ﬁ EasyChair Preprint

Ne 9181

Security Risk Assessment Model for Cryptographic
Algorithms Misuse in Mobile Payment
Applications

Maharshi D’arunachala Zan, Franklin Tchakounté and
Tiguiane Yélémou

EasyChair preprints are intended for rapid
dissemination of research results and are
integrated with the rest of EasyChair.

October 28, 2022

Security risk assessment model due to
cryptographic algorithms misuse in mobile
payment applications

Maharshi d’Arunachala Zan', Franklin Tchakounté?, and Tiguiane Yélémou'

! University Nazi BONI, (maharshizan,tyelemou)@gmail.com
2 University of NGAOUNDERE, tchafros@gmail.com

Abstract. Applications that run on Android have more and more vul-
nerabilities that often lead to disclosures of personal information. Re-
searchers have developed approaches to detect applications that are a
source of vulnerabilities. We propose a model for risk evaluation. This
highlights the high rate of cryptographic misuse in mobile payment. For
us, detecting it is important to assess the risk associated with the use of
these APIs because this evaluation allows sensitizing developers in the
use of these different cryptographic APIs.

To carry out this work, we have proposed a vulnerability analysis model
that allows us to quantitatively and qualitatively assess the risks re-
lated to these misuses. The experiment was conducted using the enjarify,
bytecode viewer tools. Payment applications were downloaded from Apk
repositories and made usable by converting them into java classes. Also,
we used rules or criteria known to be vulnerable. So during the manual
analysis, if one of the rules is found in an application, it is counted and
so on until the list of rules is exhausted.

Finally, from this analysis, we calculate the risks based on a proposed
formula. At the end, we have grouped payment applications into three
(3) categories, payment solutions (PS), payment applications that in-
teract with bank accounts (APCB), and those that do not require a
bank account (APNCB). As result, we have security risk values ranging
from 0.39 - 8.39 for APCB, 0.6 - 2.67 for NBCAA, and 0.22 - 4.39 for PS.

Keywords: Android - Cryptographic API - Mobile Payment Applica-
tions - Risk Assessment - Static Analysis

1 Introduction

With the advent of digital technology, the definition of what is called "pay-
ment" has evolved rapidly. From the use of traditional methods of payment such
as coins, banknotes, and cheques, there has been a shift to the digitalization of
these methods of payment.This is a new type of payment supported by mobile
phone operators such as Orange Money [9], Mobicash [10] in Burkina Faso and
M-Pesa [11] in Kenya. Mobile payments have been booming due to the low rate

2 M.Zan et al.

of bank penetration combined with the increase in the number of mobile phones
in cities and suburbs. This allowed the development of local activities using these
means of payment accessible to all (possibility of sending small amounts). Un-
fortunately, malevolent people take advantage of the facilities to steal (scam)
money from electronic purses. Moreover, developers who strengthening the se-
curity of payment applications omit , or misuse cryptographic APIs. Hence the
need to measure the impacts of these applications through tests to propose its
best practice solutions. The rest of our paper is organized as follows. In section
2 we present the related work. Next, in section 3 we propose our model. After
that, in section 4 we carry out the tests and present the results we have achieved.
Finally, the last part is dedicated to the conclusion.

2 Related work

For risk assessment, it is necessary, on the one hand, to highlight the crypto-
graphic APIs misuse and, on the other hand, to use tools for risk calculation.

Egele et al. [9] has reported on several applications that use cryptographic
means to ensure security. They assume that static analysis could give acceptable
results based on a CryptoLint tool. For this, the analysis tool is based on se-
curity rules and Androguard. Thus, for Android applications collected between
May and July 2012, CryptoLint has successfully analyzed fifteen thousand one
hundred and thirty-four (15,134) applications; it has also recorded two thousand
six hundred and seventy-four (2,614) failures related to the thirty (30) minute
timeout and seven hundred and sixty-five (765) failures (a memory overflow).
As a contribution, this tool makes it possible to analyze applications, even when
the developers have well implemented the cryptographic APIs.

Alexia Chatzikonstantinou et al. [10] investigate the cryptographic methods
used by developers to protect so-called sensitive information. Sensitive infor-
mation includes short messages, passwords, and documents. For the analysis of
cryptographic means, they recommend two combined approaches, the first con-
sists of static analysis, and the second is dedicated to dynamic analysis. On a
data set of forty-seven (47) Android applications collected from June to Novem-
ber 2014, they obtained forty-seven (47%) percent that misuse and fifty-three
(53%) percent that do not use cryptographic methods as results.

Wickert et al. [11] ,to simplify their analysis, have made a collection of two
hundred and one (201) misuse of Crypto APIs, which was done in three (3) steps:
collect the projects, identify them manually or with CogniCrypSAST, and add
them to the directory. It is made available on the GitHub platform (MUBench).
At the end of the identification (Phase 2), one of the correct uses is provided
to users, which is a great contribution to the results. One of these approaches’
limitation is that it is based only on the JCA library and the projects that these
authors manage (non-representative sample). An effort was made to categorize

Security risk assessment model due to cryptographic algorithms misuse in mobile payment applications 3

vulnerabilities (encryption, hashing,...).

In addition,there are tools that allow us to calculate the risk. These tools
are based on equations (there are used to calculate the risk) and metrics (there
are used to categorized the level of the risk). A comparative analysis of the risk
calculation tools revealed similarities in the types of assessment: quantitative
and qualitative.

For example, we have CVSS(Common Vulnerability Scoring System) [4], CVE(Common
Vulnerability and Exposures) [5] , CCEVS(Common Criteria Evaluation and
Validation Scheme) [6], OWASP(Open Web Application Security Project) [7],
OCTAVE(Operationally Critical Threat, Asset, Vulnerability and Evaluation)

8]

Based on the advantages of risk identification and risk calculation approaches
by using equations and metrics, we propose a model.

3 Our risk assessment evaluation model

3.1 Description of the model

We call MAM4MA (Misuse Assessment Model for Mobile Applications) our risk
assessment model due to the misuse of cryptographic algorithms implemented
in mobile applications. It is used on mobile payment applications and identifies
misuse of the APIs implemented. For example, a misuse of the cryptographic
APIs in a payment application for Android, results in the following criterion:

— a misuse of a symmetric cryptographic algorithm to encrypt information is
the EBC (Electronic codebook), because this encryption method does not
use an initialization vector.

Using the diagram below, we have two (2) outputs (X and Y). These outputs
materialize for X: the number of poorly implemented cryptographic algorithms;
for Y: the number of breakable cryptographic algorithms.

We use the equation 4 to assess the risk associated with the use of a crypto-
graphic algorithm for a given system (mobile payment applications). The result
obtained from this calculation provides us with a value whose accuracy is limited
to two (2) digits. This value obtained has a qualitative correspondence in the
table 1.

3.2 Illustration of MAM4MA

The proposed model uses the security rules as well as the values of X and Y.
The diagram in figure 1 gives us the values of X and Y.

3.3 Rules or criteria used

They represent the comparison criteria of the implemented cryptographic APIs
in mobile payment applications. They are distributed in four (4) categories. They
are : use of unsuitable algorithms (1), bad implementations (2), use of wrong
keys (3), use of wrong cryptographic parameters (4) [12] .

M.Zan et al.

Does it followthe safety rule?

APl is it well implemented ? APl is poorly implemented

No Yes

Does it breakable? Which security service is involved ?

APl is breakable SUM ,(Y ’ < X)

Fig. 1. Misuse Assessment Model for Mobile Applications (MAM4MA)

Security risk assessment model due to cryptographic algorithms misuse in mobile payment applications 5

3.4 Mathematical justification of model

The model (MAM4MA) proposed and used for the analysis of vulnerabilities
due to the misuse of different cryptographic algorithms. This model is based on
equations and the diagram presented in fig 1. In the following we provide the
equations used.

For ny, no, X, Y € N |, we have :

the risk associated with the use of a payment application A,, is equal to :

Risk (Am) = XPyx, + YPy, (1)

where
Px; denotes the probability that the relevant cryptographic API is implemented
incorrectly and Pg; designates the probability that the cryptographic API con-
cerned is breakable.

In addition, we have :

Px, =3 (1) et Po =) () @)
i=1 i=1
and
6 18
X=X et Y=Y Q (3)
i=1 =1
where

X, designates the criteria poorly implemented APIs and @Q; the criteria
(C,K,P) of the breakable APIs with : n; , ny respectively the total number
of badly implemented API criteria and the total number of breakable API cri-
teria.

The calculated risk is therefore :

6 18
Risk (4,) = X301 +v () (@
1=1 i=1

Table 1. Scale of risk according to MAM4MA

Score Scale of risk
0 None
0.1 -3.9 Low
4.0 - 6.9 Medium
7.0 - 8.9 High
9.0 - 10.0 Critical

6 M.Zan et al.

4 Tests and results

After downloading twenty (20) mobile payment applications for Android ran-
domly from deposits (Google Play, Aptoid, Apkpure), we copy them into a folder
created for this purpose. Then we use the Enjarify and Bytecode Viewer tools.
The first one is used to decompile and the second one to explore decompiled
applications looking for misuse criteria.These steps as illustrated in fig 2.

We have in :

1. Collection of mobile payment APK :
At this stage, we download the different mobile payment applications.There
are taken randomly from different repositories.

2. Formatting :
At this level we use appropriate tools to make the downloaded application
usable (conversion into .jar format).

3. Content FExploration :
At this time, we are looking for cases of misuse among the algorithms im-
plemented in the applications.

4. Risk assessment :

After having found bad implementation criteria, we calculate the risk linked
to their presence in mobile payment applications.

] — e
Assessment

Fig. 2. steps of test

Google Play
Apkpure
Aptoide APK database

The mobile payment applications for the study were grouped into three
groups. The first group is the one containing mobile payment applications that
are linked to a bank account (APCB); the second is the one that does not re-
quire a bank account (APNCB) and the last one contains payment solutions
(SP). Initial observations point to several misuses of cryptographic algorithms.

Firstly, these are C1 (misuse of encryption algorithms or hash function) as
detected in eighteen (18) applications (90%), C2 (use of password-based en-
cryption) found in all twenty (20) applications. Then, we have C5 (use of CBC

Security risk assessment model due to cryptographic algorithms misuse in mobile payment applications 7

block mode encryption combined with PKCS5 as stuffing algorithm), I6 (use of
RSA combined with any other type of stuffing algorithm), and C3 (use of ECB,
dictionary-based encryption mode).

Also, we note I1 (a re-implementation of the standardized version of AES)
and P2 (use of CBC block mode encryption combined with a non-random initial-
ization vector). Finally, we have, K3 (use of static or constant encryption key)
and P4 (use of initialization vector embedded in the source code). By group-
ing these misuses into categories (4), we have the following result in the table.
We find that most of the misuses that are made when securing mobile payment
applications come from using bad algorithms.

Table 2. Grouping vulnerabilities by category

APCB APNCB SP Total
Use of unsuitable algorithms 15 22 20 57
Bad implementations 8 9 6 23
Use of wrong keys 4 1 4 9
Use of wrong cryptographic parameters 9 6 5 20
Legend:

SP: Payment solution
APCB: Payment application related to bank accounts
APNCB: Payment application not related to bank accounts

After presenting the vulnerabilities due to the misuse of cryptographic APIs,
we associate security risks by level of risk (criticality) and by applications of
payment. These differents elements are available in table 3. The mobile payment
applications have been grouped by category (APCB, APNCB, SP). We note that
the level of risk is higher for applications that interact with bank accounts, then
means concerning payment solutions and low for payment applications that do
not require a bank account for work.

In the first case, we explain the situation by the fact that the interaction
with an account adds several APIs whose role is to ensure the security of the
link (applications payment server - bank server). The second case is related to
the inclusion of several platforms each adding their own vulnerabilities. The last
one is related only to payment application vulnerabilities.

8

M.Zan et al.

Table 3. Al - Mobile payment applications and risk level

N Origin Risk Level Category
1 GP 0,06 low APNCB
2 GP 0,22 low SP

3 GP 0,39 low APCB
4 GP 0,39 low APNCB
5 GP 0,67 low SP

6 APP 0,89 low APNCB
7 GP 0,89 low APNCB
8 APT 1,06 low APCB
9 GP 1,06 low APNCB
10 GP 1,06 low SP

11 APP 1,31 low SP

12 APT 1,39 low SP

13 GP 1,56 low APNCB
14 GP 2,00 low APNCB
15 APP 2,67 low APCB
16 APT 2,67 low APNCB
17 GP 2,72 low SP

18 APT 4,39 midle SP

19 GP 5,17 midle APCB
20 APT 8,39 high APCB

Legend: GP:

Google Play APT: Aptoide

APP:Apkpure

Security risk assessment model due to cryptographic algorithms misuse in mobile payment applications 9

5 Conclusion

In short, it appears that very often developers use cryptographic APIs to ensure
security. Unfortunately, these are poorly implemented or not updated, with the
opposite effect. We propose a model that takes cases of cryptographic misuse in
mobile payment. This is the case in this study, which showed a high proportion
of misuse of encryption and hash APIs, which is an important aspect of security
services (confidentiality, integrity, availability). Then we propose alternatives to
developers to remedy this situation.

Thus, the future perspectives are first to increase the number of misuse cri-
teria to widen the detection field of the proposed model; secondly, to adapt the
model to take into account the applications on android except those treated in
the framework of this work.

References

1. orange Homepage, https://www.orange.bf/particuliers/1/5/orange-money-
2525.html. Last accessed 10 Jun 2020

2. onatel Homepage, http://www.onatel.bf/particulier /telephonie-mobile/produits-et-
services/mobicash.aspx. Last accessed 10 Jun 2020

3. safaricom Homepage, https://www.safaricom.co.ke/personal /m-pesa. Last accessed
10 Jun 2020

4. CVSS Homepage, hitps : //wwuw.first.org/cvss/v3 — 1/cvss — v3l — user —
guide,1.pdf. Last accessed 09 Aug 2020

5. CVE Homepage, https://cve.mitre.org/cve. Last accessed 09 Aug 2020

6. CCEVS Homepage, https://www.niap-ccevs.org/. Last accessed 09 Aug 2020

7. OWASP Homepage, https://www.owasp.org. Last accessed 09 Aug 2020

8. OCTAVE Homepage, https://study.com/academy /lesson/operationally-critical-

threat-asset-vulnerability-evaluation-octave-definition-overview.html. Last accessed
09 Aug 2020

9. M. Egele, D. Brumley,M. Egele, D. Brumley, Y. Fratantonio, C. Kruegel.: An em-
pirical study of cryptographic misuse in Android applications. In: Proceedings of
the ACM, Conference on Computer and Communications Security 2013, pp. 73-83.
https://doi.org/10.1145/2508859.2516693

10. A. K. Wickert, M. Reif, M. Eichberg, A. Dodhy, M. Mezini.: A dataset
of parametric cryptographic misuses. In: IEEE International Work-
ing,Conference on Mining Software Repositories 2019, vol. 2019, pp. 96-100
https://doi.org/10.1109/MSR.2019.00023

11. A. Chatzikonstantinou, C. Ntantogian, G. Karopoulos, C. Xenakis.: Evalua-
tion of cryptography usage in android applications. In:EAI International, Confer-
ence on Bio-inspired Information and Communications Technologies (BICT) 2015,
https://doi.org/10.4108 /eai.3-12-2015.2262471

12. David Lazar, Haogang Chen, Xi Wang, N. Zeldovich.: Why does cryptographic
software fail 7 A case study and open problems. In: Proceedings of 5th Asia-Pacific
Workshop on Systems 2014, pp 1-7, https://doi.org/10.1145/3196494.3196538

