

Seismic Analysis of Tall Structures

Sumit Kumar Gawande, Uday Amte, Siddharth Agrawal, Abhishek Saonerkar, Kuldeep Dabhekar, Isha Khedikar and Rahul Agrawal

EasyChair preprints are intended for rapid dissemination of research results and are integrated with the rest of EasyChair.

June 15, 2021

SEISMIC ANALYSIS OF TALL STRUCTURES

Sumit Gawande, Uday Amte, Siddharth Agrawal, Abhishek Saonerkar ,Kuldeep R Dabhekar, Isha P Khedikar and Rahul Agrawal

Civil Engineering Department, G H Raisoni College of Engineering, Nagpur, Maharashtra, India

gawande_sumit.ce@ghrce.raisoni.net¹,amte_uday.ce@ghrce.raisoni.net²,agrawal siddharth.ce@ghrce.raisoni.net³,saonerkar_abhi.ce@ghrce.raisoni.net⁴,kuldeep .dabhekar@raisoni.net⁵, isha.khedikar@raisoni.net⁶, rahul.agrawal@raisoni.net

Abstract:- Nowadays, tall structures have turned out to be a great engineering wonder. From past earthquakes information, it is demonstrated that a significant number of structures are harmed or destroyed due to earthquakes, therefore, it becomes necessary to decide and analyze seismic reactions over the structure. Earthquake can cause huge destructive to the structure. There is a need of seismic study and planning to protect the structure from earthquake. The analysis of the structures is to determine the deformations and forces induced by applied load or because of ground movements so as to resist earthquakes while designing the buildings. Depending on the intent of the study, a variety of methods are available. In this, seismic response of residential G+7 reinforced cement concrete frame building is analyzed by equivalent static method and by using STAAD.PRO software as per IS 1893(Part1): 2016.

Keywords: Analysis, design, loadings, seismic forces, tall structure.

1. Introduction

Earthquakes are thought to be the leading cause of building structural collapse. Because of the instability of the local building stock, earthquakes have the potential to cause significant damage and financial losses. The building gets damaged due to inertia force, which acts in the opposite direction to the earthquake's acceleration. Seismic loads are inertial forces that are normally dealt with by assuming forces external to the building.[13] As a result, in addition to gravity loads, the foundation would be subjected to a significant lateral force during ground shaking caused by an earthquake. The main objective of this paper is to modify the manually designed multistoried building with seismic effect by analyzing it through STAAD.PRO.[9] The demand for such models is often driven by the need to analyses a vast number of systems in a short period of time. STAAD.PRO software solves typical problem and do seismic analysis of various load combinations.[11] There are two methods for analysis of earthquake or seismic load acting on the building namely; equivalent static method and dynamics analysis method.[12,15]

The main objective of seismic analysis of tall Structures include:

- Assess the structure according to IS 1893(Part1): 2002 for earthquake resistance.
- Static load process analysis of the structure.
- STAAD.PRO software was used to perform a dynamic study of the building.
- Using a variety of lateral stiffness schemes.
- To address energy and environmental issues.

Recently, there are many numbers of tall buildings newly constructed, both residential and commercial as the modern trend is more preferable to the tall structures. As a result, lateral loads such as dead loads, live loads, wind loads, and earthquake forces are becoming increasingly important, posing a challenge in providing adequate strength and stability against lateral loadings.

2. Methodology

In our project, comparative analysis of multistorey building G+7 building is done on STAAD. PRO applications and the Equivalent Static Load process (manually). To analyze the multistorey building and to calculate its various stresses and loads is very difficult and time consuming, therefore, in such case, STAAD.PRO software makes it quick and easy. It takes into account the basic values as per IS 456:2000 for RCC structures and IS 1893(Part1):2002 for earthquake resistant structures.

Sr. No.	Description	Values
1	Zone Factor Z for zone III	0.16
2	Importance Factor I	1.2
3	Height of Storey	3 m
4	For SMRF Response Reduction Factor	5

Table 1. Structural Parameter

	Table 2. Material Properties [8]	
4	For SMRF Response Reduction Factor	5
3	Height of Storey	3 m
2	Importance Factor I	1.2
1	Zone Factor Z for zone III	0.16

rube 2. Material Properties [0]					
Description	Symbols	Values as per IS Standards			
Seismic zone	-	II (Table 2 Pg.16 of IS 1893:2002)			
Seismic intensity	Z	0.1			
Importance factor	Ι	1.5 (Table 6 Pg.18 of IS 1893:2002)			
Response reduction factor	R	3 (Table 7 Pg.23 of IS 1893:2002)			
Lateral dimension	D	65.6 meters			
Height	Н	50.4 meters			
Fundamental natural period	Та	0.560			
Type of soil	-	Medium			
Spectral acceleration coefficient	Sa/g	2.428			
Seismic weight	Ŵ	680034 kN			
Seismic base shear	Vb	41284.632 kN			

With reference to the values and properties of material given in table 2, we can analyze manually the load and forces acting on G+7 building.

Dead load calculation:

There are 17 internal columns and 18 external columns in total.

Particulars	Dimensions	
Size of internal column	$= 300 \times 450$ mm.	
Size of external column	$= 300 \times 300$ mm.	
Self – weight of internal column	$= 0.300 \times 0.450 \times 25 \times 1 =$	(1)
	3.375 kN/m	
Self – weight of external column	$= 0.300 \times 0.300 \times 25 \times 1 = 2.25 \text{ kN}/$	(2)
	m	
Unit weight of reinforced cement concrete	$= 25 \text{ kN/m}^3$	
Total self weight of internal column for	= 3.375 * 3 * 17 = 172.125 kN	(3)
ground floor		
Total self weight of external column for	= 2.25 * 3 * 18 = 121.5 kN	(4)
ground floor		

Total weight of column on ground floor		$\frac{172.125 + 121.5 = 293.625 \text{ kN}}{172.125 + 121.5 = 293.625 \text{ kN}}$	(5)
Size of beams		300 * 450 mm.	
Self – weight of beam/meter length	= 0	0.300 * 0.450 * 25 * 1	(6)
	2	= 3.375 kN/m	
Unit-weight of reinforced cement concrete		25 kN/m^3	
Total length of beams.		174m	
Total self – weight of beam on one floor		3.375 * 174 = 587.25 kN.	(7)
Assume a wall thickness of		230mm.	(2)
Self – weight of wall		0.23 * 3 * 1 * 20 = 13.8kN/m	(8)
Density of plastered wall		20 kN/m ³ , and height of storey is 3m.	
For parapet wall, height of parapet wall	= 1	m. and thickness of wall is 230mm.	
Self – weight of parapet wall	= 0	0.230 * 1 * 20 * 1 = 4.6 kN/m	(9)
*The calculation for the remaining seven floors of	colum	nn, beam and wall is same as calcula	te above
(from equation 1 to equation 9). [2,3,9]			
Assume floor finish as	= 0	0.5 kN/m ²	
Live load is considered 50% if the value of live	= 4	4 kN/m².	
load is equal to or more than			
Live load per meter length(10)	= 2	2 * 1 = 2kN/m	(10)
*Roof live load will be null. [4]			
Seismic weight of building is defined as the total de	ead loa	ad and the appropriate amount of liv	e load as
por IS 1802 (port 1) 2016			
per IS 1893 (part 1):2016			
W1 = seismic weight of ground storey		587.25 + 293.625 + (2 * 174) +	
		587.25 + 293.625 + (2 * 174) + (0.5 * 174) = 1315.875 kN.	(11)
W1 = seismic weight of ground storey = dead load + live load	((0.5 * 174) = 1315.875 kN.	
W1 = seismic weight of ground storey	(= 5	(0.5 * 174) = 1315.875 kN. 587.25 + 293.625 + (13.8 * 174) - 100000000000000000000000000000000000	
W1 = seismic weight of ground storey = dead load + live load	(= 5 ((0.5 * 174) = 1315.875 kN. (587.25 + 293.625 + (13.8 * 174) - (0.5 * 174) + (2 * 174) =	
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load	(= 5 (3	(0.5 * 174) = 1315.875 kN. 587.25 + 293.625 + (13.8 * 174) - (0.5 * 174) + (2 * 174) = 3717.075 kN	
W1 = seismic weight of ground storey = dead load + live load	(= 5 (3 = V	(0.5 * 174) = 1315.875 kN. (587.25 + 293.625 + (13.8 * 174) - (0.5 * 174) + (2 * 174) =	
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore,	() = 5 $() = 7$ $() = 7$ $() = 7$	(0.5 * 174) = 1315.875 kN. (0.5 * 174) + (293.625 + (13.8 * 174) + (2 * 174) = 3717.075 kN W3 = W4 = W5 = W6 = W7 = 3717.075 kN	+ (!2)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as	() = 5 $() = 7$ $() = 7$ $() = 7$	(0.5 * 174) = 1315.875 kN. 587.25 + 293.625 + (13.8 * 174) - (0.5 * 174) + (2 * 174) = 3717.075 kN W3= W4=W5=W6=W7= 3717.075	
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof	(= 5 (3 = V k =		+ (!2)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6	(= 5 (3 = V k = = 2	(0.5 * 174) = 1315.875 kN. $(587.25 + 293.625 + (13.8 * 174) + (2 * 174) = 3717.075 kN$ $W3 = W4 = W5 = W6 = W7 = 3717.075 kN$ $(2 * 174) + (4.6 * 65) + (0.5 + 174) = 734 kN$ $(1315.875 + (3717.075 * 6) + 3717.075 kN + 3717.075 kN$	+ (!2)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8	(= 5 (3 = V k = = 2	(0.5 * 174) = 1315.875 kN. $(587.25 + 293.625 + (13.8 * 174) + (2 * 174) = 3717.075 kN$ $(3717.075 kN) = 3717.075 kN$ $(2 * 174) + (4.6 * 65) + (0.5) + (0.5) + (174) = 734 kN$	+ (!2)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6	(= 5 (3 = V k = = 2		+ (!2) (13) (14)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8 Lateral load resistance is provided by moment	$= 5$ $= V$ $= \frac{3}{2}$ $= \frac{3}{2}$	(0.5 * 174) = 1315.875 kN. $(587.25 + 293.625 + (13.8 * 174) + (2 * 174) = 3717.075 kN$ $W3 = W4 = W5 = W6 = W7 = 3717.075 kN$ $(2 * 174) + (4.6 * 65) + (0.5 + 174) = 734 kN$ $(1315.875 + (3717.075 * 6) + 3717.075 kN + 3717.075 kN$	+ (!2) (13) (14)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8 Lateral load resistance is provided by moment resisting frames filled with brick masonry panels.	$= 5$ $= V$ $= \frac{3}{2}$ $= \frac{3}{2}$	$\begin{aligned} & (0.5 * 174) = 1315.875 \text{ kN.} \\ & (0.5 * 174) + (2300) + (1$	+ (!2) (13) (14)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8 Lateral load resistance is provided by moment resisting frames filled with brick masonry panels. Hence, approximate fundamental period is given	= 5 $= V$ $= 2$ $= 2$	$\begin{array}{l} (0.5*174) = 1315.875 \text{ kN.} \\ (0.5*174) + (23174) = (13.8*174) + (23174) + (23174) = (13.8*174) + (23174) = (13.8*$	+ (!2) (13) (14)
W1 = seismic weight of ground storey $= dead load + live load$ $W2 = Dead Load + Live Load$ As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof $Weight = W1 + W2 + W3 + W4 + W5 + W6$ $+ W7 + W8$ Lateral load resistance is provided by moment resisting frames filled with brick masonry panels. Hence, approximate fundamental period is given by Where, h= total height of building; d= width of builting the same store of the second store of the se	= 5 $= V$ $= 2$ $= 2$	$\begin{array}{l} (0.5*174) = 1315.875 \text{ kN.} \\ (0.5*174) + (23174) = (13.8*174) + (23174) + (23174) = (13.8*174) + (23174) = (13.8*$	+ (!2) (13) (14)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8 Lateral load resistance is provided by moment resisting frames filled with brick masonry panels. Hence, approximate fundamental period is given by	(= 5 (3 = V k = = 2 1 lding :	$\begin{array}{l} (0.5*174) = 1315.875 \text{ kN.} \\ (0.5*174) + (23174$	+ (!2) (13) (14) (15)
W1 = seismic weight of ground storey $= dead load + live load$ $W2 = Dead Load + Live Load$ As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof $Weight = W1 + W2 + W3 + W4 + W5 + W6$ $+ W7 + W8$ Lateral load resistance is provided by moment resisting frames filled with brick masonry panels. Hence, approximate fundamental period is given by Where, h= total height of building; d= width of bui Earthquake load in X - direction	(= 5 (3 = V k = = 2 1 lding :	$\begin{array}{l} (0.5*174) = 1315.875 \text{ kN.} \\ (0.5*174) + (2*174) = \\ (0.5*174) + (2*174) = \\ (0.5*174) + (2*174) = \\ (2*174) + (2*174) = \\ (2*174) + (4.6*65) + (0.5) \\ & *174) = \\ (2*174) + (4.6*65) + (0.5) \\ & *174) = \\ (2*174) + (3717.075*6) + \\ (37$	+ (!2) (13) (14) (15) (16)
W1 = seismic weight of ground storey $= dead load + live load$ $W2 = Dead Load + Live Load$ As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof $Weight = W1 + W2 + W3 + W4 + W5 + W6$ $+ W7 + W8$ Lateral load resistance is provided by moment resisting frames filled with brick masonry panels. Hence, approximate fundamental period is given by Where, h= total height of building; d= width of buil Earthquake load in X - direction Earthquake load in Z - direction	(= 5 (3 = V k = = 2 1 lding :	$\begin{array}{l} (0.5*174) = 1315.875 \text{ kN.} \\ (0.5*174) + (2*174) = \\ (0.5*174) + (2*174) = \\ (0.5*174) + (2*174) = \\ (2*174) + (2*174) = \\ (2*174) + (4.6*65) + (0.5) \\ & *174) = \\ (2*174) + (4.6*65) + (0.5) \\ & *174) = \\ (2*174) + (3717.075*6) + \\ (37$	+ (!2) (13) (14) (15) (16)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8 Lateral load resistance is provided by moment resisting frames filled with brick masonry panels. Hence, approximate fundamental period is given by Where, h= total height of building; d= width of buil Earthquake load in X - direction Earthquake load in Z - direction The building is located on medium soil.	(= 5 (3 = V k = = 2 1 lding :	$\begin{array}{l} (0.5 * 174) = 1315.875 \text{ kN.} \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (2 * 174) + (4.6 * 65) + (0.5 + 174) = \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + \\ (2 * 174) + (4.6 * 65) + \\ (2 * 174) + \\ $	+ (!2) (13) (14) (15) (16) (17)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8 Lateral load resistance is provided by moment resisting frames filled with brick masonry panels. Hence, approximate fundamental period is given by Where, h= total height of building; d= width of buil Earthquake load in X - direction Earthquake load in Z - direction The building is located on medium soil. From figure.1 IS 1893(Part1):2016; for earthquake	(= 5 (3 = V k = = 2 1 ding = =	$\begin{array}{l} (0.5 * 174) = 1315.875 \text{ kN.} \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (2 * 174) + (2 * 174) = \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & * 174) = \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & * 174) = \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (2 * 174) = \\ (2 * 174) + (2 * 174) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (2 * 174) \\ & + \\ (2 * 174) + (2 * 174) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (2 * 174) \\ & + \\$	+ (!2) (13) (14) (15) (16)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8 Lateral load resistance is provided by moment resisting frames filled with brick masonry panels. Hence, approximate fundamental period is given by Where, h= total height of building; d= width of buil Earthquake load in X - direction Earthquake load in Z - direction The building is located on medium soil.	(= 5 (3 = V k = = 2 1 ding : =	$\begin{array}{l} (0.5 * 174) = 1315.875 \text{ kN.} \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & * 174) = 734 \text{ kN} \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & * 174) = 734 \text{ kN} \\ (1315.875 + (3717.075 * 6) + \\ (734 = 24352.325 \text{ kN.} [5] \\ \hline \\ Time \ period = 0.09 * h/ \\ sqrt(d) \qquad [9] \\ \hline \\ in \ the \ direction \ of \ axis. \\ \hline \\ 0.09 * 24/sqrt(17) = 0.52 \ \text{sec.} \\ \hline \\ 0.09 * 24/sqrt(15.5) \\ = 0.54 \ \text{sec.} \\ \hline \\ \hline \\ Spectral \ acceleration \ coefficient= \\ 2.5 \ (As \ per \ IS \ 1893-2016, \ from \\ \hline \end{array}$	+ (!2) (13) (14) (15) (16) (17)
W1 = seismic weight of ground storey = dead load + live load W2 = Dead Load + Live Load As from W2 to W1 seismic weight will be same as there is symmetry. Therefore, W8 = seismic weight of roof Weight = W1 + W2 + W3 + W4 + W5 + W6 + W7 + W8 Lateral load resistance is provided by moment resisting frames filled with brick masonry panels. Hence, approximate fundamental period is given by Where, h= total height of building; d= width of buil Earthquake load in X - direction Earthquake load in Z - direction The building is located on medium soil. From figure.1 IS 1893(Part1):2016; for earthquake	(= 5 (3 = V k = = 2 1 ding : =	$\begin{array}{l} (0.5 * 174) = 1315.875 \text{ kN.} \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (0.5 * 174) + (2 * 174) = \\ (2 * 174) + (2 * 174) = \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & * 174) = \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & * 174) = \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (2 * 174) = \\ (2 * 174) + (2 * 174) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (2 * 174) \\ & + \\ (2 * 174) + (2 * 174) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (4.6 * 65) + (0.5) \\ & + \\ (2 * 174) + (2 * 174) \\ & + \\$	+ (!2) (13) (14) (15) (16) (17)

The above figure gives the values of Sa/g for different types of soil at a given natural time period (Ta). [1]

Figure 2. Values of Base shear with different earthquake zones [10,13]

Above figure shows the variation of base shear in different earthquake zones. Zone 5, being the dangerous zone, had a highest base shear force.

Figure 3. Different base shear values for different floors

The above figure shows the different base shear values calculated manually for different storeys.

3. Analysis through STAAD.PRO:

STAAD.PRO is a fully integrated finite element analysis and design solution with a cutting-edge user interface, visualization capabilities, and international design codes. It can evaluate any structure that is subjected to static, dynamic, wind, earthquake, thermal, or moving loads. STAAD.PRO can help with structural analysis and design for any project, including towers, buildings, culverts, plants, bridges, stadiums, and marine structures. Plan is framed in AutoCAD and STAAD.PRO software in order to analyze the respective structure.

Figure 4. STAAD.PRO plan of a G+7 building.

The figure 4 shows the STAAD.PRO plan of a building which is to be analyzed. [9,14]

- \circ f_y main: Primary Yield Strength of Shear Reinforcement = Fe500- 500000 N/mm².
- o f_y sec: Secondary Yield Strength of Shear Reinforcement = Fe250- 250000 N/mm².
- Maximum main: Maximum Size of Main Reinforcement = 16mm.
- Minimum main: Minimum Size of Secondary Reinforcement = 12mm.
- Minimum main: Minimum Size of Main Reinforcement = 10mm.
- Minimum sec: Minimum Size of Secondary Reinforcement = 8mm.
- Compressive Strength of Concrete = f_c = Grade of Concrete = M25- 25000 N/mm².

Figure 5. Load applied to structure

Figure 5. shows the various load applied to the structure such as dead load, live load, wind load, earthquake load. [7]

Figure 6. Surface detailing on maximum absoluteFigure 7.Elevation of G+7loadbuilding[14]

Figure 6. Shows the flooring details obtained in STAAD.PRO and figure 7. Shows the elevation view of the building. [7]

Figure 8. Deflection due to earthquake load **Figure 9.** Deflection due to wind load Figure 8 shows the deflection caused due to earthquake load in x and z- direction which then causes the instability to the structure and figure 9 shows the deflection caused due to wind load acting on the structure. [7]

Figure 10. Deflection due to dead loadFigure 11. Deflection due to live loadFigure 10 and 11 shows the deflection caused due to dead load and live load acting on the
building.[7]

Figure 12. Base shear values obtained after analysis through STAAD.PRO.

Figure 12 shows the different base shear values of different floors and is then tabulated below with their beam numbers. [7,12]

4. Results

After doing manual analysis of seismic loads on G+7 building and further analyzed it by using STAAD.PRO software, results are obtained in tabular form and shear force and bending moment diagram is obtained accordingly.

Sr. No	Beam No.	Base Shear (kN)	Sr. No	Beam No.	Base Shear (kN)
1	57	19.892	19	76	49.748
2	58	23.594	20	78	50.462
3	59	22.518	21	79	44.794
4	60	23.629	22	80	50.433
5	61	19.812	23	81	54.062
6	62	19.315	24	82	37.109
7	63	18.931	25	83	19.232
8	64	18.847	26	84	42.679
9	65	17.939	27	85	53.978
10	67	18.159	28	86	22.638
11	68	18.59	29	87	57.723
12	69	19.15	30	88	54.997
13	70	19.016	31	89	48.968
14	71	19.168	32	90	21.771
15	72	43.749	33	91	51.988
16	73	56.228	34	92	44.225
17	74	37.293	35	94	23.065
18	75	49.506		Total	1193.208 kN

Table 3. Base shear values for different beams

Table no.3 shows the base shear values calculated for different beams through STAAD.PRO software and is then compared with the base shear values calculated manually.

	Table 4. Distribution of total Horizontal Load to Different floor levels [8,9]							
Storey	Wi	Hi	WiHi *10-3	$Qi = WiHi^2/(\Sigma WiHi^2) * V_B$	Vi (KN)			
8	734	24	422.784	97.153	97.153			
7	3717.075	21	1639.23	376.68	473.83			
6	3717.075	18	1204.33	276.74	750.573			
5	3717.075	15	836.34	192.18	942.75			
4	3717.075	12	535.25	122.99	1065.74			
3	3717.075	9	301.08	69.18	1134.92			
2	3717.075	6	133.81	30.74	1165.66			
1	1315.875	3	11.84	2.72	1168.383			
Total			5084.16	1168.383				

From table no.4, the distribution of total horizontal loads to different floors can be easily understood. It can be clearly seen that the load increases with the increase of floors from ground level and maximum load acts on the top floor of the building.

Figure 13. Bending Moment Diagram of beam (First Storey)[12]

In figure 13, a point load of 1.35kn is applied which causes a continuous bending moment in a beam and maximum bending moment for beam 110 is 92.80 kn.m.

Figure 15. Bending Moment Diagram of beam (Third Storev)

In figure 15, a point load of 1.35kn is applied which causes a continuous bending moment in a beam and maximum bending moment for beam 298 is 82.87kn.m.

Figure 17. Bending Moment Diagram of beam (Fifth Storey)

In figure 17, a point load of 1.33kn is applied at center which causes a continuous bending moment in a beam and maximum bending moment for beam 486 is 57.12kn.m.

Figure 14. Bending Moment Diagram of beam (Second Storey)[12]

In figure 14, a point load of 1.36kn is applied which causes a continuous bending moment in a beam and maximum bending moment for beam 204 is 90.50kn.m.

Figure 16. Bending Moment Diagram of beam (Fourth Storey)

In figure 16, a point load of 1.34kn is applied which causes a continuous bending moment in a beam and maximum bending moment for beam 392 is 72.09kn.m.

Figure 18. Bending Moment Diagram of beam (Sixth Storey)

In figure 18, a point load of 1.35kn is applied which causes a continuous bending moment in a beam and maximum bending moment for beam 575 is 21.78 kn.m.

In figure 19, a point load of 1.53kn is applied which causes a continuous bending moment in a beam and maximum bending moment for beam 669 is 13.53 kn.m.

Table No.5 shows the compared values of base shear calculated manually and through STAAD.PRO software.

STOREY	MANUALLY CALCULATED WEIGHT	FROM STAAD.PRO SOFTWARE			
8	97.153 KN	145.37 KN			
7	473.83 KN	511.161 KN			
6	750.573 KN	782.942 KN			
5	942.75 KN	975.678 KN			
4	1065.74 KN	1092.46 KN			
3	1134.92 KN	1111.06 KN			
2	1165.66 KN	1190.366 KN			
1	1168.383 KN	1193.20 KN			

	Table 6. Displacement by Earthquake Load in X-Direction							
NODE	L/C	X	Ŷ	Z	Mm	Rx	Ry	Rz
40	2 EQZ	-0.071	1.375	4.344	4.557	0.001	0	0
44	2 EQZ	-0.016	0.063	4.351	4.351	0	0	0
47	2 EQZ	0.02	-0.342	3.948	3.963	0.001	0	0
49	2 EQZ	0.016	-0.342	3.771	3.787	0.001	0	0
52	2 EQZ	-0.066	0.301	3.942	3.954	0.001	0	0
55	2 EQZ	-0.062	0.259	4.211	4.220	0.001	0	0
59	2 EQZ	0.027	-0.181	3.825	3.829	0.001	0	0
60	2 EQZ	0.007	-0.009	3.942	3.942	0.001	0	0
63	2 EQZ	-0.016	0.112	3.984	3.986	0.001	0	0
70	2 EQZ	0.031	0.069	4.209	4.210	0	0	0
73	2 EQZ	-0.048	0.082	3.944	3.945	0.001	0	0
75	2 EQZ	-0.061	-0.014	3.965	3.966	0.001	0	0
78	2 EQZ	-0.062	-0.038	4.213	4.213	0	0	0

Table no.6 shows the displacement caused due to earthquake load when it is applied horizontally in x-direction

Τ	able 7. Minimum a	and Maxim	um displac	ement of E	arthquake	Load in	ı Z-Dir	ection
NODE	L/C	X	Y	Z	Mm	Rx	Ry	Rz
40	1 EQX	6.252	0.956	-0.05	6.325	0	0	0
44	1 EQX	6.195	0.326	-0.04	6.204	0	0	-0.001
47	1 EQX	6.284	-0.01	0.023	6.284	0	0	-0.001
49	1 EQX	6.276	-0.25	-0.06	6.281	0	0	-0.001
52	1 EQX	6.263	-0.01	0.016	6.263	0	0	-0.001
55	1 EQX	6.260	-0.29	-0.08	6.267	0	0	-0.001
59	1 EQX	5.903	0.337	-0.007	5.912	0	0	-0.001
60	1 EQX	6.040	-0.26	0.09	6.045	0	0	-0.002
63	1 EQX	6.196	0.094	0.01	6.197	0	0	-0.001
70	1 EQX	5.882	-0.45	-0.08	5.900	0	0	-0.001
73	1 EQX	5.938	0.028	0.005	5.938	0	0	-0.001
75	1 EQX	6.161	0.269	0.015	6.167	0	0	-0.001
78	1 EQX	6.162	-0.33	-0.08	6.171	0	0	-0.001

Table no.7 shows the maximum and minimum displacement caused due to earthquake load when it is applied in z-direction. The max. Base shear was found to be **1168.91 KN** and **1198.23 KN** calculated manually and from STAAD.PRO software respectively.

Conclusion:

This research paper aimed to analyze the seismic load acting on G+7 building. The analysis is done manually using equivalent static load method and is then compared with STAAD.PRO software so as to get better results. STAAD.PRO software evaluates any structure subjected to dynamic loading and gives an accurate result. Some researchers said that the values of base shear calculated manually for different earthquake zones is different as that of the accurate values obtained in the software which, when designed, causes an instability to the structure and thus, the structure gets damaged when subjected to earthquake load form x or z- direction. Therefore, to avoid such situation, it is better to compare the values beforehand and then design the structure accordingly.

References:

- [1] IS 1893 (PART 1): 2016 Criteria for Earthquake Resistant Design of Building Part 1 General Provisions and Building.
- [2] IS 456: 2000 Plain and Reinforced Concrete Code of Practice.
- [3] IS 875 (Part 1): 1987 Code of Practice. Part 1: Dead Loads-Unit Weights of Building Materials and Stored Materials for Design Loads for Buildings and Structures.
- [4] IS 875(PART 2): 1987. Code of Practice for Design Loads for Buildings and Structures. Part 2: Imposed loads.
- [5] IS 875(PART 5): 1987. Code of Practice for Design Loads for Buildings and Structures. Part 5: Special loads and Combination of loads.
- [6] Sharma N ISBN: "Earthquake Resistant Building Construction".
- [7] Das S 2019 STAAD.PRO CE Seismic Analysis Using IS 1893 (PART-1)-2016.
- [8] Shah H J and Jain S K Document no.: IITK-GSDMA-EQ26-V3.0 Design Example of a Six Storey Building.
- [9] Meshram K S Kumbhare S Thakur S Mate D Moundekar A and Waghmare R 2019 Seismic analysis of building using STAAD.PRO *International Journal of Innovations in Engineering and Science* 04.
- [10] Jayakrishna T Murali K Satish P and Seetunya J 2018 Seismic analysis of regular and irregular multistorey buildings by using STAAD.PRO *International Journal of Civil Engineering and Technology* **09**.
- [11] Bhosale A D Hatkhambkar A P Katkar R V Babar S B and Gorivale S P 2018 Analysis and design of mutistorey building by using STAAD.PROV8i *International Journal of Innovation Science and Research Technology* **03**.
- [12] Prasad C V S Sumith K Shivani R and Tejaswini R 2019 Earthquake and wind analysis of multistorey building using STAAD.PRO *Journal of Emerging Technologies and Innovative Research* **06**.
- [13] Kumar E R Raghava P and Babu T S 2017 Seismic analysis of tall building for different earthquake zones *International Journal of Emerging Technologies in Engineering Research* 05.
- [14] Vishwakarma R and Rai A 2017 Analysis of a RCC frame tall structure using STAAD.PRO on different seismic zones considering ground slopes *International Research Journal of Engineering and Technology* **04.**
- [15] Nair K G and Akshara S P 2017 Seismic analysis of reinforced concrete buildings- a review *International Research Journal of Engineering and Technology* **04.**