement in the
translation process. Furthermore, methods using LLMs require
prompt engineering and few-shot learning as intermediate
steps for the proper functioning of these translations. Powerful

Pranav Sinha
Computer Science and Engineering Computer Science and Engineering
Oakland University
Rochester, USA
pranavsinha@oakland.edu

Sunny Raj

Oakland University
Rochester, MI, USA
raj@oakland.edu

LLMs were not available during the publication of these
papers, which could be a reason for their complexity. In this
paper, we want to answer the simple question: can state-
of-the-art LLMs automatically convert natural language into
LTL specifications without needing constant expert human
oversight? After performing experiments using biological de-
scriptions in multiple published works, we answer the question
in the affirmative, stating that LLMs can indeed generate these
formalized LTL specifications.

II. RELATED WORK

Some of the earliest work on automated LTL genera-
tion focused on converting structured English grammar into
specification patterns and then into LTL [7]. Later attempts
used SMT solving and semantic parsing [3]. State-of-the-art
approaches have started utilizing neural networks and large
language models to do the translation [1, 8]. However, all of
these approaches are based on older models of GPT and thus
require complex designs to perform translations. The nl2spec
framework proposed by Cosler et al. uses LLM to decompose
natural text into sub-translations, with each sub-translations
having a confidence score that needs to be checked and
edited by the framework user [1]. Once the sub-translations
is verified by an expert, only then can the final translated
LTL specification be generated. This approach requires prompt
engineering for the LLM to perform the translation effectively.

The Lang2LTL framework proposed by Liu et al. similarly
decomposes the translation into multiple sub-tasks, includ-
ing named-entity recognition, grounding, and, finally, trans-
lation [8]. The named-entity recognition step identifies and
replaces names with symbols, while the grounding task iden-
tifies environment propositions. The transformed text is then
finally translated into LTL specification using the GPT-3 LLM.
The method also provides a way of obtaining the accuracy
of the conversions but does not seem to handle situations
where the LLM generates a correct but differently worded
LTL specification. We hypothesize that these sub-steps are
unnecessary for a sufficiently powerful large language model.
During our experiments with GPT-4, we observed that the

named-entity recognition and grounding occur independently,
and the model might produce multiple correct answers.

III. BACKGROUND
A. Linear Temporal Logic

Linear Temporal Logic (LTL) is a formal logic that deals
with the specification and verification of temporal properties
in systems. It has operators that allow the precise expression
of properties about the sequences of states in a system over
time. LTL extend the propositional logic using the operators N
(next) and U (until). LTL specifications can be written using
the following grammar:

pu=x~v|[d1Voa| o1 Ad2| ¢ | Nyd | ¢1Uja 02

where ~ € {>,<,=},v € Q, and z is a state variable. N is
the next temporal operator and U is the until temporal operator
with time constraints [a] and [a, b]. The formula Nig¢ holds
if ¢ holds for the next a time steps. The formula ¢1U(4)02,
holds if ¢; holds until ¢o holds at a future time instance.
Other popular variants G (globally or always) and F (finally
or eventually) can be constructed using X and U. G¢, specifies
that ¢ must hold at all times, whereas F¢, specifies that ¢ must
hold eventually, or at least once.

B. Large Language Models

Large language models, including GPT, BERT, TS5, and
Bloom, are built using the transformer neural network archi-
tecture and provide state-of-the-art performance on language-
related tasks [11, 12, 2, 10]. LLMs are enormous in size,
with GPT-3 containing around 175 billion parameters, GPT-
3.5 containing more than double that, and GPT-4 estimated
to have more than 1 trillion parameters. These models are
often pre-trained on massive amounts of data, allowing them
to learn intricate patterns and relationships that enable them
to excel at language processing and translation. LLMs can
act as repositories of information and have knowledge about
wide-ranging subjects.

LLMs can perform extraordinary feats and then fail at
seemingly simple tasks. Given the recent emergence and the
apparent power of these LLM models, there is still a long way
to go to understand their full capabilities and limitations. To
remove some of the mystery, in this paper, we investigate if
LLMs can be used for converting natural language descriptions
of biological models into LTL specifications. We pick up these
descriptions from various published works and then use LLM
to generate the specifications. We then manually check the
generated LTL specification for correctness, and we further
contrast it with the LTL specifications in the published work.
Through experimental evaluations, we find that LLMs generate
multiple correct and some incorrect responses and are usually
written using different LTL operators.

IV. AUTOMATED FORMALIZATION

We obtain biological model properties from multiple
published documents and use both GPT-3.5 and GPT-4 to

convert them into LTL specifications [9, 6, 4, 5]. To run GPT-
4 we used the API from inside the python code. The prompt
is as follows: “Convert the following text in Linear Temporal
Logic, without using the Next operator: Description. Please
type your answer in latex code.” We require the output in
latex as the LTL specification uses special symbols that
need to be typed properly. GPT-3.5 refused to produce latex
code using the API, so we used the ChatGPT interface to
get the output. Examples of such conversions are listed below:

Description: Grb2 binds to FRS2 within 20 time units [6].
Published: F<?°(FRS2_GRB > 0)

Response GPT-4: F<2(Grb2BindsFRS2)

Response GPT-3.5: F(TU<5(¢))

In the published work, FFRS2_GRB > 0 is understood
as Grb2 binds to FRS2, GPT-4 being unaware of this, uses
the symbol Grb2BindsFRS2 to represent the same concept.
Similarly GPT-3.5, make ¢ equal to Grb2 binds to FRS2.
Both of the outputs listed above are correct, but the GPT-4
response is closer to the description in the published paper.

Description: G protein stays above the threshold of 6000
units for 2 time units and falls below 6000 before 20 time
units [6].

Published: G?(G > 6000) A F2°(G < 6000)

Response GPT-4: G 5)(G > 6000) A F-20(G < 6000)
Response GPT-3.5: ¢U>2(—¢Ug20T")

Here again, we see that GPT-4 produces results that are
similar to the published work, while GPT-3.5 produces a
response that looks correct at first glance but is actually
incorrect. GPT-4 uses a subscript format to specify the time
constraints compared to the paper, which uses a superscript.
GPT-3.5 specifies ¢ to be equal to G > 6000, but its use of —¢,
which means G < 6000 in the equation instead of G < 6000,
makes it incorrect. However, both of these models produce
different responses for different runs, with GPT-4 producing
the correct answer during most of the runs.

V. CONCLUSION AND FUTURE WORK

We show that modern LLMs such as GPT-3.5 and GPT-
4 can produce LTL specifications from natural language.
Existing LLMs already understand LTL specifications, and
we do not need to use few-shot learning to train them on
it. We picked up descriptions of biological LTL specifications
from published work and used GPT to translate them into
formal LTL specifications. We observe that these models can
convert natural language into LTL specifications, with GPT-
4 performing better than GPT-3.5. However, we also observe
variability in the response and see multiple versions of correct
and some incorrect answers from the models. Future work
along this line will focus in prompt engineering to decrease
this variability while maintaining good translations. Any future
work on testing the accuracy of these models will also have
to consider the probabilistic behavior of these models.

(1]

(2]

(3]

(4]

(5]

(6]

(71

(8]

(9]

[10]

[11]

[12]

REFERENCES

Matthias Cosler et al. “nl2spec: Interactively Translat-
ing Unstructured Natural Language to Temporal Log-
ics with Large Language Models”. In: arXiv preprint
arXiv:2303.04864 (2023).

Jacob Devlin et al. “Bert: Pre-training of deep bidi-
rectional transformers for language understanding”. In:
arXiv preprint arXiv:1810.04805 (2018).

Ivan Gavran, Eva Darulova, and Rupak Majumdar.
“Interactive synthesis of temporal specifications from
examples and natural language”. In: Proceedings of the
ACM on Programming Languages 4.00PSLA (2020),
pp. 1-26.

Faraz Hussain et al. “Automated parameter estimation
for biological models using Bayesian statistical model
checking”. In: BMC bioinformatics 16.17 (2015), pp. 1-
14.

Faraz Hussain et al. “EpiSpec: A formal specification
language for parameterized agent-based models against
epidemiological ground truth”. In: 2014 IEEFE 4th Inter-
national Conference on Computational Advances in Bio
and Medical Sciences (ICCABS). IEEE. 2014, pp. 1-6.
Sumit K Jha et al. “A bayesian approach to model
checking biological systems”. In: Computational Meth-
ods in Systems Biology: 7th International Conference,
CMSB 2009, Bologna, Italy, August 31-September 1,
2009. Proceedings 7. Springer. 2009, pp. 218-234.
Sascha Konrad and Betty HC Cheng. “Real-time spec-
ification patterns”. In: Proceedings of the 27th inter-
national conference on Software engineering. 2005,
pp. 372-381.

Jason Xinyu Liu et al. “Lang?2ltl: Translating natural
language commands to temporal specification with large
language models”. In: Workshop on Language and
Robotics at CoRL 2022. 2022.

“OpenAl. (2023). GPT3.5 [Large language model].” In:
https://chat.openai.com.

Colin Raffel et al. “Exploring the limits of transfer
learning with a unified text-to-text transformer”. In: The
Journal of Machine Learning Research 21.1 (2020),
pp. 5485-5551.

Ashish Vaswani et al. “Attention is all you need”. In:
Advances in neural information processing systems 30
(2017).

BigScience Workshop et al. “Bloom: A 176b-parameter
open-access multilingual language model”. In: arXiv
preprint arXiv:2211.05100 (2022).

