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ABSTRACT
Most machine learning based regressors extract in-

formation from data collected via past observations of
limited length to make predictions in the future. Conse-
quently, when input to these trained models is data with
significantly different statistical properties from data used
for training, there is no guarantee of accurate prediction.
Consequently, using these models on out of distribution
input data may result in a completely different predicted
outcome from the desired one, which is not only erroneous
but can also be hazardous in some cases. Successful
deployment of these machine learning models in any
system requires a detection system, which should be able to
distinguish between out-of-distribution and in-distribution
data (i.e. similar to training data). In this paper, we
introduce a novel approach for this detection process
using Reduced Robust Random Cut Forest (RRRCF) data-
structure, which can be used on both small and large data
sets. Similarly to the Robust Random Cut Forest (RRCF),
RRRCF is a structured, but reduced representation of the
training data sub-space in form of cut-trees. Empirical
results of this method on both low and high dimensional
data showed that inference about data being in/out of
training distribution can be made efficiently and the model
is easy to train with no difficult hyper-parameter tuning.
The paper discusses two different use-cases for testing and
validating results.
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I. INTRODUCTION

Machine Learning(ML) models are increasingly deployed
in design and operation of engineering system [1] [2]. The
training process of these models involve collection of data
and then training on these collected data. During operation
or prediction, we provide input to these trained ML models

and get an output. As machine learning models are trained
and validated against collected training data, their performance
with new input that is not consistent with the statistical
properties of the training data cannot be relied on. Therefore,
it is imperative to have some mechanism to verify that a
given input data is sampled from training data distribution. An
Out-of-training-distribution (OOD) data point is one which is
significantly different from the training data i.e. a data point
which is an anomaly relative to the training data so that it may
stir speculation that it was generated by a different mechanism
[3].

There are three major categories of approaches to detect out
of training distribution data: statistical detection techniques,
Deviation based techniques, proximity based techniques [4].
Statistical detection techniques attempt to fit the training data
in a parametric/non-parametric probability distribution. The
goal of learning is to find distribution model and parameters
that can fit training data. Using this learned densities distri-
bution, inference about new data point can be made based on
probability of it being generated from the trained densities.
A datapoint is defined as an OOD if the probability of it
being generated is very low. The major limitation of this
approach is difficulty to find a good probability fit, even when
dimension of the problem increase beyond hundred. Deviation
based approaches are based on one or other flavour of encoder-
decoder setting. The encoder is trained to embed the data to
latent space and decoder is trained to reconstruct the data
from latent space. During training of this model, goal is to
reconstruct the input data as output of decoder. Once trained,
inference about a datapoint can be made by passing it through
encoder and decoder setting and estimating the reconstruction
error/probability gap. The underlying assumption of deviation
based methods are data from out-of-distribution will have high
reconstruction error as the encoder-decoder parameters are not
trained for it.

Proximity based techniques assumes that anomalous data
are isolated from the majority of the data and use various
approaches to measure density or cluster representation and
relationship of datapoint with the cluster. Our approach will



fall into category of proximity based clustering approach for
OOD detection. In clustering based approaches, an algorithm
is deployed to represent the cluster of data from metric
space to some datastructure. Selection of algorithm and data-
structure should be such that relationships of the data points
in metric space must be preserved in this data-structure.The
early work in this context is done by using randomised cut
forests/isolation forests [5]. The isolation forest approach has
several drawbacks, such as not compatible with streaming
data and missing crucial OODs in the presence of irrelevant
dimensions etc [6]. To address these challenges, [6] proposed
Robust Random Cut Forest(RRCF) as data structure, which
is very promising in terms of very small false alarm rate
(high accuracy), and can work on streaming data, but it is
not scaleable on large data [7]. In this paper, we address
this problem by developing a method that can use RRCF on
large data sets. The main idea of our approach is to make an
outline sketch of whole training data. This method capitalises
on the fact that for sketching the data space, we only need few
featured data point that can outline of data and can ignore
all other irrelevant datapoint which has less/no relevance in
creating the outline sketch. Here relevancy of a datapoint can
be described as if inclusion of datapoint increase the dataspace
coverage to a significant level then this datapoint is relevant
for OOD detection. An elementary example is if two points
are at same location in metric space then we can keep one
as relevant datapoint and throw off other as irrelevant deta
because inclusion of it will not contribute towards making
decision about OOD.

The main contributions of this paper are the followings:
1) Developing a method which uses RRCF for OOD detec-

tion in computationally efficient manner on large data.
2) This proposed method is domain independent and can be

used for any ML-based regressor model. For empirical
evaluation and validation of the proposed method, we
tested it on two different test cases. First in Cyber Phys-
ical System (CPS) domain where we tested this method
on a reinforcement learning controller with a three-
dimensional data stream Second, we tested this method
on a high dimensional image data stream generated by
an open source simulator CARLA [8].

3) We conducted some empirical sensitivity analysis of
this approach on the image data-set and found that
this method can capture different level of changes in
distribution.

4) In contrast to deviation based method, which uses black
box artificial neural network, The proposed method
follows a white-box model which is understandable and
interpretable (unlike neural networks) and can be used
by the user to better understand the results.

This approach has various benefits over other methods. First,
it can make inference about the data being OOD/non-OOD
on a stream of incoming data, which is compatible with the
continuous operation of detection system. Second, empirical
result reflects that it can capture presence of a single out-
of-distribution data point in a stream of non-OOD data.

Third, for training this model there is no such difficult hyper-
parameter tuning required. Hyper-parameter tuning in machine
learning relies on experimental results, and general approach
to determine the optimal settings is to try many different
combinations or do random/guided search in hyper-parameter
space and evaluate the performance of each model. This is
an iterative process and can take plenty of training time.
For training this model,We have only two hyper parameters.
These are: number of trees and size of tree. Finding a right
hyperparameter can be decided easily in comparison to other
detectors(statistical/deviation based) which need to tune their
hyper-parameter on various different aspects. Fourth, this
approach is highly parallelizable so, by increasing allocation of
resources the time complexity of the process can be improved.

II. BACKGROUND

Our approach for anomaly detection relies on learning
the data cluster (T) ’s shape from metric space to a data-
structure(S). The motivation behind learning the cluster’s
shape into a data-structure is to abstract the information from
metric space in a structured manner such that computer and
related algorithms can be efficiently deployed for inference. If
D = {d1, d2, ..., dn} are set of datapoints such that di ∈ Rm.
For the purpose of Out-of-Distribution detection, following
requirements are imposed on this data-structure(S):

1) S should represent the cluster of data in structured way.
2) Relationships(ψ) between the data points in metric space

must be preserved in this data-structure. i.e

ψ{T (dk, dl)} ≈ ψ{S(dk, dl)}

3) Relationship(φ) of a data-point with the cluster can be
encoded in simple quantitative measure. i.e. φ(T, dk) can
be measured as a scalar value in the data-structure(S).

We chose the RRCF [6] as our data-structure to represent our
cluster in structured way. Robust Random Cut Forest can be
formally defined as :

Definition 1: Robust Random Cut Tree on set of data point
D = {d1, d2, ..., dn} can be generated by following procedure:

1) ri = maxX∈D(Xi)−minX∈D(Xi) ∀i ∈ m
2) pi =

ri∑i=m
i=1 ri

∀i

3) select a random dimension i with probability propor-
tional to pi

4) choose xi | xi ∼ Uniform(max(Xi)−min(Xi))
5) D1 = {X | X ∈ D,Xi ≤ xi}
6) D2 = D \D1

recurse on D1 and D2 until Di ≥ 1
Robust Random cut Forest is an ensemble of various RRCT.

The selected relationship(ψ) between datapoints in metric
space is captured as Lp distance between datapoints, then we
require a distance preserving embedding of this relationship in
the datastructure. For this purpose, the tree distance between
two datapoints dk and dl in datastructure(S) is defined as
the weight of the least common ancestor of dk and dl [6],
then according to Johnson-Landatrauss lemma [9] the tree
distance can be bounded from atleast L1(dk, dl) to maximum



O(d ∗ log|k|/L1(dk, dl)). Accordingly, a point which is far
from other points in metric space will continue to be at
least as far in a random cut tree. Relationship(φ) of a data-
point with the cluster can be encoded in simple quantitative
measure by displacement which is an estimate of change in
model complexity(summation of leave’s depth) before and
after inserting a given point x in tree data-structure.

III. PROBLEM FORMULATION AND APPROACH

For problem formulation, we first introduce some notations.
Let X represents an input data point given to a machine
learning model during training. This data can be an observation
made by sensors attached to CPS system, like image data from
camera or distance data from LIDAR etc. During training,
we collect all such Xs. From ML model’s perspective, this
collection of all observed X represent environment in which
model has been trained, we collectively call this set as Et. The
OOD detection goal is to find whether input data X ′ given
during prediction is sampled from Et or not. If X ′ ∼ Et,
then we call this observed state as non-OOD or else we call it
as OOD, i.e. the trained agent has not seen this kind of input
during training and the trained agent may behave unexpectedly
to this OOD input data.

Our approach to solve this problem is to learn the data clus-
ter’s shape from metric space to a Robust Random Cut Forest
data-structure. The basic element of RRCF is a Robust Ran-
dom Cut Tree(RRCT) that is a binary search tree constructed
by recursively partitioning from given data points(Y) until
each point is isolated. RRCF data structure contain sufficient
information about the given data set(Y) and approximately
preserve distances in metric space i.e. if a point is far from
others that it will continue to be at least as far in a random
cut tree in expectation and vice-versa (proof can be found in
Guha et al [6]). Anomaly score(also called DispValue) of a
data-point measures the change in model complexity incurred
by inserting a given data-point x in RRCF. Model complexity
of a binary tree(RRCT) is defined as sum of depth of all
datapoints in the tree. During insertion of a data-point that
is far off the cluster in metric space , there is high probability
to be partitioned in initial stage of RRCT construction. This
will increase the depth of all leaf below it and consequently
increase the model complexity by large number. On the other
hand, if inserted point is inside the cluster, it will be partitioned
in lower part of tree, and consequently it will have less number
of leaf below it and this will reduce the model complexity
by small amount. Given a training dataset Y , we first create
these random cut trees and find the maximum Disp value of
all inserted data-points. We define OOD as datapoint that is
significantly different from data used in training i.e. it is away
from the training data cluster(Y) in the normed vector space.
These off-the-cluster data-point has high probability to be
isolated in initial stage of RRCT construction. Insertion of this
point in tree will significantly increase the model complexity.

Applying this approach on large, high dimensional training
data results in to creation of large forest and consequently
any inference will have high prediction inaccuracy, computa-

tionally costly and even sometimes computationally infeasible.
Underlying reason is as current learning models and processes
are not very sample efficient, and a well trained agent needs big
training data. Research efforts are being made to make these
process more sample efficient [10] but it has few practical
generality. [11] showed that on large data sub-sampling may
improve random forest’s performance but these forests are
sensitive to extent of sub-sampling and become inconsistent
with either no sub-sampling or too severe sub-sampling [12].

Algorithm 1: Reduced Robust Random Cut For-
est(offline)

Input : training data (Y)
Output : reduced RRCF, threshold
parameter: number of trees
Initialization : randomly select Z | Z ⊂ Y
rrcfinit = createForest(Z)
DispV alZ = DispV alue(Z)
DispV althreshold = mean(DispV alue(Z))
L = Y \ Z
for i = 0; i < len(L); i = i+ 1 do

for j = 0; j < numberoftrees; j = i+ 1 do
rrcfnew(j) = insertpoint(rrcfinit(j), L(i))
mci(j)=Dispvalue(L(i))

end
pointdispV alue = mean(mci)
if pointdispV alue ≥ DispV althreshold then

#include L(i) in featured Datapoint set ;
DispValZ .append(pointdispV alue)
DispValthreshold = mean(DispV alue(Z))

end
else

#Do not include L(i) in featured Datapoint set ;
for j = 0; j < numberoftrees; j = i+ 1 do

rrcfnew(j) =
Deletepoint(rrcfinit(j), L(i))

end
end

end
threshold= max(DispValZ)
return rrcfnew, threshold

To address these issue, we attempted to find only those
featured datapoints which will create an outline of data cluster
space and has significance in making decision about OOD
and drop all others datapoints for construction of RRCF. The
underlying intuition is in a dense data space, we need few
datapoints to gain information about the data space they repre-
sent and we can drop most of the other datapoints. However in
sparser region, we select most of the datapoint to represent the
data space they acquire. The sparsity and density in dataspace
is correlated with the average model complexity increment by
inclusion of datapoint in data-structure. Using this approach,
we can reduce the number of training data-points significantly
that needs to be stored for construction of RRCF. RRCF
created using these featured data-points is called Reduced



Robust Random Cut Forest(RRRCF). For reduction of entire
data to the featured data, we run a process of insertion and
conditional deletion on each data point in training data. After
one sweep of this process on whole training data, we collect
all featured datapoints which represent identical data subspace
as training data space. For initialisation, we first create RRCF
using very small dataset(Z), where Z ⊂ Y , this will give us
an initial small forest. Once we have created the RRCF using
Z, we calculate the DispValue of all points in Z. For making
decision on whether a given point can be included in the RRCF
or not, we choose the mean of all DispValue calculated over
Z as threshold. This threshold represents average complexity
of datastructure. For rest of the datapoints (Y \ Z), we insert
each point in forest and we calculate the DispValue for this
point. If DispValue is more than the threshold DispValue of
initial forest then we will keep this point in the forest or else
we will reject this point and delete it from the RRCF. We
recursively apply this on all left-over datapoints( Y \Z). The
final forest created from this process would be our reduced
robust random cut forest and can be used for making inference
during prediction for making decision about OOD for a given
datapoint. This is an offline method and need to run only
once. We can store the reduced RRCF(RRRCF) and threshold,
which is maximum model complexity from already included
featured training datapoints of selected featured datapoints to
be used for prediction(refer algorithm 1). This reduced forest
is a structured representation of our training data sub-space.

Algorithm 2: OOD detector(online)
Input : RRRCF(T) , Data-point(x), threshold
Output : Inference about x being OOD
T ′ = Insertpoint(T, x)
mci = calculatemodel complexity
T = Deletepoint(T ′, x)
mcd = calculatemodel complexity
DispV alue = mci−mcd
if DispValue ≥ threshold then

x is OOD ;
else

x is not OOD ;
end

During prediction, we insert newly observed input data
point(x) into the stored RRRCF model(obtained from algo-
rithm 1) and check whether inclusion of this point increases
the model complexity to an extent higher than threshold value.
Every new observation can be passed to this detector and
prediction made by the machine learning based model can
be accepted only if the scalar measure of datapoint by OOD
detector is lower than the threshold generated by the algorithm
1. The setup for deploying this OOD detector is shown in fig
1.

If DispValue of new point is greater than the threshold
obtained from algorithm 1 then we declare this datapoint as
OOD and viceversa (refer algorithm 2). For making inference

Fig. 1: Deployment of OOD detector

on a datapoint,we do insertion step, where we include new
datapoint to RRRCF and measure increased complexity and
then we do deletion step to remove the inserted point. So,
during prediction, we do not extend our forest, we just do one
insertion and one deletion step per prediction and our reduced
robust random cut forest remain intact.

IV. EXPERIMENTS

To empirically evaluate above mentioned approach, we set
up two experiments. In both cases, the machine learning model
is a reinforcement learning based controller for car braking
system where in first experiment, observations are in low
dimension( 3 dimensions) while in second experiment, our
observation is in high dimension image data.

In the first experiment, an approaching car detects a sta-
tionary obstacle at distance of 100 meters and the learning
goal is to self-train a controller for braking system to stop
the car without crashing (refer fig 2). We used reinforcement
learning algorithm called DDPG (Deep Deterministic Policy
Gradient) [13] based learning model to design the braking
system of a car. The static and kinetic friction coefficient
of road is constant throughout the experiment. The random
variable in this scenario is the speed of the car when it detects
the obstacle, which is drawn from a uniform distribution
between 40 to 70 miles/hour. Initial Speed(v) ∼ U(40, 70).
The reward setting is done in such a way that vehicle when
brakes around region of 5-10 meters from obstacle, gets the
maximum reward. During training, we observe three variables,
d (distance form obstacle), v (velocity of car) and mu (friction
coefficient). X = {d, v,mu} provides state information of
vehicle in the environment. During training, X becomes the
input of the neural network and brake value b is the output.

Fig. 2: Training Scenario setup
The braking system is trained and tested in this environ-

mental setting. During prediction, we make some changes in
the environment, which was never observed during training
process. We created two such scenarios: first, in place of sta-
tionary obstacle we used an obstacle that is moving toward the
car at some small velocity(for this experiment it is drawn from
a uniform random distribution between 0.1-2 meter/second,
refer figure 3, moving obstacle is represented by a walker).
This situation was never observed during training, and result of



it the braking system do not respond to this changed scenario
appropriately and it leads to crash. In the second scenario,

Fig. 3: Prediction Scenario I
we keep obstacle stationary but spawned the vehicle at the
velocity 75 miles/hr. It means the vehicle when detect the
obstacle and invokes the braking system has velocity out of
the training range (40-70 miles/hr). In this scenario also, the
braking system fails to brake and leads to to a crash because
during training we never observed this speed.

Fig. 4: Three rollouts and respective output Dispvalue and
threshold . Rollout1: Environment is same as training

scenario(stationary obstacle with initial speed ∼ U(40,70)) ;
Rollout2: Moving obstacle(walker) with initial speed
∼ U(40,70) ; Rollout3: Stationary obstacle with initial

speed(v) � U(40,70)
In both cases, our RRRCF based detection scheme detect

these evolved situations and raised a flag for data being
out of distribution. Figure 4 shows result of above three
different test roll-outs. Dispvalue which is a scalar measure
for each datapoint given to this RRRCF detector provides
inference about possibility of data being in or out of training
distribution. The threshold maximum Dispvalue derived for

this set of experiment by running algorithm 1 is approximately
118.58, which is shown by the red horizontal line in figure 4.
During test rollouts, at each step of simulation, we estimated
DispValue for datapoint observed i.e. X = {d, v,mu} as
simulation progress.

In the first roll-out(Rollout 1), we did not make any change
in the environment and environment was similar to the training
scenarios. The observed Dispvalue for each datapoint during
rollout is always less than the threshold value, which implies
there was not any state observed during this rollout which is
OOD. In case of second roll-out(Rollout2), we made the obsta-
cle move towards the car at the speed of 2 meter/second. It was
observed that in the initial stage of simulation, the Disp value
is less than threshold value. It is because as obstcale is moving
slowly, at initial stage very small change in observed state.
Once car approaches the obstacle, the new state information
X is slowly shifting from (i.e. getting far off) from training
data cluster resulting into higher and higher Disp value as car
reaches towards the end of rollout. It is also observed that,
the change is Disp value is quite significant which facilitate
easy detection of such scenario and less false alarms. In case of
third roll-out(Rollout3), we keep the obstacle stationary but we
changed the initial spawning velocity of car to 75 miles/hour.
We observed Dispvalue higher than threshold almost through-
out the simulation step, the underlying reason initial spawned
velocity of car is out of training range and when OOD detector
observe this first initial state , it finds it as out-of-distribution.
It can be also seen that initially measured Dispvalue fluctuates
around the threshold, which reflects very proximal OODs but
with the progress of simulation, this gap increases and results
into higher value of measured DispValue.

Fig. 5: Image data stream given as an input to OOD detector
(Stream I)

In the second experiment, we used the work done by Cai et
al [14] for training a braking controller, but we trained it on
wider range of speed(30-75 m/s) with different reward policy.
Input in this case is the image scene from the car’s camera
and predicted output is the brake value. We trained and tested
this model on image data generated with no precipitation
condition in simulator CARLA. We collected all these images
with no precipitation in several episodic rollout and label it
as non-OOD training scenario data. We used all these image
data to build our RRRCF based OOD detector by running
algorithm 1. Threshold scalar Disp Value in this experiment
is calculated and it has a value of 23.26. For creating OOD
scenarios, we changed the no-precipitation condition to three
different participation conditions, Case1: Heavy precipitation,
Case2: Medium precipitation, and Case3: Low precipitation.
(refer fig 9 ) and collected image data captured by the camera.



Fig. 6: Output Disp value of stream I

Our goal is to evaluate the performance of our OOD detector
on stream of image data. For this purpose we created a stream
of images called stream I,which has first 125 image frames
with no precipitation scenario, then 5 frames of each three
different precipitation cases(heavy, medium and low) with 30
intermittent frames of no precipitation in-between as shown in
figure 5.

Fig. 7: Image data stream given as input to OOD detector
(Stream II)

Fig. 8: Output Disp value of stream II
With a given input image, if Disp Value is greater than the

threshold value then we declare it as OOD. Figure 6 shows
the Disp value generated by the OOD detector for the data
stream I. The red horizonal line represent the threshold value
of detector. It can be easily observed that the detector output is
significantly higher than threshold value in all the three OOD

case(heavy, medium and low precipitation) and lower for all
non-OOD cases.

we tried to find the performance of detector in context of
point OOD i.e. is the detector able to detect even single OOD
in stream of non-OOD data?

To find an answer to this question, we created another
stream of image frames called, Stream II. In Stream II, we
inserted single frame of different precipitation cases(heavy,
medium and low) in a stream of image frame similar to
training data i.e. no precipitation (refer 7). We observed that
OOD detector can even detect a single OOD data in a stream
of no-OOD data (for result,refer figure 8).

Fig. 9: Different precipitation conditions generated during
the training and prediction (no ppt, heavy ppt, medium ppt,

low ppt)
In second experiment, our model is a design predictor [1]

which predict geometric design (chord profile radial distribu-
tion,diameter of propeller fins, hub diameter) and efficiency
on a given requirement. Due to with infinitely large search
space, it is not possible to explore entire design space and these
models have knowledge only about the part of design space
[1]. The knowledge of design sub-space in which prediction of
these models can be relied is important for reliability of these
models. The detection of inputs which are out-of-distribution
can flag to inputs which are not in our model’s capability and
prediction on these input can not be relied. On sampled 10
million design points and found 0.205 million valid design
points.

V. TIME COMPLEXITY ANALYSIS

Algorithmic complexity of ODD detection process should
be low during prediction time. Its time complexity depends
upon the process required to make inference on a data-
point by detector i.e. ”Forest maintenance on stream”. Forest
Maintenance on stream of data involves two processes per
data-point first, insertion of a point in tree data-structure and
second, deletion of a point from tree data-structure. If we store
each data-point i.e the leaf of a tree in a hash table, then search
process for locating a leaf will have time complexity O(1).



Given a set of points Y and a point x ∈ Y , we construct a
tree T on data Y . Consider if we want to delete a leaf x from
the tree and produces tree T (Y − x), we just need to remove
the parent of x and make another child’s parent pointer to its
grandparent accordingly (refer fig 10). This deletion process
has time complexity of O(1). Total time complexity of deletion
process of a point (search+deletion) from a tree is O(1).

We can efficiently insert and delete data-points into a
random cut tree data-structure.

Fig. 10: Deletion of a data point from a tree

Insertion of a point in tree is a process when we have
a tree T and we want to insert a leaf x to the tree and
produces tree T (Y ∪ x), where x /∈ Y . In the worst case,
the time complexity of this process would be O(n), while
in the average and best case it would be O(logn) and O(1)
respectively, where n is the size of tree i.e. number of data-
points used to create the tree. If we have m trees in a forest,
then total time complexity of the process is O(mn), O(mlogn)
and O(m) in worst, average and best case respectively. The
effect of m on RRRCF creation,insertion and deletion process
can be made O(1) for time complexity analysis purpose as the
process is completely parallelizable i.e. we can do insertion
and deletion on each tree on different thread/core in parallel
if GPU/multi-core based parallel implementation of RRRCF
is used. Consequently, the insertion process on forest will
have time complexity O(n), O(logn) and O(1) respectively
for worst, average and best case scenario. Here a reasonable
question is how big the variable n can be? As machine
learning process is not very sample efficient, a well trained
model results into large training data. For example, training a
braking system perception LEC for speed range variance of
10Km/hr(90km/h to 100km/h) in Cai et al [14] experimental
setup took approximately 8160 images in a 100 meter distance.
Similarly in experiment set 1, our training data-point was
approx 0.36 million. But for ODD detection, it is not required
to use whole training data and it is enough if we can is to make
a sketch/outline of data i.e. we can ignore many datapoints that
are densly clustered and use only those featured datapoints
which represent the outline of data subspace.

We used our offline algorithm to select the number of
data points which may represent the whole data. For first
set of experiment,our algorithm gave 11134 featured data-
points out of total 367035 datapoints. For second set of
experiment,our algorithm gave 1050 featured data-points out
of total 8197 image datapoints. Selection on n also depends

TABLE I. Total datapoints and featured datapoints for
reduced robust random cut and percentage of total datapoints

selected as featured datapoint

Scenario Training points Featured points % reduction
1 367035 11134 96.97
2 8197 1050 87.2

upon the resources available. With availability of large number
of parallel cores in modern GPU, it is also possible to increase
m and reduce n and randomly choose a subset of element out
of n for creating a tree. With a very large training data, it is
possible to extract only a small segment of data to sketch the
RRRCF outline.

VI. TRAINING AND EXPERIMENT DETAILS

A. RRRCF Training Details :

In case of experiment set 1, we collected approximately
367035 training datapoints(Y), where each data point is a
tuple of distance, velocity and friction coefficient({d,v,mu}).
For constructing initial RRCF, we selected 1000 random
data from pool of total data i.e Z=1000. After construction
of initial rrcf datastructure , mean DispValue is calculated
over all points in Z. It is the initial threshold value and
it’s value was approximately 6.4 . This threshold was used
for making decision about inclusion/discard of other points
in training data (Y \ Z). After every 5000 data-points, we
recalculated the mean DispValue as our new threshold. The
reason for repeatedly updating our threshold is to accomodate
the changes made in tree structure by inclusion of datapoints.
We recursively applied this process to rest of training data.
After running algorithm 1, 10134 featured datapoints were
selected and rest 355574 datapoints were rejected. These total
11134 (10134+1000) datapoints were used to represent our
whole data(367035) in the reduced RRCF datastructure, which
is approximately 3.03% percent of whole data. In case of
experiment set 2, same experimental setting as by Cai et al [14]
was used and 8197 images were collected for training scenario
i.e. with no precipitation condition. For creation of initial
RRCF, we selected 100 images i.e Z=100. Once initial RRCF
was created, the average threshold for Z was calculated and it
was approximately 5.62. This threshold was used for making
decision about inclusion/discard of other points in training data
(Y \Z). After every 100 data-points, we recalculated the mean
DispValue as our new threshold. After running algorithm 1,
950 datapoints were selected and rest 7147 datapoints were
rejected. These featured 1050 datapoints(950+100) were used
to represent our whole data(8197 images) in the reduced RRCF
datastructure, which is approximately 12.8% percent of whole
data. For construction of random cut tree, modified version of
implementation of tree written by Barto et al [15] was used.

B. Braking system Training Details:

The braking system in experiment set 1 is trained using
Actor-Critic based Deep Deterministic Policy Gradient algo-
rithm with both actor and critic network are three layer neural
network, with 50(layer1) and 30(layer2) neurons in the hidden
layer and 1 neuron in output layer. For hidden layers in both



cases, relu activation function was used and for output layer
sigmoid activation layer was used in actor and linear activation
was used in critic. The model was trained using Adam [16]
optimization method by tuning different learning rate for 5000
episodes. In case of experiment set 2, we used same setting
as done by Cai et al [14].

VII. RELATED WORK

It is a well known issue that machine learning models
fail when the training and test distributions differ and they
often do this even after providing high confidence predictions
on training data [17]. Out of distribution detection can be
seen as attempt towards making a verified and safe artificial
intelligence. As direct verification suffer from a scalability
problem due to computational complexity and size of net-
works, till now work has been done for smaller scale networks
or with approximate methods that provide some convergence
guarantees on the bounds [18]. The alternative is to detect data
points those are OOD and do not use predicted output from the
trained model on these kind of input data. [19] attempted the
detect OOD based on the softmax probability estimated by the
predictor. Empirically they showed that OOD data generally
have lower softmax probabilities than the correctly classified
datapoints, as this can be used to detect the data being OOD.
[4] [14] [20] used the deviation based approach using one
or other flavour of Variational Auto Encoder(VAE). VAEs are
directed probabilistic graphical model, whose posterior and
likelihood are approximated by a neural networks, forming
an encoder and decoder like structure. In VAE based OOD
detector, people capitalise on either latent space representation
or its error in reconstruction to find the OOD data from normal
data. In proximity based method, early work on OOD detection
is done by using collection of random cut decision tree and
called it isolation forest [5]. Improving this work [6] proposed
Robust Random cut forest , which addressed most of the
challenge posed during practical use of isolation forest like:
working on stream of data, false detection etc.

VIII. CONCLUSION AND FUTURE WORK

In this work, we demonstrated a white-box interpretable
method for out-of-distribution detection. We also showed that
this method can detect even a single OOD data in a stream
of non-OOD data. We demonstrated the effectiveness of this
approach for both low and high dimensional input data space.

We also discussed that a GPU based parallel implementation
of reduced RRCF can significantly reduce the execution time.
Parallel implementation of reduced rrcf may be used in real
time system for real-time OOD detection. Writing an open
source GPU and multi-core implementation of reduced RRCF
and its evaluation for real time performance is the part of future
work. Evaluation on real world data and comparison with other
methods for OOD like variational autoencoder (VAE) based,
Gaussian mixture models based are also part of our future
work.
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