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Abstract. By their very nature, regression problems can be transformed
into classification problems by discretizing their target variable. Within
this perspective, in this work we investigate the possibility of improving
the performance of deep machine learning models in regression scenarios
through a training strategy that combines different classification and re-
gression objectives. In particular, we train deep neural networks using the
mean squared error along with categorical cross-entropy and the novel
Fisher loss as companion losses. Finally, we will compare experimentally
the results of these companion loss methods with the ones obtained using
the standard mean squared loss.
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1 Introduction

Learning the underlying structure of data is crucial to achieve good results in
regression and classification tasks using machine learning methods. In this con-
text, several studies have been conducted in the field of representation learning,
which aims to learn good representations of data to enhance the performance
of deep learning methods as supervised predictors [2]. Moreover, the advent of
modern and flexible DNN environments such as Keras [6] and its Tensorflow [1]
backend or PyTorch [14] has enabled the design of more complex architectures
that facilitate the undertaking of supervised tasks. In this sense, the capability
of creating DNNs with diverse architectures has led researchers to experiment
with models which are trained by learning different tasks in parallel while they
use a shared data representation. The assumption behind this methodology is
close to the standard one in multitask learning, i.e., that what is learned for each
task can help learning others [3].

Building upon this notion, [9] proposed the application of companion losses
to improve the performance of classification models. In particular, they proved
that the use of training objectives that combined different classification losses
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(categorical cross-entropy, the Hinge loss, and a novel Fisher loss) can be bene-
ficial in tackling classification problems. Encouraged by these promising results,
[10] used companion losses to train DNN models to tackle tasks related to or-
dinal regression, where the class labels contain ranking information about the
underlying samples [7]. In this case, they considered the cross-entropy loss, the
mean-squared error, and the Fisher loss. Note that the mean-squared error is
a loss function related to regression problems, so this last paper mixes classi-
fication and regression losses in its experiments. Nevertheless, there are other
works that propose multi-task learning mixing classification and regression ob-
jectives in artificial neural networks. For instance, [5] combined the cross-entropy
and the mean squared error for age prediction. In addition, a deep multi-task
multi-channel learning framework for disease classification and clinical score re-
gression was proposed by [12]. Finally, [13] trained their models to perform
regression and classification jointly to model Alzheimer’s disease diagnosis. Be-
sides these works, other contributions extend the combination of classification
and regression training objectives to random forests. Concretely, some contribu-
tions proposed to train random forests by means of a joint objective function
of classification and regression for computer vision tasks, such as multi-object
segmentation [11], object detection [16] and pose estimation [15].

This work follows this line of research to improve the performance of deep
learning models in regression. Specifically, we propose to combine the mean-
squared error with the categorical cross-entropy and the novel Fisher loss to
reduce the errors of the predictions of DNNs in regression scenarios. However,
unlike in the related works we have mentioned earlier, the regression datasets we
consider in our experimentation only consist of a single target variable. Thus, we
will have to discretize our original regression datasets into classification problems
to train our models jointly for both classification and regression. More precisely,
our contributions here are:

– The proposal of deep neural networks for regression that combine classifica-
tion and regression losses during their training.

– A series of experiments comparing the performance of our companion models
against those using only the mean-squared error during its training.

– A statistical analysis of the results obtained by the models used in the ex-
periments.

The remaining of this paper is structured as follows. In Section 2 we provide
an overview of the losses we consider for our companion models and present the
formulation of the combined objectives. Section 3 describes the details of the
experiments performed and, finally, Section 4 presents the conclusions of this
work and the lines of research for further development of this methodology.

2 Companion Losses for Regression

We work with DNN architectures that have a sample x as input and whose
output is denoted by F (x,W), where W represents the parameters of the model,
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i.e., the set of weight matrices and bias vectors. We denote the ground truth
target values as y, which are continuous in regression problems and categorical
in classification problems. Moreover, the output of the last hidden layer of the
networks is computed as z = Φ(x, W̃), where W̃ are the weights and biases of the
model up to the last hidden layer. Thus, the output of regression networks using
a linear activation function is computed as ŷ = Wz+B, where W and B are the
weights and bias, respectively, of the output layer. Given this, a neural network
used to solve regression problems can be trained using the mean squared error
loss function by minimizing

ℓmse(W) =
1

2N

N∑
n=1

(yn −WΦ(xn, W̃)−B)2, (1)

where N is the total number of patterns in the training set.
In classification DNNs, unlike in regression networks, the output layer gen-

erally uses the Softmax activation function, which converts the output into a
probability distribution over K possible classes. This enforces the output values
to verify that

∑
k Fk(x;W) = 1 and we assume that P (k|x) ≈ Fk(x;W). Then,

we can train a DNN for classification tasks using the categorical cross-entropy,
that is, minimizing the negative log likelihood:

ℓce(W) = −
N∑

n=1

K−1∑
k=0

ynk logFk(x
n;W), (2)

where K is the number of classes considered in the classification problem and y
is a one-hot encoded vector containing the ground truth classes of the patterns in
the training set. Once the model is trained, the class of an instance is determined
according to argmaxk Fk(x;W∗), where W∗ is the set of optimal weights.

Finally, we also consider a novel Fisher loss for DNNs. In the linear case, if we
denote the between-class and total covariance matrices of the sample patterns
as SB and ST respectively, together with their respective counterparts sB and
sT for the projections z = Ax, the Fisher criterion maximizes the trace criterion
g(A) = trace(s−1

T sB) = trace((ATSTA)−1(ATSBA). According to [18], this can
be achieved by solving the following least squares problem

min
1

2
||yf −XW − 1NB||2, (3)

where W is a d × K matrix of weights, d is the dimension of the inputs, B is
a 1 ×K bias vector and 1N is an all-ones vector. In addition, yf is the Fisher
target matrix, where we have yfnk = N−Nk

N
√
Nk

when the n-th row is associated with

a pattern xn corresponding to class k, and yfnm = −
√
Nm

N for m ̸= k, where Nk

is the number of instances belonging to class k. Building on this, [8] proposed to
extend the use of the Fisher loss to deep neural networks by formulating it as

ℓf (yf , ŷf ) =
1

2
||yf − Φ(X; W̃)W − 1NB||2, (4)
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where ŷf denotes the output of the network. In this way, the Fisher loss forces
the last hidden layer of the model to produce a projection of data that maximizes
the Fisher criterion and, hence, concentrates the patterns belonging to the same
class while pushing aside the ones from different classes.

As mentioned earlier, the goal of this work is to investigate whether the use of
companion classification losses improves the performance of DNN in regression
scenarios. Therefore, we will train our models using the mean squared error as
the main loss of our training procedure, while using the categorical cross-entropy
and the Fisher loss as auxiliary losses. As an example, following the formulation
suggested in [9,10], a model that combines the mean squared error and the Fisher
loss requires multiple outputs and targets to minimize the following companion
loss:

ℓ(y, yf , ŷ, ŷf ) = ℓmse(y, ŷ) + λℓf (yf , ŷf ), (5)

where ŷ and ŷf are the predictions for minimizing the MSE and the Fisher
loss, respectively, and λ is a hyperparameter that must be appropriately chosen
and represents the weight of the Fisher companion loss in the general training
objective of the model. Note that the Fisher loss in this case is only used to learn
a good representation of data that may improve the performance of the DNN
in regression problems, i.e., minimizing the scoring function of the model when
solving a regression problem. Finally, and although our companion models will
have several output values, we will consider only as the predictions of the model
the single outputs corresponding to the mean squared error predictor.

3 Experimental Results

In this section we describe the design of the proposed models, report the datasets
we will use and the strategies to transform them into classification problems,
present the proposed experimental methodology, and describe the results along
with a final brief discussion in this regard.

3.1 Models Proposed

We will consider three different models based on different combinations of the
loss functions described in Section 2. Specifically, the configurations of the models
proposed are the following:

– mse: the model uses a single linear output and the mean squared error loss
function. The predictions are equal to the unique output of the model.

– mse_ce: the model uses two different outputs. The first one is linear and
it is used to minimize the mean squared error loss, while the second one
corresponds to the result of the softmax activation function and it minimizes
the categorical cross-entropy loss. The predictions are again equal to the
linear output.
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Table 1. Training and (when available) test patterns and number of features.

n. patterns train n. patterns test dimension
abalone 4177 - 8
bodyfat 252 - 14
cadata 20640 - 8
cpusmall 8192 - 12
housing 506 - 13
mg 1385 - 6
mpg 392 - 7
sotavento 17544 8760 200
space_ga 3107 - 6

Table 2. Discretization method used for the discretization of the original regression
problems and number of classes considered.

discretization method n. classes considered
abalone automatic K = 2,K = 3,K = 4,K = 5
bodyfat automatic K = 2,K = 3,K = 4,K = 5
cadata automatic K = 2,K = 3,K = 4,K = 5
cpusmall automatic K = 2,K = 3,K = 4,K = 5
housing manual K = 4,K = 5
mg automatic K = 2,K = 3,K = 4,K = 5
mpg automatic K = 2,K = 3,K = 4,K = 5
sotavento manual K = 3,K = 4
space_ga automatic K = 2,K = 3,K = 4,K = 5

– mse_fisher: the model uses two linear outputs, the first one to minimize the
mean squared error and the second one corresponding to the minimization
of the Fisher loss. The predictions are once more equal to the first output of
the model.

3.2 Datasets and their Discretizations

We will be using nine different datasets, concretely abalone, bodyfat, cadata,
cpusmall, housing, mg, mpg, sotavento and space_ga. All have been taken
from the LIBSVM data repository [4], except for Sotavento, which was provided
by the UAM–ADIC Chair for Data Science and Machine Learning. Table 1 shows
the statistics of the datasets, including their training and, when available, test
sample sizes and dimensions.

As described before, we will use the categorical cross-entropy and the Fisher
loss as companion losses in our proposed companion models. Since these two
functions correspond to classification contexts, we need to transform the original
regression problems into classification ones. In our case, we will perform this
transformation by discretizing the target variables of our datasets. The goal of
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this procedure is to group the instances into different classes based on their target
values. Note that we can define multiple classification problems from the same
regression problem, depending on the number of artificial classes we want to
consider. Thus, the resulting number of classes K of the generated classification
problems can be considered a hyperparameter that must be adjusted during the
experimentation phase of this paper.

1. The manual definition of the classes according to the context of the target
and,

2. The automatic definition of the classes according to a statistical criterion.

In the first method, the classes of the instances are set by analyzing the in-
formation (e.g., range and context) of the target variables. This has been the
procedure to discretize the housing and sotavento datasets. More precisely, the
target values in the housing dataset describe house prices and these are delim-
ited withing the range [5, 50], so we have considered two discretizations based
on using K = 4 and K = 5 classes and establishing the following categories:

– Categories when K = 4: "very low" ([5, 20)), "low" ([20, 30)), "high" ([30, 40)),
and "very high" ([40, 50]).

– Categories when K = 5: "very low" ([5, 10)), "low" ([10, 20)), "normal"
([20, 30)), "high" ([30, 40)) and "very high" ([40, 50]).

Similarly, the target values in sotavento represent the production of the
electriticy generated by the Sotavento wind farm normalized to the range [0, 1].
Thus, in this case we have have considered two discretizations based on K = 3
and K = 4 classes establishing the following categories:

– Categories when K = 3: "low" ([0, 0.3)), "normal" ([0.3, 0.6)) and "high"
([0.6, 1]).

– Categories when K = 4: "very low" ([0, 0.2)), "low" ([0.2, 0.4)), "normal"
([0.4, 0.6)) and "high" ([0.6, 1]).

In the second method, we set the classes of the instances by dividing their
ranges according to the percentiles of the target variables. It is clear that the
manual approach to transform the original regression problems into classification
problems is more expensive, since special knowledge about the problem must be
used. Table 2 describes the method used for each transformation and the number
of classes considered in the generated classification problems.

3.3 Experimental Methodology

The models considered for the experimentation include an L2 regularization
term that involves the use of an α hyperparameter whose optimal value must be
found. Moreover, the models that use multiple losses have an additional hyper-
parameter λ that represents the weight of the companion losses in their training
objectives. Finally, as stated in Section 3.2, we propose different discretizations
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of the original regression problems for each of the considered datasets, which
entails another additional hyperparameter K representing the number of classes
of the generated classification problems in the case of the companion models.

All in all, we have up to three hyperparameters to fix in our experiments,
which are adjusted using a 5-fold cross-validation (CV) grid search. In particular,
the α values will be of the form 10k, with k in the range −5 ≤ k ≤ 2. Similarly,
we consider λ values within the range [0, 1], as we restrict the companion losses
not to have a higher weight than the main mean-squared error loss. Thus, to
find the optimal λ, we will examine values of the form 0.05 ∗ k, with k now in
the range 0 ≤ k ≤ 20. Finally, we find the optimal K among the discretizations
presented in Table 2. In this way, we will find the optimal values α∗, λ∗ and K∗

for each of the hyperparameters of the models considered.
With respect to the evaluation of the models, we will test their performance

by the following procedure:

1. We generate 5-fold cross-validated predictions estimates five times for each
of the input data points using different seeds from the ones we use during
hyperparametrization.

2. We compute the averages of these five predictions.
3. We finally compute the mean absolute error between these average predic-

tions and the ground truth values of each problem

Remember that in the Sotavento dataset we have different data samples for
training and test, namely, the years 2016 and 2017 for train and validation, and
2018 for test. In that case, we will use a 2-fold CV grid search procedure jointly
on data from 2016 and 2017 to find the optimal α∗, λ∗ and K∗ hyperparameters.
Once set these optimal values, we will fit the models five times in the training set
using different seeds for weight initialization and minibatch handling, generate
their predictions per each data data point in the test set and compute the mean
absolute error among their averages and the ground truth values.

3.4 Results and Discussion

We analyze now the results for each of the datasets considered. Note that we
define three different architectures for our artificial neural networks based on
the use of one/two (based on the complexity of the problem, one for cadata,
cpusmall, housing, mg, mpg, and space_ga, while two for abalone, bodyfat,
and sotavento), three and five hidden layers. Tables 3, 4 and 5 show the MAE of
the predictions of the optimal models for the one/two, three and five hidden-layer
architectures, respectively. The last column of each table contains the p-values
obtained by the Wilcoxon signed rank test [17] when comparing the absolute
errors of the mse model and the ones generated by the companion model that
obtained the lowest errors among the mse_ce and mse_fisher models. Finally,
smaller values are highlighted in boldface when the absolute error distributions of
the mse and the best companion model are statistically different at the p = 0.10
level or below.
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Table 3. Mean absolute errors and p values for mse, mse_ce and mse_fisher models
with one-two (depending on the dataset) hidden layers.

mse mse_ce mse_fisher p-value
abalone 1.458 1.463 1.466 0.05
bodyfat (×102) 0.107 0.107 0.107 1.00
cadata (/104) 3.507 3.519 3.525 0.05
cpusmall 2.023 2.023 2.044 1.00
housing 2.065 2.065 2.061 0.80
mg (×102) 8.981 8.911 8.996 0.03
mpg 1.869 1.891 1.870 0.80
sotavento (×102) 6.616 6.678 6.541 0.00
space_ga (×102) 7.442 7.442 7.462 1.00

Table 4. Mean absolute errors and p values for mse, mse_ce and mse_fisher models
with three hidden layers.

mse mse_ce mse_fisher p-value
abalone 1.463 1.466 1.460 0.69
bodyfat (×102) 0.113 0.113 0.133 1.00
cadata (/104) 3.343 3.354 3.239 0.00
cpusmall 2.025 2.025 2.029 1.00
housing 2.085 2.056 1.978 0.01
mg (×102) 9.197 9.100 9.120 0.40
mpg 1.899 1.899 1.908 1.00
sotavento (×102) 6.698 6.639 6.842 0.00
space_ga (×102) 7.044 7.107 7.117 0.40

Table 5. Mean absolute errors and p values for mse, mse_ce and mse_fisher models
with five hidden layers.

mse mse_ce mse_fisher p-value
abalone 1.462 1.467 1.457 0.18
bodyfat (×102) 0.122 0.122 0.120 0.59
cadata (/104) 3.264 3.165 3.225 0.00
cpusmall 2.017 2.017 2.050 1.00
housing 2.080 2.080 1.970 0.06
mg (×102) 9.281 9.155 9.172 0.07
mpg 1.916 1.957 1.986 0.21
sotavento (×102) 6.786 6.528 6.761 0.00
space_ga (×102) 6.978 7.169 7.149 0.02

Among the models with one and two hidden layers, we can reject the null
hypotheses at level p = 0.05 level in favor of the mse network when comparing
it to our companion models in the abalone and cadata datasets. However, our
companion models outperform the mean-squared error-based model in the mg
(in the case of mse_ce) and sotavento (in the case of mse_fisher) regression
problems. Regarding the errors given by the models that use three hidden lay-
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Table 6. Mean absolute errors and p values for mse, mse_ce and mse_fisher models
using the optimal architecture for the mse network. Smaller values in bold face when
absolute error distributions of the mse and the best companion model are statistically
different.

n_hidden_layers mse mse_ce mse_fisher p-value
abalone 2 1.458 1.463 1.466 0.05
bodyfat (×102) 2 0.107 0.107 0.107 1.00
cadata (/104) 5 3.264 3.165 3.225 0.00
cpusmall 5 2.017 2.017 2.05 1.00
housing 2 2.065 2.065 2.061 0.80
mg (×102) 1 8.981 8.911 8.996 0.03
mpg 1 1.869 1.891 1.870 0.80
sotavento (×102) 5 6.786 6.528 6.761 0.00
space_ga (×102) 5 6.987 7.169 7.149 0.02

ers, with a 1% significance level, the mse_fisher is better than the mse when
tackling the cadata and housing problems. Moreover, the mse_ce outperforms
the sotavento problem with a 0% significance. Finally, when using five hidden
layers, mse produces lower errors in the space_ga dataset with a 2% significance,
while the mse_ce network outperforms the cadata and sotavento problems with
p values below 0.005. Furthermore, we can reject the null hypothesis in favor for
the mse_fisher and mse_ce models against the mse in housing and mg, respec-
tively, but now with a 10% significance. Model differences do not appear to be
significative in all other cases not mentioned above.

Note that there are some cases where the errors generated by the mse model
and our companion networks are exactly the same. This is because the CV
procedure found λ = 0 as the optimal hyperparameter value in our companion
models. As a result, since λ represents the weight of the companion loss of
our combined models, when λ = 0 we obtain models that perform exactly the
same as the mse network. An example of this can be seen in Table 3, where
the three models get the same errors for the bodyfat problem. Finally, notice
that the mse model can still produce lower errors than a companion model even
when the training CV procedure sets λ > 0, since the latter may have a lower
generalization ability. All in all, the models trained using only the mean-squared
error perform similar to the companion models when using few hidden layers.
Nevertheless, the use of deeper architectures led to a slightly better performance
of the networks that combine regression and classification objectives to address
regression problems.

Finally, for a more concise discussion, Table 6 depicts a brief summary of
the experiments that we have carried out in this work. Specifically, to make an
objective comparison among the models considered, we have gathered the re-
sults of the experiments in which the mse achieved its lowest errors; in other
words, we will consider the best mse architectures against the competing mse_ce
and mse_fisher models with the same architecture, giving thus a slight edge
to the mean squared error based models. In this regard, the mse network out-
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performs the companion models rejecting the null hypothesis of the Wilcoxon
signed rank test in two out of nine experiments. Conversely, the mse_ce model
shows a better performance in three. Finally, in the remaining four experiments
the null hypotheses cannot be rejected since p > 0.10, so we conclude that the
corresponding models give similar results.

4 Conclusions and Further Work

In this work we have proposed the use of classification losses (i.e., the categori-
cal cross-entropy and the novel Fisher loss) as companion objectives for neural
networks to tackle regression problems. Our motivation for this is that previous
studies showed that the combination of classification and regression training ob-
jectives improved the performance of machine learning models in different tasks
in the field of supervised learning.

Overall, we have carried out 27 experiments (taking into account that we have
used three losses for each of the datasets considered) in which we have compared
the performance of neural networks trained using only the mean-squared error
against models that use companion classification losses during their training. In
a brief summary, the mse model outperformed in three out of 27 experiments,
while the companion models got better results in nine out of 27. Finally, in the
rest of experiments the results were similar, as the error distributions were not
significantly different. This allows us to conclude that using companion classifi-
cation losses for regression problems may be useful depending on the problems
that we want to tackle. Also, we have applied manual (in the case of housing
and sotavento datasets) and automatic methods (in the remaining problems)
for discretizing regression problems in order to employ our companion models. In
this regard, the results show that both strategies can be useful for implementing
the use of companion losses in deep neural networks.

As lines for future work, we propose to extend this methodology to other com-
panion classification losses. In this work we have only considered the categorical
cross-entropy and the Fisher loss. However, there are other functions, such as
the Hinge loss, that may lead to an improvement of the representations learned
for regression problems. Additionally, it would also be interesting to explore the
design of a criterion to find optimal discretizations that improve our companion
models. Another point of interest would be to extend the search space of the
λ hyperparameter, which represents the weight of the companion losses in the
general training objective of our models. In this work we have limited its values
within the range [0, 1], but we think that letting this hyperparameter to take
values bigger than 1 may be benefitial for our companion models, since there
were some experiments in which the optimal λ value was found to be λ = 1.0,
hinting that possibly better results could be obtained using larger λ ranges.

Apart from that, we point out that in this work we have used the mean ab-
solute error between the regression targets and outputs as the scoring function
in order to choose the optimal hyperparameters of our models; in other words,
when choosing these optimal hyperparameters we have not considered the per-
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formance of the classification component of our companion models. This suggests
that, alternatively, it would be valuable to try to use other scorings that mix
a regression criterion with a measure that takes into account the classification
performance of our companion models, as this may lead to better results. We are
currently pursuing these lines of work as well as other related venues in order to
improve the use of companion models for regression.
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